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Abstract

Regulatory T-cells (Tregs) are key players in the maintenance of immune homeostasis by 

preventing immune responses to self-antigens. Defects in Treg frequency and/or function result in 

overwhelming CD4 and CD8 T cell immune responses participating in the autoimmune attack. 

Perpetuation of autoimmune damage is also favored by Treg predisposition to acquire effector cell 

features upon exposure to a proinflammatory challenge.

Treg impairment plays a permissive role in the initiation and perpetuation of autoimmune liver 

diseases, namely autoimmune hepatitis, primary biliary cholangitis and primary sclerosing 

cholangitis. In this Review, we outline studies reporting the role of Treg impairment in the 

pathogenesis of these conditions and discuss methods to restore Treg number and function either 

by generation/expansion in the test tube or through in vivo expansion upon administration of low 

dose IL-2. Challenges and caveats of these potential therapeutic strategies are also reviewed and 

discussed.
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1. Regulatory T cells: definition, development and modulation

Regulatory T cells (Tregs) are suppressive lymphocytes central to immunoregulation and 

maintenance of immune homeostasis [1]. Though lymphocytes capable of suppression 
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include also regulatory CD8 [2], B regulatory (Bregs) [3, 4], invariant NKT (iNKT) [5], and 

T regulatory type 1 (Tr1) cells [6], it is the subset of CD4+ T cells co-expressing the IL-2 

receptor α chain (CD25) that has been the focus of major studies over the past two decades, 

because of their pivotal role in actively promoting and maintaining immune tolerance. A 

clearer understanding of Treg role was gained in the 1990s thanks to the discoveries by 

Sakaguchi and colleagues, showing that the 10% of CD4 T cells constitutively expressing 

CD25 were responsible for the maintenance of immune tolerance in mice [7, 8]. 

Subsequently, in 2003, the transcription factor box P3 (FOXP3) was shown to control the 

generation and function of murine Tregs [9, 10] and was found to be expressed by human 

CD4 cells with the highest expression levels of CD25 [11]. Differently from mice where 

Foxp3 remains a marker to identify bona fide Tregs, in human CD4 cells FOXP3 can be also 

upregulated – though transiently – on naïve effectors that have undergone activation; this 

representing a significant challenge for Tregs identification and subsequent isolation, which 

is also hampered by FOXP3 being an intracellular marker. Measurement of CD127, the α-

chain of the IL-7 receptor that is normally present on activated Teff [12], is now usually 

carried out to differentiate CD4 effector cells that express CD127 at high levels from bona 
fide Tregs, typically CD127low/neg.

Tregs are commonly classified according to their developmental pathway. The majority of 

FOXP3+ Tregs present in the periphery originate in the thymus (tTregs) and their generation 

is favored by intermediate affinity self-peptides/MHC interactions that generate high 

intensity TCR signals [13, 14]. There are also peripheral Tregs (pTregs) that differentiate 

from T cells in certain peripheral sites like the gut mucosa [15] and acquire stable FOXP3 

expression; as well as FOXP3+ and FOXP3− induced Tregs (iTregs) that derive in vitro from 

Tconv after exposure to suboptimal antigen stimulation in the presence of anti-inflammatory 

mediators [16–18].

Both tTregs and pTregs display hypomethylated regions in the genome like the so-called 

Treg specific demethylated region (TSDR), within the Foxp3 CNS2 region [19]. Foxp3 
DNA methylation has been regarded as a typical feature of bona fide Tregs. There are also 

other Treg defining genes, i.e. Cd25, Ctla4, Helios and Eos that also contain DNA 

hypomethylated regions [20]. Although a phenotypic distinction between tTregs and pTregs/

iTregs can be made in mouse based on the levels of Helios, which is highly expressed by 

tTregs [21], such differentiation is less clear when considering human cells.

Additional studies by Sakaguchi’s laboratory have shown that analysis of FOXP3, CD25 and 

CD45RA enables to identify different fractions of human FOXP3+CD4+ T cells with distinct 

activation and functional properties: fraction 1, i.e. CD45RA+FOXP3lowCD25low including 

resting or naïve Tregs that possess suppressive properties and demethylated TSDR; fraction 

2, i.e. CD45RA−FOXP3highCD25high defining effector Tregs, which are highly proliferating 

cells with strong suppressor capabilities and demethylated TSDR; and fraction 3, i.e. 

