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Abstract

Objective: Determine whether machine learning techniques would enhance our ability to 

incorporate key variables into a parsimonious model with optimized prediction performance for 

electroencephalographic seizure (ES) prediction in critically ill children.

Methods: We analyzed data from a prospective observational cohort study of 719 consecutive 

critically ill children with encephalopathy who underwent clinically-indicated continuous EEG 

monitoring (CEEG). We implemented and compared three state-of-the-art machine learning 

methods for ES prediction: (1) random forest; (2) Least Absolute Shrinkage and Selection 

Operator (LASSO); and (3) Deep Learning Important FeaTures (DeepLIFT). We developed a 

ranking algorithm based on the relative importance of each variable derived from the machine 

learning methods.
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Results: Based on our ranking algorithm, the top five variables for ES prediction were: (1) 

epileptiform discharges in the initial 30 minutes, (2) clinical seizures prior to CEEG initiation, (3) 

sex, (4) age dichotomized at 1 year, and (5) epileptic encephalopathy. Compared to the stepwise 

selection-based approach in logistic regression, the top variables selected by our ranking algorithm 

were more informative as models utilizing the top variables achieved better prediction 

performance evaluated by prediction accuracy, AUROC and F1 score. Adding additional variables 

did not improve and sometimes worsened model performance.

Conclusion: The ranking algorithm was helpful in deriving a parsimonious model for ES 

prediction with optimal performance. However, application of state-of-the-art machine learning 

models did not substantially improve model performance compared to prior logistic regression 

models. Thus, to further improve the ES prediction, we may need to collect more samples and 

variables that provide additional information.

Keywords

Seizure; Pediatric; Electroencephalogram; EEG Monitoring; machine learning

Introduction

Electroencephalographic seizures (ES) occur in 10-40% of children with acute 

encephalopathy who undergo continuous EEG monitoring (CEEG),1-32 increasing evidence 

indicates that high ES exposure is associated with unfavorable neurobehavioral outcomes,
8,11,15,23,24 and ES are often treatable with anti-seizure medications.33-35 Thus, CEEG use is 

increasing for ES identification and management,36 and guidelines recommend that children 

with acute encephalopathy undergo 24-48 hours of CEEG to identify ES.37-39 However, 

given CEEG is resource-intense,40,41 a clinical prediction tool that enabled evidence-based 

targeting of CEEG resources to patients most likely to experience ES would be of great 

clinical value. Unfortunately, developing an ES prediction model with sufficiently high 

specificity to meaningfully reduce CEEG utilization and sufficiently high sensitivity to avoid 

failing to identify patients experiencing ES has been difficult. Prior studies have identified 

risk factors for ES in critically ill children,2,5-7,9-12,15,16,18,19,21,22 and generated multi-

variable prediction models using standard regression approaches.31,32,42,43 In a prospective 

observational study of 719 consecutive critically ill children with acute encephalopathy who 

underwent CEEG, we used a logistic regression approach to develop an ES prediction 

model. Variables associated with increased ES risk included age (≥1 year or <1 year), acute 

encephalopathy category (epilepsy-related, acute structural, acute non-structural), clinical 

seizures prior to CEEG initiation (present or absent), EEG background category (normal/

sleep, slow-disorganized, discontinuous, burst-suppression, or attenuated-featureless), and 

epileptiform discharges (present or absent). The model yielded an area under the receiver 

operating characteristic curve (AUROC) of 0.80. If model cutoff was selected to emphasize 

sensitivity to avoid failing to identify a child experiencing ES, then the model would limit 

29% of patients from undergoing CEEG while failing to identify 8% of patients with ES.31 

A subsequent study indicated that the model was well calibrated and well discriminating in a 

separate validation cohort.43
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Machine learning techniques could improve prediction performance. In this study, we aimed 

to determine whether several machine learning techniques, ranging from widely used 

traditional machine learning models to novel neural network approaches, would enhance our 

ability to incorporate key variables into a parsimonious model with optimized prediction 

performance. In addition, given the power of the machine learning techniques, we aimed to 

develop a ranking algorithm for the features to better understand which features are most 

important for seizure prediction. This ranking information could provide guidance to 

prioritize data collection for future seizure risk prediction studies.

