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Abstract

Protein–protein binding is fundamental to most biological processes. It is important to be able to 

use computation to accurately estimate the change in protein–protein binding free energy due to 

mutations in order to answer biological questions that would be experimentally challenging, 

laborious, or time-consuming. Although nonrigorous free-energy methods are faster, rigorous 

alchemical molecular dynamics-based methods are considerably more accurate and are becoming 

more feasible with the advancement of computer hardware and molecular simulation software. 

Even with sufficient computational resources, there are still major challenges to using alchemical 

free-energy methods for protein–protein complexes, such as generating hybrid structures and 

topologies, maintaining a neutral net charge of the system when there is a charge-changing 

mutation, and setting up the simulation. In the current study, we have used the pmx package to 

generate hybrid structures and topologies, and a double-system/single-box approach to maintain 

the net charge of the system. To test the approach, we predicted relative binding affinities for two 

protein–protein complexes using a nonequilibrium alchemical method based on the Crooks 

fluctuation theorem and compared the results with experimental values. The method correctly 

identified stabilizing from destabilizing mutations for a small protein–protein complex, and a 

larger, more challenging antibody complex. Strong correlations were obtained between predicted 

and experimental relative binding affinities for both protein–protein systems.
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Graphical Abstract

INTRODUCTION

Protein–protein binding is an essential phenomenon in molecular biology and directly 

mediates most functions in cells such as cellular metabolism, signal transduction, and 

coagulation among many other biological processes.1,2 Mutations of the amino acids in 

protein–protein complexes can modulate or even disrupt protein–protein interactions by 

changing the associated binding free energy (ΔG) of the protein–protein complexes. The 

binding free energy of the protein–protein complexes determines the stability of association 

and the conditions for protein–protein complex formation.3 It is important to be able to 

quantify the stabilities of protein complexes and how they can be modified by amino acid 

mutations and how they are affected by evolution.

Many techniques have been employed to determine the change in the protein–protein 

binding free energy due to a mutation (i.e., relative binding affinity, ΔΔG). Experimental 

biophysical and biochemical methods are routinely used, but these methods are laborious, 

expensive, and time-consuming and are limited by technical challenges.4-7 By contrast, 

computational methods can be relatively inexpensive, and the accuracy of such methods has 

been improved with the advancement of computational resources and better force fields.8-10 

Computational methods for estimating ΔΔG values can be broadly classified as either 

nonrigorous or rigorous.11

Nonrigorous free-energy methods typically use a single, static all-atom structure of the 

protein complex. These methods typically have energy functions that are trained using 

experimentally measured binding affinities or changes in affinities.12,13 Many such 

semiempirical approaches have been developed that combine molecular mechanics and 

various optimized energy terms from available experimental data.14 For example, 

BeAtMuSiC and mCSM use coarse-grained statistical potentials derived from known 3-D 

structures of proteins and machine learning.15,16 FoldX uses empirical force field trained by 

experimentally measured binding free energies or changes in affinities.12,13 The other so-
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called docking/scoring algorithms can predict binding affinities based on predicted binding 

poses and putative binding interactions between protein–protein complexes.17-19

Rigorous free-energy approaches are based on the principles of statistical mechanics and use 

molecular simulations to explore the conformational space.20 These methods typically 

provide more accurate ΔΔG predictions, compared to nonrigorous. One reason for this is that 

they inherently consider the conformational flexibility of the proteins and hence the entropic 

contribution. In recent years, rigorous approaches have made tremendous efficiency and 

theoretical advancements.11,20 Rigorous free-energy calculation approaches are typically 

classified into three categories: endpoint methods, physical path sampling, and alchemical 

transformation.20 Endpoint methods typically use molecular mechanics force fields with 

implicit solvent models such as molecular mechanics-generalized Born surface area 