CD45RA−FOXP3lowCD25low that do not have suppressive properties, secrete IL-2 and IFN-

γ, mainly representing Tconv (reviewed in [22]). In some circumstances, Tregs gain effector 

cell properties while losing expression of Foxp3 [23, 24]. Tregs can also adapt to their 

environment and acquire expression of chemokines and transcription factors normally 
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associated with effector cells [25–29]; this was suggested to enable Treg trafficking to 

inflammatory sites to suppress the corresponding effector cells [1].

2. Mechanisms of suppression

Tregs can suppress immune responses either by direct targeting of T cells or through the 

modulation of antigen presenting cell (APC) maturation and function. A wealth of in vitro 
studies has demonstrated that Tregs suppress via direct cell-to-cell contact [30, 31]. There is 

also evidence, however, that Tregs can mediate suppression upon the release of cytokines 

like TGF-β [32–34], IL-10 [35, 36] and IL-35 [37]. Cytokine mediated Treg suppression is 

predominantly present in the gut, skin and lungs [38–40].

Tregs can also suppress by killing their targets via induction of apoptosis; either by 

promoting a caspase cascade, resulting from the interaction of the death ligands tumor 

necrosis factor (TNF)-related-apoptosis-inducing ligand (TRAIL) [41] and Fas-ligand [42] 

on Tregs with the death receptors on their targets; release of granzyme A and B [43–47] and 

perforin [43, 46]; or through Galectin 9, which binds to the T-cell-immunoglobulin-and-

mucin-domain-3 (Tim-3) expressed by activated effector T cells [48].

Treg suppression might also result from metabolic disruption. In this regard, Tregs deplete 

IL-2 from the environment, depriving effector T cells of this cytokine and leading to Bim-

mediated apoptosis [49]. Moreover, Tregs express cyclic adenosine monophosphate (cAMP), 

which has implications for suppressive ability [50] and can be directly transferred to effector 

T cells via gap junctions; this leading to the upregulation of the inducible cAMP early 

repressor (ICER) [51]. ICER elevations were found to limit nuclear factor of activated T 

cells (NFAT) and IL-2 transcription [52]. Another important mechanism operated by Tregs 

and involving metabolic disruption is mediated by CD39, an ectonucleotidase that initiates a 

hydrolysis cascade that ultimately converts pro-inflammatory adenosine triphosphate and 

adenosine diphosphate into immunosuppressive adenosine [53]. Previous studies have 

shown that Tregs obtained from CD39−/− mice have impaired suppressor ability in vitro and 

fail to block allograft rejection in vivo [54]. In the autoimmune setting, CD39+ Tregs are 

defective in the peripheral blood of patients with multiple sclerosis [55] and, in rheumatoid 

arthritis, Tregs obtained from patients unresponsive to methotrexate express low CD39 levels 

and display impaired suppressive properties [56].

An additional mechanism of Treg suppression involves direct interactions between Tregs and 

APCs through the binding of CTLA4 on Tregs to CD80 and CD86 costimulatory molecules 

on APCs. By lowering CD80 and CD86 expression, Tregs render APCs less capable of 

initiating an immune response [57]. In both mice and humans, CTLA4 can also lead to 

physical removal of CD80 and CD86 from the surface of APCs via trans-endocytosis and 

degradation [58]. Mechanisms of Treg suppression are summarized in Figure 1.

3. Tregs and autoimmunity: the paradigm of autoimmune hepatitis

Treg defects are associated with several autoimmune conditions in mice and man, their 

impairment playing an important role in the initiation, progression and perpetuation of tissue 

damage of diseases like rheumatoid arthritis [59], multiple sclerosis [60], Graves’ disease 
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[61] and type 1 diabetes [62]. In these autoimmune conditions, numerical and/or functional 

Treg impairment was reported [59–61]. This key role of Tregs has been demonstrated over 

the years also in autoimmune hepatitis (AIH), a severe hepatopathy characterized by 

hypergammaglobulinemia, interface hepatitis on histology and seropositivity for disease 

defining autoantibodies [63–65]. The type of serum autoantibodies differentiates two 

subtypes of the disease, type 1 AIH (AIH-1), characterized by anti-nuclear (ANA) and/or 

anti-smooth muscle (ASMA) autoantibodies; and type 2 AIH (AIH-2), with seropositivity 

for liver kidney microsomal antibody type 1 (LKM-1) and/or liver cytosol 1 (LC1) 

autoantibodies. In AIH, the autoimmune reaction leading to liver damage initiates with the 

presentation of a liver autoantigen by APCs to an uncommitted T lymphocyte that, following 

antigen encounter, becomes activated. Autoreactive immunity in AIH is amplified by the 

presence of HLA class II molecules on unconventional APCs, like hepatocytes [66, 67]. 