Methods

Study Subjects

The Institutional Review Board approved the study with a waiver of consent. We registered 

the study with clincialtrials.gov (NCT03419260) and applied observational study reporting 

standards.44 Details regarding the cohort characteristics and a standard logistic regression 

model for ES prediction have been published.31-33,43

We performed a prospective observational cohort study of consecutive critically ill children 

with encephalopathy treated in the pediatric intensive care unit (PICU) of a quaternary care 

hospital who underwent clinically-indicated CEEG to screen for ES based on a guideline-

adherent37-39 institutional pathway45 between April 2017 and February 2019. We excluded: 

(1) neonates (<30 days old); (2) patients who received brief post-operative epilepsy surgery 

care in the PICU; and (3) patients admitted after >2 days of care for refractory status 

epilepticus at a different institution since the available initial clinical and EEG data were 

often insufficient. We performed continuous video-EEG monitoring using Natus 

Neuroworks (Middleton, WI) using the international 10-20 system for electrode placement. 

The inpatient Electroencephalography Service EEG interpreted the EEG studies, and the 

Critical Care Medicine and Neurology Consultation Services managed the patients.

We prospectively collected clinical and EEG data using a Research Electronic Data Capture 

(REDCap) database.46 Clinical data included age, sex, prior neurodevelopmental disorders, 

medications, CEEG indication, hospital and PICU admission and discharge dates, presence 

of clinically evident seizures prior to CEEG, acute encephalopathy category (epilepsy-

related, acute structural, or acute non-structural) based on the primary presenting problems/

diagnoses available at the time of admission, and mental status (comatose or not; baseline or 

not). A pediatric electroencephalographer (FWF) scored the EEG through review of both 

tracings and clinical reports using standardized 47 and critical care EEG terminology48 

which has good inter-rater reliability49 and has been used in prior studies of CEEG in 

critically ill children.11,23,24,31-33,42,43,50-52 EEG data included initiation and discontinuation 

date and time, background features (normal/sleep, slow-disorganized, discontinuous, burst-

suppression, or attenuated-featureless) epileptiform discharges, and ES presence and 

characteristics. We defined ES as abnormal paroxysmal events that were different from the 

background, lasted longer than 10 seconds, had a plausible electrographic field, and had a 

temporal-spatial evolution in morphology, frequency, and amplitude, as consistent with 

proposed definitions53 and prior studies.16,23,31-33,52 We defined epileptiform discharges 

based on a glossary of EEG terms as transients distinguishable from the background with 
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sharp or spiky morphology, different wave duration than the background, waveform 

asymmetry, and sometimes followed by an after-going slow-wave.47

Machine Learning Methods

We implemented three machine learning methods to predict ES occurrence. First, random 

forest, is a popular tree-based machine learning algorithm for classification.54 It was 

preferred for variable ranking for this dataset because all the variables in this study were 

categorical. In addition, random forest is more robust and interpretable than standard logistic 

regression. In our implementation, we built a random forest model consisting of 30 

unpruned decision trees, each of which was built over a random extraction of the 

observations and a random extraction of the variables from the data. Thus, each tree only 

used partial variables and partial observations, which guaranteed that the trees were de-

correlated and therefore, less prone to over-fitting. We built random forest models with 

different numbers of tree estimators, among which the model with best performance 

according to the five-fold cross validation was selected (Supplemental Table 1). After 

building the random forest, the entropy decreases from each variable were averaged across 

the decision trees to determine the importance of each variable. Second, Least Absolute 

Shrinkage and Selection Operator (LASSO),55 is a regression analysis method performing 

simultaneous variable selection and regularization to enhance prediction accuracy and 

interpretability.55 This method uses a penalty factor to control the number of variables kept 

in the model through an alpha parameter to regulate the weight of the penalty factor. A 

higher value of the alpha indicates that fewer variables are considered important and remain 

in the model. Starting from zero (all variables were included in the model), we gradually 

increased the value of alpha to 0.05 by 0.0001 at a time, and the model dropped variables 

which were less important. We tracked the set of remaining variables and ranked the 

importance of variables by the reverse order of each variable being dropped from the model. 