(MMGB/SA) and molecular mechanics Poisson–Boltzmann surface area (MMPB/SA).21,22 

These methods are computationally less expensive than other rigorous approaches since 

simulations are only performed for two states; however, their accuracy is system-dependent 

and sensitive to simulation protocols such as sampling strategy and entropy calculation. For 

path sampling approaches, the physical unbinding and/or binding pathway of the protein 

with respect to its partner is sampled to obtain the underlying free-energy profile connecting 

bound and unbound states.23-25 This category of methods can be very accurate but requires 

exhaustive conformational sampling along the pathway making it computationally 

expensive. Finally, alchemical methods exploit unphysical pathways by morphing, creating, 

and annihilating atoms.26-29 These methods use molecular mechanics force fields as an 

energy function and the sampling of the correct thermodynamic ensemble is maintained by 

thermostatted and barostatted dynamics. The primary advantage is that the alchemical 

pathway does not need to be correlated with the physical binding process. This is 

particularly advantageous when considering relative binding affinity calculations due to 

single amino acid mutations (such as the current study). In this case, one needs to only 

calculate the free-energy change due to alchemically mutating the amino acid to another 

type in both the bound and unbound states.

Rigorous molecular dynamics (MD)-based alchemical free-energy calculation can be 

performed using equilibrium (e.g., free-energy perturbation,30 thermodynamics 

integration31) or nonequilibrium (e.g., the Jarzynski equality,32,33 Crooks fluctuation 

theorem34) methods. The initial simulation setup is the same for both equilibrium and 

nonequilibrium methods, but the protocols used during the simulations and postanalyses are 

different. The Hamiltonian H is coupled to a parameter λ that navigates the system from 

wild-type (λ = 0) to mutant (λ = 1). While such alchemical methods can be very accurate, 

they can also be computationally expensive since sufficient sampling is required to 

overcome the energetic and entropic barriers. In addition, the initial setup is not user-

friendly, particularly when there is a change in the net charge of the system.29,35,36 

Specifically, the setup requires the topology of the protein system to ensure that all bonded 

and nonbonded interactions are correctly switched from λ = 0 to 1.

To enable more user-friendly alchemical free-energy calculations, de Groot et al. developed 

a package called pmx that automatically generates hybrid protein structures and topologies 

using force field-specific pregenerated mutation libraries.37-39 Moreover, to maintain the net 
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charge of the system during alchemical transformation, they developed an approach that uses 

two protein systems in a single simulation box (double-system/single-box).37,40 Their 

approach of using pmx-generated topologies with a double-system/single-box approach was 

previously used to predict protein folding ΔΔG values due to mutations.37,38 Prior to the 

development of the pmx package, de Groot et al. used the hybrid topology approach to 

calculate binding free energies for ubiquitin in complex with different protein substrates 

using a fast-growth thermodynamic integration approach with the Crooks–Gaussian 

intersection (CGI) method.41 The main purpose of their study was to analyze ubiquitin 

conformations due to point mutations and predict the sign of ΔΔG for binding different 

substrates. They studied 11 mutations and obtained a Pearson correlation coefficient of 0.70 

(p = 0.016). However, they have not explored the transition time per snapshot for 

nonequilibrium simulations. Later, the same group tested pmx with double-system/single-

box approach to predict ΔΔG binding free energies for the protein–protein complex of α-

chymotrypsin with its inhibitor Turkey Ovomucoid third domain with nine observed 

mutations of site L18 of Turkey Ovomucoid third domain.40 The correlation coefficient 

between predicted and experimental ΔΔG was 0.80. Although promising, this protein–

protein complex is small, all nine mutations occurred at the same amino acid site and were 

noncharge mutations.

Here, we tested the performance of using pmx with a double-system/single-box approach in 

a systematic manner using two protein–protein complexes of different sizes with a wide 

range of experimental ΔΔG values. For each system, we selected eight mutations from 

different sites with a broad range of experimental ΔΔG values. We estimated ΔΔG values 

using pmx hybrid topologies with a double-system/single-box approach and the 

nonequilibrium CGI method. Predicted ΔΔG values were compared with experimental 

values. In contrast to previous studies by de Groot et al., we optimized the transition times 

for the most stabilizing and the most destabilizing mutations of each protein–protein system. 

Higher correlation was found for smaller protein–protein complex as well as the larger, more 

complex, antigen-antibody system. Our results suggest that there is still room for 

improvement in rigorous binding free-energy methods to reduce computational cost, 

especially for large, complex protein–protein systems.

METHODS

Test System Selection.