Following activation, Th0 cells differentiate into Th1, Th2 and Th17 cells that have been 

shown having a pathogenetic role in AIH liver damage. Secretion of IFN-γ and IL-2 by Th1 

cells results in macrophage activation and upregulation of HLA class I and HLA class II by 

hepatocytes [68, 69]. B cell activation in the presence of IL-4 and IL-10 secreted by Th2 

lymphocytes results in their maturation into plasma cells that produce autoantibodies, which 

in turn mediate cell cytotoxicity [70, 71]. Activation of Th17 cells has been associated with 

induction of pro-fibrotic events [72, 73]. If these events are not opposed by effective 

immunoregulation, the autoimmune attack continues perpetrating and favoring the 

progression of tissue damage.

3.1. Treg in AIH: historical overview

A wealth of studies has supported a role for Treg impairment in the initiation and 

progression of AIH tissue damage (Figure 2). It remains still unclear, however, whether Treg 

defects in AIH represent the initial causative event leading to immune tolerance breakdown; 

or result from the disease itself. Initial studies on suppressor cells in AIH were conducted by 

Hodgson et al., who reported that concanavalin-A stimulated suppressor activity was not 

elicited in mononuclear cells from patients with AIH – at that time called chronic active 

hepatitis – when compared with patients with acute hepatitis, acute inflammatory diseases 

and controls [74]. This was demonstrated in cells obtained at remission and during relapse, 

in the presence or absence of prednisone therapy, and varied substantially during the course 

of the disease [74]. Subsequent findings from Nouri-Aria and colleagues showed that pre-

incubation of AIH-derived lymphocytes with low-dose prednisolone in vitro, resulted in 

significant improvement of suppressor cell activity; whereas this effect was not noted in cells 

obtained from HBsAg+ chronic active hepatitis [75]. Further investigations corroborated the 

notion of an impairment of suppressor cells in AIH by demonstrating that AIH derived 

lymphocytes generated T lymphocyte migration inhibitory factors (T-LIF) in the presence of 

liver-specific protein. Generation of T-LIF was blocked when AIH T cells were cultured at 

9:1 ratio with T cells, obtained from normal subjects and HBsAg+ chronic hepatitis patients 

[76]. Several years later a numerical and functional defect in CD4+CD25+/high and FOXP3+ 

cells was reported in patients with AIH-1 and AIH-2, as well as in patients with an overlap 

between AIH-1 and sclerosing cholangitis (autoimmune sclerosing cholangitis, AISC) [77, 

78] when compared to healthy subjects [79–81]. Tregs isolated from AIH patients are also 

impaired in their ability to expand [79]. When obtained from patients studied at diagnosis, 
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before immunosuppressive treatment is instituted, Tregs are unable to regulate CD8 T cell 

proliferation and IL4 production [80]. Re-acquisition of this property at remission suggests a 

role for immunosuppressive treatment in the reconstitution of Treg function [80]. As in the 

case of healthy controls, Tregs isolated from AIH patients suppress via direct contact while 

modifying CD4 and CD8 T cell cytokine profile [81]. The extent of Treg suppression over 

CD4 and CD8 T cell effector function (i.e. proliferation and inflammatory cytokine release) 

remains lower in AIH than in health [81]. Defective suppressive function was also reported 

in the case of AIH T-reg co-culture with monocytes [82]. In a study of 51 patients with 

autoimmune liver disease (AILD, including AIH and AISC), we reported enhanced 

monocyte spontaneous migration in both AILD patients with active and inactive disease. 

Importantly, addition of Tregs restrained monocyte migration and function in healthy 

controls, leaving it unchanged or even exacerbating it in the case of AIH Tregs. This 

aberrant pattern displayed by Tregs in AIH might be linked to increased expression of the 

activation marker CD127 [82]. Depletion of CD127 in Tregs resulted in further ability to 

decrease monocyte migration, augmented IL-10 production in healthy subjects and, although 

to a lesser extent, also in AIH patients [82]. Impairment in peripheral blood derived Treg 

frequencies and function has been shown in pediatric and adult AIH along with other 

immune cell alterations, like increase in γδ T cells that displayed an inverted Vδ1/Vδ2 ratio 

and higher IFN-γ and granzyme B production [83]. Additional studies reported that in AIH 

patients concomitantly suffering from systemic lupus erythematosus, Tregs display a 

distinctive phenotype with high expression levels of IFN-γ and CD127, suggestive of 

skewing towards Th1 cells. These effector-like features of AIH/SLE Tregs possibly account 

for severe impairment of suppressive function [84]. A German group was later unable to 

detect abnormal frequency and function of circulating Tregs in AIH [85], a discrepancy 

likely related to differences in methodology, patients’ demographics, disease stage and 

treatment duration.