Third, Deep Learning Important FeaTures (DeepLIFT), is a state-of-the-art method which 

derives feature importance scores based on neural networks.56 DeepLIFT is a novel 

algorithm for decomposing the output prediction of a neural network on a specific input by 

backpropagating the contributions of all neurons in the network to every variable of the 

input. It can assign importance score to each input variable for a given output. With the 

power of DeepLIFT, we were able to prioritize variables critical for ES prediction and rank 

them directly using the derived importance score. We implemented fully connected neural 

networks with different structures, i.e., different number of hidden layers (Supplemental 

Table 2), and we selected the one with best performance in ES prediction. Then, we used 

DeepLIFT to rank the variables based on the importance scores. Neural network approaches 

have shown superior performance beyond traditional statistical methods in a variety of 

fields.57

Model Performance Evaluation and Variable Ranking

We evaluated the model performance in predicting ES using five-fold cross validation with 

three metrics: (1) prediction accuracy including training and validation accuracy, which 

measures the percentage of observations, both positive and negative, that were correctly 

classified or predicted by the model in the training set and validation set, respectively; (2) 

AUROC; and (3) F1 score which combines precision and recall into one metric by 
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calculating the harmonic mean between the two, and therefore considers the false positive 

and false negative predictions simultaneously. The standard logistic regression model 

previously reported from this cohort31 was the baseline for model comparisons.

We performed variable ranking using the random forest, LASSO, and DeepLIFT models. 

Subsequently, we calculated an overall composite ranking for each variable that combined 

the results across the three models. The overall composite ranking was calculated as a 

weighted sum of the three rankings using their validation accuracies as the weights. 

Variables with multiple categories were coded as dummy variables for each level against the 

baseline. The highest rank among the corresponding dummy variables was used as the rank 

for the multilevel variable. As comparison, we also obtained the order of the variables 

selected into the logistic regression model by the stepwise selection algorithm.

We considered three ‘forward’ scenarios using logistic regression to test the validity of the 

overall composite ranking. First, in the rank-based scenario, variables were added 

sequentially to the model one at a time in the order of the overall ranking starting from the 

highest ranking (i.e., the most important variable). Second, in the stepwise selection-based 

scenario, variables were added according to the stepwise model selection approach in a 

logistic regression. Third, in the random scenario, variables were added in a random order. 

Five-fold cross validation accuracies, AUROCs, and F1 scores were monitored during the 

process to evaluate the performance of these three scenarios. We hypothesized that to 

achieve similar performance, the prediction model would need fewer variables when it 

included the variables with the highest overall composite rankings as compared to including 

variables under the other two scenarios. This ranking algorithm would determine a relatively 

parsimonious model with the most important variables while achieving reasonably good ES 

prediction.

Results

Cohort

We enrolled 719 consecutive critically ill children. ES occurred in 184 subjects (26%). Table 

1 provides the clinical and EEG characteristics of the full cohort and the subgroups with and 

without ES. We described the cohort previously as part of the standard logistic regression 

analysis to predict ES.31

Model Performance

Table 2 provides performance of the models using five-fold cross validation. Training 

accuracy was higher for the random forest model (0.963) and DeepLIFT model (0.962) 

compared to the standard logistic regression (0.762) or LASSO regression model (0.791) 

with alpha=0.01. All models were similar in validation accuracy, although the LASSO 

regression model achieved slightly higher validation (0.777) than the other models. Based on 

the F1 score, all models performed similarly with F1 scores ranging from 0.732-0.758.
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Variable Ranking

Table 3 provides rankings for all variables obtained from each model, as well as the overall 
composite ranking. According to the overall composite ranking, the top five variables for ES 

prediction were: (1) epileptiform discharges in the initial 30 minutes, (2) clinical seizures 

prior to CEEG, (3) sex, (4) age dichotomized at 1 year, and (5) epileptic encephalopathy. 