We selected two protein–protein complexes from the SKEMPI database42 as test systems for 

this study. We chose the relatively small Barnase (110 aa)–Barstar (89 aa) complex (Protein 

Data Bank (PDB) ID: 1BRS)43 and the larger, more challenging, antigen–antibody complex 

of lysozyme (129 aa)–HY/HEL-10 FAB (429 aa) (PDB ID: 3HFM).44 1BRS has total 30 

mutations, and 3HFM has 67 mutations reported with their binding constants (Kd) in 

SKEMPI database. We wanted to shortlist eight mutations from each system based on ΔΔG 
values. In order to do that we first calculated ΔG values for wild-type and mutant using the 

reported Kd and reported temperature (T) with eq 1

ΔG = − RT ln Kd (1)
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The ΔΔG values were calculated by taking the difference between ΔG of the mutant and ΔG 
of wild-type. The average ΔΔG value was used when multiple ΔΔG values for a single 

mutation were in the database (Supporting Information Table S1). We chose these systems 

and mutations based on several criteria: (i) ΔΔG values should vary in sign—important since 

mutations with negative (stabilizing) values are often more difficult to predict compared to 

positive (destabilizing) values; (ii) there should be a small number of missing residues in the 

3-D structure of the protein complexes; (iii) chosen mutations should be nonalanine-

scanning point mutations at differing amino acid sites; and (iv) reported mutations should be 

on multiple chains (Figure 1, Supporting Information Table S1).

Preparation of Protein–Protein Complexes.

The 3-D structures of protein–protein complexes were downloaded from the PDB server 

(https://www.rcsb.org) and edited to preserve only the coordinates of the two or three 

interacting chains listed in the SKEMPI database.42 All missing residues and atoms were 

then added using MODELLER software.45 Mutants were generated using the BuildModel 

command from FoldX software.12,13 This process provided nine input structures for each 

protein complex (a wild-type and eight mutant forms) to carry out alchemical free-energy 

calculations.

Construction of Hybrid Residues.

Alchemical binding free-energy calculations require the construction of a non-physical 

pathway of intermediate states connecting the wild-type amino acid (λ = 0) to its mutant 

form (λ = 1). The pmx webserver37,38 allows automatic generation of these intermediate 

states by producing hybrid amino acid states representing a mixture of wild-type and mutant 

form (see Figure 2). Both wild-type and mutant complex structure files were uploaded to the 

pmx webserver. The pdb2gmx option to add hydrogen atoms, and the Amber99SB*ILDN 

modified force field options were selected. The pmx webserver output consisted of hybrid 

structure and topology files compatible with GROMACS to perform the alchemical MD 

simulations.

Free-Energy Calculation and the Thermodynamic Cycle.

To estimate relative binding free-energy values (ΔΔG), we alchemically morphed the wild-

type amino acids to their mutated forms (Figure 2). This process was replicated for both the 

bound and unbound states as indicated by horizontal arrows in the thermodynamic cycle 

shown in Figure 3. We can efficiently obtain ΔG1 and ΔG3 values with high accuracy using 

this approach.46-48 By contrast, to carry out binding/unbinding simulations (vertical arrows 

in Figure 3), to calculate ΔG2 and ΔG4 values would be considerably more challenging and 

computationally expensive.

To estimate ΔG1 and ΔG3 (two horizontal arrows in Figure 3), we used the double-system/

single-box approach developed by Gapsys et al.40 Following this approach, we placed 

BoundWt protein complex and UnboundMutant protein in a single simulation box (λ = 0, 

Figure 4A) and similarly we placed BoundMutant protein complex and UnboundMutant 

protein in a second simulation box (λ = 1, Figure 4A). Figure 4B represents the series of 

steps involved for setting up the system for MD simulations and alchemical free-energy 
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calculations. The distance between the two protein systems in each simulation box was 

maintained at 30 Å (Figure 4B) by applying position restraints on a single backbone atom 

close to the center of mass of each protein system. This separation distance was chosen to be 

larger than the short-range electrostatics cutoff to ensure that the two protein systems in a 

single simulation box did not interact with each other. Alchemical transformation from λ = 

0 to 1 is termed “forward”, where BoundWt was transformed into BoundMutant and 

simultaneously UnboundMutant was transformed into UnboundWt, that is, “backward” λ = 1 

to 0. Two independent simulations (forward and backward) were thus performed to calculate 

the ΔΔG value for each mutation. Use of the double-system/single-box approach enabled us 

to maintain charge neutrality of the simulation system, even when an alchemical 

transformation involved a charge change between the wild-type and a mutant state, for 

example, R83Q.