Further investigations focusing on liver-derived Tregs reported intra-hepatic Treg 

accumulation in untreated AIH-1 patients, followed by disproportionate decrease during 

immunosuppressive treatment [86]; it was postulated that this decrease during treatment 

could explain high relapse rate when immunosuppression is discontinued [86]. Similar 

results were reported by the same Authors when analyzing liver derived Tregs in a pediatric 

population of AIH patients [87]. Subsequent investigations conducted with the view of 

determining the impact of corticosteroid treatment on Treg immunophenotype and function, 

revealed heightened number of Tregs with activated memory phenotype (i.e. FOXP3+, 

CTLA4+ and CD39+) that progressively decline during corticosteroid treatment [88].

3.2 Tregs in AIH mouse models

Impairment in Treg frequencies was also found in a humanized mouse model of AIH, 

generated upon injection of human cytochrome P4502D6 (CYP2D6)/formiminotrasferase 

cyclodeaminase (FTCD) fusion protein into HLA-DR3+ or HLA-DR3− NOD recipient mice. 

Importantly, lower Treg numbers were associated with enhanced Th1 cell immunity and 

HLA-DR3+ mice had the most severe form of the disease that was accompanied by 

alterations in gut microbiota that included decreased bacteria diversity and total load [89]. In 

a mouse model of double transgenic TF-OVAxDEREG (Depletion of REGulatory T cells) 
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mice, depletion of Tregs resulted in dramatic amplification of T cell mediated hepatitis [90]. 

In another model, injection of CYP2D6/FTCD into humanized HLA-DR4 transgenic mice 

resulted in decrease in hepatic Tregs that also displayed reduced suppressor activity [91].

3.3 Mechanisms of Treg impairment in AIH

Impaired Treg function in AIH has been linked to defective levels of Galectin-9, a β 
galactoside binding protein that binds to Tim-3 on CD4 effector cells. In healthy control 

cells, binding of Galectin-9 to Tim-3 induces apoptosis in CD4 effector cells; thus low 

Galectin-9 levels result in defective Treg ability to control effectors. Importantly CD4 

effector cells obtained from AIH patients display impaired Tim-3 levels, suggesting that, in 

AIH, Tregs are functionally ineffective and effector lymphocytes are refractory to their 

control [92]. Notably, in vitro exposure of CD4 effectors to tacrolimus and cyclosporin 

resulted in ameliorated effector cell responsiveness to Treg control [93].

Subsequent studies highlighted defects in the expression of the ectonucleotidase CD39 in 

Tregs obtained from AIH patients. Circulating CD39+ Tregs are decreased in frequency in 

AIH where they also fail to keep under control production of IL-17 by CD4 effectors. 

CD39+ Tregs from AIH patients are more prone to plasticity than their normal counterpart 

and acquire features of effectors when exposed to a pro-inflammatory challenge, supporting 

the evidence that defective immunoregulation in this condition might also derive from 

increased conversion of Tregs into effector lymphocytes, this favoring perpetration of 

autoimmune liver damage [94].

Recent studies have demonstrated that impaired CD39 levels and activity in AIH Tregs 

derive from alterations of aryl hydrocarbon receptor (AhR) signaling [95]. AhR is a 

mediator of toxin responses and adaptive immunity, including Treg cell immunity [96, 97]. 

Upon binding to endogenous or exogenous ligands, AhR undergoes activation, this resulting 

in CD39 upregulation. Defective Treg ability to upregulate CD39 in AIH derives from 

aberrantly high levels of aryl hydrocarbon receptor repressor that inhibits AhR; and is also 

linked to increased levels of estrogen receptor alpha (Erα) that binds to AhR. Importantly, in 

AIH, AhR binds Erα with higher affinity than aryl hydrocarbon receptor nuclear translocator 

(ARNT), the classical AhR binding partner; this non-conventional binding was shown to 

result in impaired CD39 upregulation [95]. Defective AhR signaling in AIH was also 

suggested by a study by Lyttan and colleagues, reporting reduced indoleamine-2,3-

dioxygenase-1 (IDO-1) activity, as reflected by lower degradation of tryptophan into 

kynurenine, an AhR endogenous ligand. Decreased Kynurenine/tryptophan ratio was 

observed in active AIH patients and postulated being important in determining Treg 

dysfunction in AIH [98].