The last column of Table 3 lists the order of the variables selected into the logistic regression 

model by the stepwise selection algorithm. While most of the high-ranking variables were 

similar across the approaches, there were several differences. The variable with the top 

overall composite ranking, epileptiform discharges in the initial 30 minutes, was the fourth 

variable selected into the model by stepwise selection algorithm, while the EEG background 

initial 30 minutes was the eighth overall composite ranked variable yet was the third ranked 

variable by stepwise selection.

We evaluated the prediction performance of models with the top ranked variables. Figure 1 

shows the changes of validation accuracies of the logistic regression models as we 

sequentially added variables one at a time to the model under the rank-based, stepwise 

selection-based, and random scenarios. When the variables were added to the model in the 

ranked order, the model started with a fairly high accuracy even with only the top variable 

included (0.777), peaked with the top three variables included (0.782), and then decreased 

slightly with addition of more variables. Comparatively, when variables were added in the 

stepwise selection-based order, the accuracy started relatively low (0.743), dropped as the 

top three variables were included (0.735), peaked with 13 variables added (0.779), and then 

decreased with additional variables added. Finally, when variables were added in a random 

order, the validation accuracy started low (0.742), dropped as other 8 variables were added 

(0.736), then increased and peaked with 19 variables included (0.783).

Figure 2 provides the comparison of AUROC of the logistic regression models for the rank-

based, stepwise selection-based, and random scenarios. The AUROC for the rank-based 

scenario started lower with only one variable included (0.682) and peaked with seven 

variables (0.793). The AUROC for the stepwise selection-based scenario started from a 

lower (0.616) and peaked with seven variables (0.795). The AUROC for the random scenario 

started low (0.469) and peaked (0.782) with 15 variables.

Figure 3 provides the F1 score of the logistic regression models for the rank-based, stepwise 

selection-based, and random scenarios. For the rank-based scenario, the F1 score started 

from a peak value of 0.771 and fluctuated no lower than 0.751 as variables were included. 

For the stepwise selection-based scenario, the F1 score increased from 0.633 to 0.759 as 

variables were included. For the random scenario, the F1 score increased from 0.632 to 

0.759 as more variables were included.

Thus, all three model performance metrics (prediction accuracy, AUROC, and F1 score) 

suggested that the top ranked variables by our ranking algorithm were more useful for ES 

prediction than the low ranked variables. Compared to the stepwise selection-based scenario, 

the top three variables selected by our ranking algorithm were more informative and 

achieved much higher validation accuracy, AUROC, and F1 score. In addition, models with 

the top eight variables by the overall composite rankings would achieve the best prediction 
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performance, while adding more variables to the model did not help improve model 

performance.

Discussion

ES are common and associated with unfavorable neurobehavioral outcomes in children.
8,11,15,23,24 However, CEEG is resource-intense,40,41 so evidence-based strategies for 

targeting CEEG resources to patients at greatest risk for experiencing ES are needed. We 

previously used standard logistic regression methodology to develop an ES prediction model 

that incorporated three clinical and two EEG variables. It had an AUROC of 0.80, and at a 

0.10 cutoff selected to emphasize sensitivity (to avoid missing patients experiencing ES), 

implementation would limit 29% of patients from undergoing CEEG while failing to 

identify 8% of patients with ES.33 Applying the model in a separate validation cohort 

yielded similar performance characteristics.43 Unfortunately, our data indicate that neither 

application of machine learning techniques, including advanced neural network approaches, 

nor incorporation of many potential predictor variables improved model performance 

compared to standard logistic regression. Model performance was similar using the standard 

logistic regression and all three machine learning techniques when assessed using several 

measures (prediction accuracy, AUROC, and F1 score). Further, the ranking of most 

variables was generally similar across the different approaches, including the standard 

logistic regression approach. Finally, when variables were added in the order by our ranking 

algorithm or by stepwise regression, the top variables yielded optimal performance by all 

performance metrics. Adding additional variables did not improve and sometimes worsened 

model performance. Overall, even with advanced machine learning techniques and inclusion 

of additional potential predictor variables, model performance reached a threshold with a 

validation accuracy of 0.72-0.78, and other accuracy assessments indicated a similar 

threshold effect.