MD Simulations and Alchemical Free-Energy Calculations.

All MD simulations were carried out with the GROMACS-2018.349 MD simulation package 

using the Amber99SB*ILDN force field and the TIP3P water model.50 The pmx-generated 

hybrid structures and modified force field files were used as an input. For each mutation, we 

prepared two simulation boxes (λ = 0 and λ = 1, Figure 4A) to carry out forward and 

backward transitions using the steps shown in Figure 4B. Both the states were solvated using 

dodecahedron water boxes. Na+ and Cl− ions were added at a 0.15 M concentration to 

neutralize the net charge. Both the simulation boxes were then energy-minimized for 10,000 

steps using the steepest descent algorithm. Subsequent NVT followed by NPT ensemble 

simulations were performed for 500 ps for each simulation box. Note that in the scripts 

provided by pmx, NVT equilibration simulations were not performed; however, we included 

them in our study to reduce the system instability we observed. During the MD simulation, 

constant pressure and temperature were maintained using Parrinello–Rahmans51 pressure 

coupling at 1 atm and v-rescale temperature52 coupling at 300 K. A 2 fs time step was used 

and each snapshot was saved at every 10 ps. Final production MD simulations were then 

performed for 40 ns to ensure sufficient sampling under NPT conditions. To prevent the 

diffusion of the proteins and maintain a 30 Å distance between the two protein systems, 

backbone carbons close to the center of mass were harmonically restrained with a force 

constant of 1000 kJ/mol nm2. Choice of backbone C atoms used to apply position restraints 

for 1BRS was made based on the bound and unbound forms: (i) site A40 of bound-state 

Barstar; (ii) site A74 of unbound Barnase; and (iii) site L20 of unbound Barstar. While for 

3HFM, (i) site Q37 of the bound-state light chain; (ii) site H41 of unbound state of the light 

chain; and (iii) site L56 of the antigen. The light chain is always bound to the heavy chain 

regardless of whether the antigen is bound or unbound. These positional restraints affect 

only the translational degrees of freedom of the proteins, not the overall structure or 

orientation of the proteins. The contribution of the positional restraints to the estimation of 

ΔG will be the same for the bound and unbound form of the proteins and thus the bias 

cancels out when calculating ΔΔG, as is the case for the current study.

After the equilibrium MD simulations, fast-growth nonequilibrium alchemical simulations 

were performed to estimate the ΔΔG. From each equilibrated MD simulation, the first 10 ns 

of the trajectory was discarded, and the last 30 ns was used to generate 100 snapshots (i.e., 
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every 300 ps). Each snapshot was used to initialize a nonequilibrium simulation with a 

transition time of 5 ns for 1BRS and 8 ns for 3HFM (see the Supporting Information) where 

λ was continuously changed from 0 to 1 or from 1 to 0. The speed of λ value change was 

set 2 × 10−7/fs for all forward and backward transitions. The derivatives of the Hamiltonian 

with respect to λ were recorded at every step and free energies were calculated from the 

work (W) distributions obtained from integration according to eq 2.

W = ∫
λ = 0

λ = 1 δH
δλ dλ (2)

ΔΔG was estimated by calculating the intersection of the forward and backward work 

distributions according to the CGI method as described in Goette and Grubmüller.53 The 

scripts used for analysis and calculations of ΔΔG were obtained from the pmx package.

RESULTS AND DISCUSSION

The purpose of our study is to test the accuracy of using pmx hybrid topologies and 

alchemical free-energy calculations with the double-system/single-box approach developed 

by Gapsys et al. to estimate relative binding affinities of protein–protein complexes. The 

pmx package allows for automated generation of the necessary hybrid topologies that are 

otherwise challenging to generate, and the double-system/single-box approach is a simple 

approach to maintain a neutral charge even when a mutation changes the protein charge. We 

tested this approach on two protein–protein systems of varying sizes (1BRS and 3HFM). For 

each system, we selected eight distinct mutations with experimental ΔΔG values reported in 

the literature using the criteria listed under the Methods section.