In additional studies, defective Treg function in AIH was linked with reduced ability to 

produce IL-10; this, in turn, resulting from poor response to IL-2 as reflected by impaired 

ability to upregulate the phospho signal transducer and activator of transcription 5 (pSTAT-5) 

[87].

In the context of de novo AIH after liver transplant, heightened secretion of IL-12 and IL-6 

by monocytes/macrophages was suggested to account for Treg functional impairment linked 
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to aberrant production of IFN-gamma (IFN-γ [99]. Subsequent studies in the same disease 

setting reported that silencing of Toll-like-receptors (TLRs) 2 and 4, which mediate 

inflammasome activation in CD14++ monocytes, significantly decreased IFN-γ production 

by Tregs, further emphasizing the role of monocytes in conferring Treg proinflammatory 

properties in de novo AIH [100].

3.4 Potential for Treg immunotherapy in AIH

That Treg number and function recovers - at least to some extent - during AIH remission, 

suggests the potential of these cells to be restored, this having important implications for 

therapeutic purposes (Figure 3). In a study on 24 AIH-1 patients and 22 healthy subjects we 

tested the ability of Tregs to be expanded in vitro using polyclonal stimuli, namely anti-

CD3/anti-CD28 and high dose IL-2. Expanded Tregs retained the conventional Treg 

phenotype and exhibited enhanced FOXP3 levels and suppressive function, also in AIH 

[101]. Exposure to anti-CD3/anti-CD28 and high dose IL-2 resulted also in Treg generation 

from CD4+CD25− effectors; an important finding implicating that not only Tregs could be 

expanded from the existing pool but also generated de novo from effector cells. Further 

studies from our group provided evidence that inhibition of IL-17 could favor differentiation 

of newly generated Tregs, derived from CD4+CD25− effectors, following polyclonal 

expansion; this representing another strategy to consider when aiming to generate and 

expand Tregs for immunotherapeutic purposes [102].

In the case of AIH-2 where characterization of the key autoantigen has been performed and 

knowledge of the key CD4 and CD8 immunodominant epitopes acquired, generation of 

Tregs with autoantigen specificity would represent a valuable tool to provide a more tailored 

control over autoreactive T cell immunity. In this regard, we could generate Tregs with 

specificity for HLA class II restricted T cell epitopes in the presence of semi-mature 

dendritic cells (smDCs). CYP2D6-specific Tregs obtained in the presence of smDCs express 

heightened FOXP3 and display strong suppressor ability over CD4 T cell proliferation and 

cytokine production, and CD8 T cell cytotoxicity. Possession of the appropriate HLA-DR 

molecule and recognition of the specific CYP2D6 autoantigenic sequence are critical 

elements to antigen specific Treg suppressive function. Lack of either factor results in 

reduced control over responder cell proliferation and pro-inflammatory cytokine secretion 

[103]. Importantly, we found that exposure to all-trans-retinoic-acid (ATRA) could stabilize 

antigen-specific Tregs [104]. ATRA limited the increase in Th1 and Th17 transcription 

factors as well as the decrease in antigen-specific Treg function following pro-inflammatory 

challenge with IL-6 and IL-1β [104].

Studies by Oo and colleagues have shown that the liver represents a good target for Treg cell 

therapy, as Tregs isolated from leukapheresis products, labelled with indium tropolonate and 

re-infused i.v. into AIH patients, home to the liver where they could be retained for up to 72 

hours [105]. Importantly, Umeshappa et al. reported that peptide-major histocompatibility 

class II (pMHC-II) based nanomedicines displaying tissue specific autoantigenic epitopes 

like CYP2D6398–412 could limit autoantigen specific T cell immunity in a mouse model of 

AIH, obtained upon infection of NOD mice with a replication-defective adenovirus 

encoding human FTCD [106, 107]. The beneficial effects of pMHC-II-based nanomedicine 
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therapeutic activity was associated with the formation and expansion of Tr1 cells, a 

regulatory subset predominant in the chronic phase of inflammation [6, 106].

3.4 IL-2 and expansion of Tregs ex vivo

As autoantigen specific Tregs cannot be always generated because the autoantigen remains 

unknown in a large proportion of patients with AIH-1, treatment with low dose IL-2 has 

been considered as additional strategy to restore the defective Treg pool in AIH. In a clinical 

trial on 46 patients with various autoimmune diseases, including AIH and sclerosing 

cholangitis, participants were administered low dose IL-2 (1 million IU/day) for 5 days, 

followed by fortnightly injections for 6 months. The Authors reported Treg expansion and 

activation in all cases, although specific data on AIH patients (n=2) are not presented [108]. 