These data indicate that standard logistic regression techniques using a small number of 

variables33,43 may have achieved the most effective and parsimonious prediction models for 

determining ES risk. Novel approaches may be necessary to improve the value of CEEG 

through more targeted use. Several approaches may be beneficial. First, ES prediction in 

more homogeneous cohorts may be necessary. Second, value might be improved by 

instituting a more tailored approach to CEEG duration rather than targeting CEEG initiation 

to specific patient populations. This kind of strategy would entail initiation of CEEG broadly 

across patients but reduce CEEG duration in patients at lowest risk for ES. Studies in both 

adults and children indicate the value of this approach.32,58 Our data indicated that the top-

ranked overall composite variable was epileptiform discharges in the initial 30 minutes, 

which would be detectable with only a brief screening EEG. Thus, even in models intending 

to select patients for CEEG initiation, widespread use of a screening EEG may be beneficial, 

thereby making CEEG duration the key variable to hone for more cost-effective, tailored 

approaches.

According to the overall composite ranking which combined the three machine learning 

technique rankings, the top five variables for ES prediction were: (1) epileptiform discharges 

in the initial 30 minutes, (2) clinical seizures prior to CEEG initiation, (3) sex, (4) age 
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dichotomized at 1 year, and (5) epileptic encephalopathy. The clinical and EEG variables 

associated with higher risk of ES are concordant with prior studies identifying risk factors 

for seizures to be: epileptiform discharges,2,5,6,12,17,31 the presence of clinically-evident 

seizures prior to CEEG initiation,6,7,11-13,17,31 and younger age (often dichotomized at one-

year or two-years).6,11,13,14,16,31,42 The finding that sex is a key predictor is a new finding 

and may warrant further investigation. Acute encephalopathy category was ranked quite low 

(twelfth) despite being identified as a variable impacting ES incidence in prior studies.
7,12,14,31 Applying this variable in clinical prediction models is sometimes difficult due to 

overlapping conditions and diagnostic uncertainty at the time of presentation in some 

patients. Thus, it may be advantageous that our data indicate it is not a key variable for ES 

prediction. Similarly, prior studies have identified EEG background category as a predictor 

of ES,2,5,31 but it was only the eighth ranked variable in our study. However, since some 

CEEG would be required to identify epileptiform discharges, the top ranked variable, 

removing EEG background from prediction models would not preclude the need for at least 

a brief screening EEG. It is also possible that EEG background is ranked lower because it 

may a better predictor of ES over longer periods of time, whereas epileptiform discharges in 

the acute period are more predictive initially.

There are several limitations to this study. Some of the limitations relate to the overall cohort 

and study design have been noted previously31-33,43 and are summarized below. First, the 

study was conducted at one center. While the overall ES incidence and risk factors were 

consistent with prior studies, generalizability may be enhanced by replication in multi-center 

studies. Second, we did not test our models in an independent cohort due to limited sample 

size and low prevalence of seizures. For this type of study, it would be ideal to have an 

independent dataset that is not used for model building or validation to test for the final 

prediction models. In practice, when sample size is large and the prevalence of the outcome 

is relatively high, one approach is to divide the data into training, validation, and model 

testing datasets. Third, although EEG data used standardized terminology47,48 with good 

inter-rater reliability49 and commonly used definitions for seizures1,16,23,53 and background 

categories,11,23,24,42,50,51 scoring was performed by a single electroencephalographer. We 

evaluated the same set of potential predictor variables as previously studied using the 

standard logistic regression. Inclusion of many variables using data mining approaches, 

potentially including clinical, EEG, laboratory, and imaging variables not initially expected 

to improve ES prediction, would be expected to yield superior model performance. However, 

the results from our ranking algorithm suggest that many variables in this data set provide 

redundant information, and the top five variables ranked by our algorithm capture the most 

representative pattern for ES prediction. Last, we tested how the sample size of the training 

dataset would affect the model performance by randomly selecting 216 samples as 

validation data and from the remaining data randomly selecting 100, 200, 300, 400, and 500 

samples to form the training data to fit the model and then evaluate the model performance. 

