Skip to main content
. Author manuscript; available in PMC: 2021 Apr 14.
Published in final edited form as: J Chem Theory Comput. 2021 Mar 12;17(4):2457–2464. doi: 10.1021/acs.jctc.0c01045

Table 2.

Predicted Relative Binding Free Energy of Each Mutation of 3HFM at Different Transition Times between 1 to 8 ns for 100 Independent Transitionsa

ΔΔG (kcal/mol)
mutations (3HFM) experimental 1 ns 2 ns 3 ns 4 ns 5 ns 6 ns 7 ns 8 ns 9 ns 10 ns
Y20F −0.48 −7.53 −6.34 −3.45 −2.95 −0.34 −1.02 −0.83 0.07 −0.69 −0.98
D32N 0.17 ± 0.3 −3.47 −5.67 −2.99 −1.32 −1.59 −1.98 −1.14 0.53
R21A 0.90 5.82 7.54 4.56 3.98 1.23 2.34 1.74 1.35
D101K 2.13 16.98 13.27 7.43 3.59 −0.46 −1.27 0.87 0.12
W98F 3.25 ± 0.16 7.49 5.89 6.78 2.35 −0.16 −0.87 0.46 2.23
Y50L 4.39 ± 0.12 9.65 6.37 2.36 1.33 0.10 1.37 2.89 3.26
N31E 5.71 ± 0.13 13.28 8.73 9.67 4.78 −1.26 0.56 2.34 3.52
K97D 6.77 ± 0.14 10.25 10.47 7.09 5.36 9.00 7.20 8.33 6.83 7.86 8.24
a

Estimated ΔΔG values of all eight mutations of the 3HFM system for 100 independent transitions. The predicted ΔΔG values were compared with the corresponding experimental data. ΔΔG values beyond 8 ns of transition time are for test mutations Y20F and K97D as a part of the convergence study.