Of note, in all other cases, increase in Treg percentage (expressed as fold change compared 

to baseline level) was mainly evident on day 8 and was then contained thereafter, despite 

levels remained slightly higher when compared to baseline. Further, effects on clinical 

disease score is provided for patients affected by rheumatological disorders, ulcerative colitis 

and psoriasis but not for the two AIH patients enrolled in the study; therefore, based on these 

reported observations, the effects of low dose IL-2 in AIH patients remains unclear. In 

another study on two AIH patients with persistent disease activity, as assessed by serum 

biochemistry and liver biopsy, IL-2 was administered at 1 million IU for five days monthly 

for a total of six months [109]. In one of the two patients, AST and IgG decreased to normal 

levels by the end of the treatment; whereas the proportion of circulating Tregs increased in 

both cases with a peak observed at day 9 and returning to baseline levels at day 28. This 

suggests that the effect of low dose IL-2 on Treg frequency is transient. Further studies in 

larger numbers of subjects should be performed to assess low dose IL-2 efficacy as well as 

the long-term effects of this treatment on Tregs, particularly on their suppressive function, 

expansion and plasticity.

4. Tregs in other autoimmune liver diseases

4.1 Primary biliary cholangitis

The role of Tregs in the maintenance of immune tolerance has been studied also in other 

autoimmune liver diseases, namely primary biliary cholangitis (PBC) and primary sclerosing 

cholangitis (PSC). Defects in suppressor cells in PBC were reported in early studies in the 

1980s [110]. Later studies reported impaired frequencies of CD4+CD25high [111, 112] or 

CD4+FOXP3+ [113], but normal suppressive function [111, 114]. Other immunoregulatory 

cell defects have been reported in PBC, these mainly involving the CD8+CD28− subset, a 

subpopulation of regulatory lymphocytes that suppress via IL-10 and TGF-β [114, 115]. The 

findings of increased FOXP3+ cells in the liver and of a direct correlation between the 

expression of FOXP3 and portal inflammation indicate either a compartmentalization of 

Tregs in the areas of tissue damage or upregulation of FOXP3 subsequent to activation in 

non-regulatory lymphocytes. Importantly IL-2Rα/CD25 deficient mice were found to 

develop portal inflammation and biliary ductular damage similar to what observed in PBC 

patients [116]. Notably, in these mice, lack of Tregs resulted in CD8 T cell mediated damage 

[117].
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The importance of Treg mediated immune homeostasis in PBC was further supported by a 

subsequent study in scurfy mice that have a mutation in the gene encoding the Foxp3 
transcription factor leading to complete deletion of Foxp3+ Tregs. These investigations 

showed that between 3 to 4 weeks of age all animals develop AMA autoantibodies along 

with a moderate to severe lymphocytic infiltrate in the portal areas and bile duct damage 

[118]. Further evidence of the key role of Treg immune responses in protecting from liver 

damage in murine autoimmune cholangitis has been provided by the work of Huang et al 

[119] who emphasized the importance of the permissive role played by defective Tregs in 

favoring CD8 T cell cytotoxicity in this model. In another murine model of PBC, the 

dominant negative transforming growth factor β receptor II (dnTGFβRII) mice, there was a 

substantial decrease in the expression of Treg related transcription factors, including Eos, 

Ahr, Klf2 and Foxp1 [120] that was associated with a pro-inflammatory phenotype of 

regulatory cells [120]. Recent findings from Liaskou and colleagues showed that Tregs 

obtained from PBC patients have increased susceptibility to low dose IL-12 that favors their 

differentiation into IFN-γ secreting cells. The acquisition of proinflammatory properties by 

Tregs might be pivotal in the perpetuation of tissue and bile duct damage in PBC [121].

As for AIH, administration of pMHC-based nanomedicines that display autoantigenic 

epitopes, specifically the pyruvate dehydrogenase complex II (PDC-E2)166–188 and PDC-

E282–96 resulted in Tr1 cell expansion and recruitment to the liver in NOD.c3c4 mice that 

spontaneously develop a form of autoimmune biliary disease resembling human PBC [122]. 

Migration of PDC-E2 specific Tregs to the liver enabled control of liver autoimmunity 

without impacting systemic or local autoimmunity against infections or tumors [106].