As shown in Supplement Figure 1, the model’s accuracy and F1 score increased as the 

training sample size increased, which suggested that increasing the sample size could 

potentially improve the performance of these models.

Overall, the ranking algorithm was helpful in deriving a parsimonious model for ES 

prediction with optimal performance. However, application of state-of-the-art machine 
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learning models did not substantially improve model performance compared to prior logistic 

regression models. Thus, with the currently available samples and variables in this data, 

there may be a limit to the model performance that can be achieved by ES prediction models 

even with advanced techniques and inclusion of numerous potential predictor variables 

guided by a ranking algorithm. To further improve the ES prediction, we may need to collect 

more samples and variables that provide additional information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The goal of this study was to determine whether machine learning techniques 

would enhance our ability to incorporate key variables into a parsimonious 

model with optimized prediction performance for electroencephalographic 

seizure (ES) prediction in critically ill children. We analyzed data from a 

prospective observational cohort study of 719 consecutive critically ill 

children with encephalopathy who underwent clinically-indicated continuous 

EEG monitoring (CEEG). We implemented and compared three state-of-the-

art machine learning methods for ES prediction: (1) random forest; (2) Least 

Absolute Shrinkage and Selection Operator (LASSO); and (3) Deep Learning 

Important FeaTures (DeepLIFT). We developed a ranking algorithm based on 

the relative importance of each variable derived from the machine learning 

methods. Compared to the stepwise selection-based approach in logistic 

regression, the top variables selected by our ranking algorithm were more 

informative, and adding additional variables did not improve and sometimes 

worsened model performance. Overall, the ranking algorithm was helpful in 

deriving a parsimonious model for ES prediction with optimal performance. 

However, application of the machine learning models did not substantially 

improve model performance compared to prior logistic regression models. 

Thus, to further improve the ES prediction, we may need to collect more 

samples and variables that provide additional information.
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Figure 1. 
Validation accuracy in scenarios in which variables were added in the order by ranking 

algorithm, stepwise selection, or randomly.
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Figure 2. 
Validation using area under the receiver operating characteristic curve (AUC) in scenarios in 

which variables were added were added in the order by ranking algorithm, stepwise 

selection, or randomly.
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Figure 3. 
Validation using the F1 score in scenarios in which variables were added in the order by 

ranking algorithm, stepwise selection, or randomly.
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Table 1.

Summary of clinical and EEG variable associations with electroencephalographic seizures. Data are presented 

as counts (percentages).

Variable Total Electrographic
Seizures

No
Electrographic

Seizures

719 184 (26%) 535 (74%)

Clinical Age

  <1 Year 144 (20%) 47 (26%) 97 (18%)

  ≥1 Year 575 (80%) 137 (75%) 438 (82%)

Sex

  Male 417 (58%) 118 (64%) 299 (56%)

  Female 302 (42%) 66 (36%) 236 (44%)

Race

  White 329 (46%) 81 (44%) 248 (46%)

  Black or African American 208 (29%) 54 (29%) 154 (29%)

  Asian 22 (3%) 7 (4%) 15 (3%)

  Other 3 (0.4%) 1 (0.5%) 2 (0.4%)

  Unknown 157 (22%) 41 (22%) 116 (22%)

Ethnicity

  Not Hispanic or Latino 604 (84%) 156 (85%) 448 (84%)

  Hispanic or Latino 100 (14%) 26 (14%) 74 (14%)

  Unknown 15 (2%) 2 (1%) 13 (2%)

Acute Encephalopathy Category

  Acute Non-Structural 159 (22%) 22 (12%) 137 (26%)

  Acute Structural 350 (49%) 79 (43%) 271 (51%)

  Epilepsy 210 (29%) 83 (45%) 127 (24%)

Epileptic Encephalopathy

  No 608 (85%) 127 (69%) 481 (90%)

  Yes 111 (15%) 57 (31%) 54 (10%)

Prior Developmental Delay/Intellectual Disability

  No 344 (48%) 69 (37%) 275 (51%)

  Yes 375 (52%) 115 (63%) 260 (49%)