For alchemical nonequilibrium free-energy calculations using the fast growth method,39,54,55 

the transition time from λ = 0 to 1 or λ = 1 to 0 significantly influences the accuracy of 

ΔΔG prediction. Short transition times lead the system far away from the equilibrium 

leading to a heavily biased estimate, while long transition times are less biased but more 

computationally costly, so the right balance is required.39 To develop our simulation 

protocol, we initially chose two mutations from the 1BRS and 3HFM as test cases. These 

cases represent the most stabilizing (1BRS:D54A, ΔΔG = −0.53 kcal/mol; 3HFM:Y20F, 

ΔΔG = −0.48 kcal/mol) and destabilizing (1BRS:D39A, ΔΔG = 6.79 kcal/mol; 

3HFM:K97D, ΔΔG = 6.77 kcal/mol) charge-changing mutations from the list of eight 

selected mutations (See Tables 1 & 2). To determine a reasonable transition time for our 

production simulations, we calculated ΔΔG values for both the test case mutations of 1BRS 

and 3HFM using 100 snapshots with a range of transition times from 1 to 7 ns for 1BRS and 

1 to 10 ns for 3HFM. Supporting Information Figure 1 shows that transition times of 5 ns for 

1BRS and 8 ns for 3HFM were sufficient to accurately estimate the free energies for these 

challenging mutations.

ΔΔG values of the remaining six mutations of 1BRS and 3HFM were estimated using the 

optimized simulation protocol and the transition time established through test case 

mutations. The predicted ΔΔG values were within ±2 kcal/mol of experimental ΔΔG values 
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for optimized transition times for both protein–protein systems. In addition, experimental 

ΔΔG errors are within ±0.2 kcal/mol for both the test systems.

Figure 5 shows the correlation between the predicted and experimental ΔΔG values for all 

mutations from both the test systems. The calculated ΔΔG values correlate well with 

experimental data (R2 = 0.85) for a smaller system of 1BRS and (R2 = 0.81) for the larger, 

antigen–antibody complex 3HFM. The noncharge mutations from the 1BRS system such as 

W44F and W38F have the predicted ΔΔG values within the range of ±0.5 kcal/mol of 

experimental ΔΔG values. The convergence time for these mutations was within 1–2 ns 

transition time/snapshot. In the case of 3HFM, the noncharge mutations Y20F, W98F, and 

Y50L have higher accuracy, within range of ±1 kcal/mol of experimental ΔΔG values 

compared to other charge-changing mutations. Conversely, the charge-changing mutations 

are challenging to achieve convergence in free-energy calculations with short transition time. 

Longer transition times are likely needed in these cases to allow for sufficient 

conformational sampling. All the charge-changing mutations of the 1BRS system converged 

at around a 5 ns transition time with relatively high accuracy (±2 kcal/mol of experimental 

ΔΔG). However, in 3HFM, the charge-changing mutations show convergence at around 8 ns 

transition time with an accuracy of ±2.5 kcal/mol of experimental ΔΔG.

Both the test systems in this study were previously used by our laboratory to predict ΔΔG 
values for the same eight mutations using the nonrigorous methods FoldX and MD + FoldX 

and rigorous coarse-grained umbrella sampling MD simulations.56 The pmx with a double-

system/single-box approach significantly outperforms the accuracy our previous FoldX12,13 

(1BRS:R2 = 0.59, 3HFM:R2 = −0.005), MD + FoldX57-59 (1BRS:R2 = 0.62, 3HFM:R2= 

0.04), and coarse-grained umbrella sampling (1BRS:R2 = 0.85, 3HFM:R2 = 0.35) estimates 

in both the complexes. There is an especially large improvement in the accuracy of predicted 

ΔΔG values for the antigen–antibody complex, 3HFM, with all-atom pmx with a double-

system/single-box approach.