4.2 Primary sclerosing cholangitis

In PSC, another autoimmune liver disease characterized by inflammation and fibrosis of 

intra and extrahepatic bile ducts that eventually progresses to biliary cirrhosis and hepatic 

decompensation, mucosal and functional impairment of peripheral blood derived 

CD4+CD25highFOXP3+CD127low cells has been reported [123]. In a similar way, liver 

derived Tregs from PSC patients are also fewer in numbers when compared to other 

conditions like PBC [123]. Akin to PSC, pediatric patients with AISC display numerically 

and functionally impaired Tregs [79, 81, 92]. Administration of low dose IL-2 has been 

considered to achieve in vivo Treg expansion in MDR2−/− mice, a model of PSC [124]. Low 

dose IL-2 administration resulted in upregulation of CD39 on Tregs that enabled control 

over CD8 T cell effector function [124].

Collectively, these studies in murine models and humans support the key role of Tregs 

mediated immune homeostasis while preventing tissue damage progression.

5. Future perspectives

Restoring Treg pool, either through adoptive transfer of autologous Tregs - freshly isolated 

or generated in vitro - or through administration of low dose IL-2, would not only enable to 

control autoreactive immune responses and inflammation, but would also favor re-

establishing immune tolerance. This might have strong, important implications for curing, 

rather than only treating, AILD, provided Treg restoration is stable and long-lasting. 
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Because of the potential of reconstituting immune tolerance, Treg adoptive transfer is 

preferable to any form of drug-based immunosuppression that is non-specific and does not 

always prevent progression of liver tissue damage. Although low dose IL-2 has been shown 

having some beneficial effects by expanding the already existing Treg pool, it remains a 

non-specific approach that could also target other non-regulatory cell populations, including 

effector CD4 and CD8 lymphocytes and NK cells. As indicated above, the applications of 

this approach in the AILD context have been so far limited to few cases only, therefore 

highlighting the need for larger and more comprehensive clinical investigations.

When considering adoptive Treg transfer, numerous pre-clinical studies in the autoimmune 

and transplantation settings have provided evidence about antigen-specific Treg superior 

efficacy, when compared to polyclonal Tregs [125–128]. In addition to enhanced efficacy, 

antigen-specific Tregs provide a more tailored form of immunosuppression by localizing at 

the site of antigen presentation and targeting effectors of the same antigen specificity. There 

is also evidence that antigen-specific Tregs suppress effectors of different antigen specificity 

through bystander suppression and could also promote the emergence of other suppressor 

cells, like Tr1 cells.

Since the use of antigen-specific Tregs could be hampered by their low expansion 

capabilities, recent studies have reported the possibility of engineering antigen-specific 

Tregs, by deriving them from polyclonal Tregs through transduction of effector cell, or 

preferably, Treg TCR, or chimeric antigen receptor (CAR) (reviewed in [129]). CAR 

consists of the antigenic binding site of a monoclonal antibody in the extracellular domain 

and of T cell stimulatory and costimulatory intracellular domains. Because of the limitations 

related to the use of recombinant viral vectors inserting the transgene and the potential that 

the transgene could randomly integrate in the genome, CRISPR Cas9 mediated approaches, 

where endogenous TCRs could be replaced by a recombinant one, would represent a better 

option. Additional approaches based on induced FOXP3 expression in antigen-specific 

conventional CD4 cells would require further evidence before being applied, due to the risk 

of obtaining cells that, although overexpressing FOXP3, still maintain the function and 

epigenetic make-up of effectors.

Additional issues that should be addressed include plasticity, which is associated with loss of 

FOXP3 by Tregs and conversion to antigen-specific effectors, a risk that should be taken into 

consideration especially when obtaining Tregs from conventional CD4+ T cells; and stability 

that could be addressed by either inducing FOXP3 overexpression or upon knockout of 

selective pro-inflammatory genes. Another challenge might be represented by Treg 

persistence in the bloodstream. Since Tregs depend on IL-2 for their survival, expansion and 

function, several approaches have been developed to obtain IL-2 mutants that, by prolonging 

the half-life of IL-2, promote Treg expansion in vivo [130, 131]. Another strategy that has 

been proposed consists of the administration of monoclonal antibody/IL-2 complex to 

selectively expand Tregs in a mouse model of colitis [132] and AIH [133]. In this regard, 

Karakus et al. recently reported that a complex of a newly identified anti-human IL-2 

antibody, UFKA-20, and IL-2 could stimulate Tregs among freshly isolated human T cells 

ex vivo and in rhesus macaques in vivo [134].
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Treg cell homing would be another aspect to consider when implementing cell therapy-

based approaches. In a study on autoantigen-specific Tregs in the AIH-2 setting, we found 

that antigen-specific Tregs obtained after co-culture with smDCs express CXCR3, a 

chemokine receptor normally present on lymphocytes trafficking to the liver [103].