Prior Diagnosis of Epilepsy

  No 455 (63%) 82 (45%) 373 (70%)

  Yes 264 (37%) 102 (55%) 162 (30%)

Clinical Seizures Prior to CEEG

  No Seizures 241 (34%) 30 (16%) 211 (39%)

  Seizures or Status Epilepticus 478 (66%) 154 (84%) 324 (61%)

Mental Status

  No Coma 589 (82%) 159 (86%) 430 (80%)

  Coma 130 (18%) 25 (14%) 105 (20%)

Mental Status
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Variable Total Electrographic
Seizures

No
Electrographic

Seizures

719 184 (26%) 535 (74%)

  Baseline 611 (85%) 31 (17%) 77 (14%)

  Worse than Baseline 108 (15%) 153 (83%) 458 (86%)

Sedatives

  None 360 (50%) 114 (62%) 246 (46%)

  Intermittent Dosed 36 (5%) 6 (3%) 30 (6%)

  Continuous Infusion 323 (45%) 64 (35%) 259 (48%)

EEG EEG Background Initial 30 Minutes

  Normal – Asleep 241 (34%) 36 (20%) 205 (38%)

  Slow and Disorganize 370 (51%) 117 (64%) 253 (47%)

  Discontinuous 38 (5%) 16 (9%) 22 (4%)

  Burst-Suppression 17 (2%) 8 (4%) 9 (2%)

  Attenuated and Featureless 53 (7%) 7 (4%) 46 (9%)

Variability or Reactivity on Day 1

  No 224 (31%) 70 (38%) 154 (29%)

  Yes 495 (69%) 114 (62%) 381 (71%)

Epileptiform Discharges in the Initial 30 Minutes

  None 563 (78%) 95 (52%) 468 (87%)

  Present 156 (22%) 89 (48%) 67 (13%)
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Table 2.

Summary of the model performance using five-fold cross validation. Data are presented as mean (range).

Model Training
accuracy

Validation
accuracy AUROC F1 score

Logistic Regression* 0.757
(0.726-0.773)

0.716
(0.643-0.762)

0.769
(0.741-0.815)

0.729
(0.662-0.773)

Random Forest 0.963
(0.958-0.967)

0.740
(0.699-0.764)

0.706
(0.676-0.732)

0.732
(0.688-0.751)

LASSO Regression 0.786
(0.773-0.794)

0.785
(0.748-0.826)

0.781
(0.736-0.822)

0.762
(721-0.802)

DeepLIFT 0.962
(0.940-0.972)

0.751
(0.706-0.812)

0.716
(0.680-0.753)

0.748
(0.721-0.760)

Notes: AUROC, area under receiver operating characteristic curve; DeepLIFT, Deep Learning Important FeaTures; LASSO, Least Absolute 
Shrinkage and Selection Operator.

*
The logistic regression values are derived from a prior publication.31
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Table 3.

Rankings for all variables obtained from Random Forest, LASSO, and DeepLIFT. An overall composite 

ranking is calculated based on the three methods weighted by their validation accuracies, and it is compared to 

the order from stepwise selection algorithm in logistic regression.

Variable

Model Overall
Composite
Ranking

Stepwise
Selection
Ranking

Random
Forest LASSO DeepLIFT

Epileptiform Discharges in the Initial 30 Minutes 1 1 2 1 4

Clinical Seizures Prior to CEEG 3 2 1 2 1

Sex 2 7 6 3 5

Age 5 6 4 4 2

Epileptic Encephalopathy 8 4 5 5 6

Sedatives 4 9 7 6 7

Prior Diagnosis of Epilepsy 12 3 8 7 14

EEG Background Initial 30 Minutes 9 5 9 8 3

Mental Status (Coma) 10 13 3 9 11

Variability or Reactivity on Day 1 6 12 10 10 13

Prior Developmental Delay / Intellectual Disability 7 11 11 11 10

Acute Encephalopathy Category 13 8 13 12 9

Ethnicity 14 10 12 13 8

Race 11 14 14 14 12

Mental Status (Worse than Baseline) 15 15 15 15 15
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