In this study, we used 100 snapshots per mutation to initiate the alchemical transitions and 

each snapshot was simulated for 5 ns. This means that 500 ns total simulation time was used 

to estimate ΔΔG for both forward and backward directions. The equilibration simulation 

required ~4500 CPUh for one mutation for the 1BRS system while in the case of 3HFM, it 

required ~85,300 CPUh. With pmx with a double-system/single-box approach, the 

alchemical nonequilibrium simulation time is the major contributing factor to estimate the 

computational cost for the calculation of one ΔΔG. In the 1BRS system, nonequilibrium 

simulations required ~45,000 CPUh for 100 transitions per ΔΔG prediction, however almost 

30 times more CPUh (~1,364,800) required in the case of the 3HFM system. It should also 

be noted that nonequilibrium alchemical transition is trivially parallelizable in that each of 

the 100 transitions can be run independently without relying on the completion of the 

previous simulation.

In order to obtain accurate binding free-energy values for protein–protein complex, 

exhaustive conformational sampling is required in order to sufficiently explore 

conformational space. Larger protein–protein complexes, such as antigen–antibody complex 

3HFM studied here, require longer simulations to obtain convergence compared to smaller 
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protein–protein complexes such as 1BRS.60-62 In our study, we first optimized the protocol 

to calculate ΔΔG values for the most stabilizing and the most destabilizing mutations of 

1BRS and 3HFM systems and then applied the same protocol to rest of the mutations. We 

note that the accuracy of the nonequilibrium method could possibly be improved39 via (i) 

longer equilibrium simulations to generate snapshots with more distant conformations, (ii) 

increasing the transition time per snapshot, and (iii) increasing number of independent 

transitions. We observed that in the case of 3HFM, the accuracy of ΔΔG values was 

improved with increasing the transition time per snapshot.

Future work could involve using the alchemical double-system/single-box method but with 

coarse-grained protein models. Based on results from our previous study,56 this may 

significantly reduce computational cost and still retain similar accuracy. However, coarse-

grained hybrid topologies of the proteins have not yet been developed. Another approach to 

reducing computational cost could be use of a dual-resolution water model where water 

around the protein is atomistic and the rest of the water molecules coarse-grained.63-65

CONCLUSIONS

In this study, we have estimated protein–protein relative binding affinities due to single 

amino acid mutations using pmx hybrid topologies with a double-system/single-box 

approach. Nonequilibrium alchemical methods were used to generate ΔΔG estimates for one 

small and one large protein–protein complex, and results were compared with experimental 

values. We obtained a significantly higher correlation between predicted and experimental 

ΔΔG values for the small complex as well as the larger one. We were able to successfully 

distinguish stabilizing mutations from nonstabilizing mutations for all mutations in small 

complex and the large antigen–antibody complex. The accuracy of the predictions for the 

large complex is improved compared to previously tested rigorous and nonrigorous methods. 

Our results suggest that there are still potential areas for improvement in the reduction of 

computational cost for binding free-energy calculations, especially for larger protein–protein 

complexes. Future work could also be devoted to estimating binding free energies due to 

multiple mutations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
3-D structures of the test systems used in the current study with the eight selected mutations 

shown as orange spheres. Left: Barnase (purple)–Barstar (yellow) protein complex (PDB ID: 

1BRS); Right: lysozyme–HY (yellow) HEL-10 FAB (purple and blue) antigen–antibody 

complex (PDB ID: 3HFM).
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Figure 2. 
Example of a pmx-generated hybrid amino acid structure for serine (λ = 0) to glutamic acid 

(λ = 1). Dummy atoms are shown as transparent orange spheres.
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Figure 3. 
Schematic representation of the thermodynamic cycle used to calculate relative binding free 

energies due to mutation (ΔΔG = ΔG1 – ΔG3). Horizontal arrows indicate the non-physical 

pathways used in the current study where the amino acid was alchemically morphed from 

wild-type to its mutant form for both bound and unbound states.
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Figure 4. 
Double-system/single-box simulation setup. (A) Each colored cylinder represents a 

simulation box. During the forward alchemical transition, double systems consisting of 

BoundWt and UnboundMutant (blue cylinder, λ = 0) are morphed into BoundMutant and 

UnboundWt (λ = 1) states, respectively. Similarly, backward alchemical transition (λ = 1 to 

λ = 0) takes place in the red cylinder. (B) Schematic representation of the steps involved for 

setting up one of the double-system/single-box simulations for a mutation of 1BRS protein 

complex.
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Figure 5. 
Correlation between predicted and experimental ΔΔG values for 1BRS (red) and 3HFM 

(blue) systems. The dashed black line shows perfect correlation.
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