An additional challenge is represented by the high costs required to generate and expand 

Tregs under GMP conditions; this represents a major limiting factor for a wide application 

of this form of immunotherapy. Further, it is still unclear whether antigen-specific Tregs 

should be administered once inflammation has been controlled, given previous studies 

demonstrating that even potent antigen-specific Tregs fail to suppress in the presence of a 

pro-inflammatory environment [135].

Although these challenges might limit the clinical use of adoptively transferred antigen-

specific Tregs in AILD and other autoimmune conditions, continuous efforts and resources 

should be allocated to optimize or identify novel strategies enabling to attain immune 

homeostasis reconstitution, rather than aiming at containing inflammatory responses only.

6. Conclusions

Treg defects play a key permissive role in autoimmune disease pathogenesis by favoring 

overwhelming effector T cell immunity and, consequently, tissue damage exacerbation and 

progression. Numerical and functional impairment of Tregs and alterations of the associated 

signaling pathways is pivotal in determining CD4 and CD8 T cell autoreactivity in AIH and 

other autoimmune liver diseases. Treg impairment can be also associated with phenotypic 

and functional plasticity that results in Treg skewing to effector cells; this being regarded as 

a mechanism enabling the maintenance of proinflammatory T cell pools. Potential strategies 

aimed at restoring polyclonal and/or antigen specific Tregs, either through the generation 

and expansion of these cells in the test tube or in vivo, upon administration of low dose IL-2, 

have been reviewed and discussed. Future studies are warranted to determine the efficacy 

and the feasibility of these approaches in large patients’ cohorts.
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AIH autoimmune hepatitis
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PSC primary sclerosing cholangitis

FOXP3 transcription factor box P3

Tconv conventional T cells

APC antigen presenting cell

AhR aryl hydrocarbon receptor
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Highlights

• Treg impairment plays a permissive role in AILD immunopathogenesis

• Treg impairment in AILD results in overwhelming effector cell immunity

• In AIH Treg defects are associated with increased functional plasticity

• Challenges remain when implementing strategies for Treg generation/

expansion
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Figure 1. Treg mechanisms of suppression.
Tregs suppress effector T cell (Teff) function upon (a) secretion of cytokines like IL-10, 

TGF-β and IL-35; (b) by inducing apoptosis upon activation of caspase following 

interaction of TNF-related-apoptosis-inducing ligand (TRAIL) and Fas-ligand (Fas-L) with 

TRAIL receptor (TRAIL-R) and Fas, release of granzyme and perforin and upon interaction 

between galectin-9 in Tregs and T-cell-immunoglobulin-and-mucin-domain-3 (Tim-3) on 

Teff. Tregs can also suppress (c) by operating metabolic disruption, by transferring cyclic 

adenosine monophosphate (cAMP) to Teff. cAMP has immunoregulatory properties because 

it activates the inducible cAMP early repressor (ICER) to limit IL-2 transcription. Tregs can 

also generate immunosuppressive adenosine through the tandem action of CD39 and CD73. 

Tregs can also suppress (d) through modulation of antigen presenting cell (APC) function by 

lowering CD80/CD86 expression on APC surface.

Longhi et al. Page 21

J Autoimmun. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Treg impairment in AIH.
Imbalance between effector cells and Tregs contribute to the initiation and progression of 

tissue damage in AIH. Overwhelming T effector cell immunity that results in enhanced 

cytotoxicity against hepatocytes and in augmented secretion of IFN-γ and IL-17 pro-

inflammatory cytokines is permitted by impaired Treg cell immune responses. Treg 

impairment might derive from reduced frequency, defective function, increased tendency to 

acquire effector cell features (plasticity) and altered metabolism, i.e. reduced ability to 

generate adenosine and to produce IL-10. In turn, effector cells obtained from AIH patients 

display impaired susceptibility to Treg control. T effector cell (Teff), regulatory T cell 

(Treg); T-cell-immunoglobulin-and-mucin-domain-3 (Tim-3); adenosine triphosphate (ATP); 

IFN-gamma (IFN-γ).
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Figure 3. Treg generation and expansion.
Increased Treg frequencies noted in AIH patients at remission indicate that these cells could 

be restored, at least to some extent. Previous studies have shown that Tregs could be 

expanded in vitro using polyclonal stimuli, i.e. high dose IL-2 and anti-CD3/anti-CD28 T 

cell expander (polyclonal expansion); generation of Tregs with liver autoantigen specificity 

could be obtained upon Treg co-culture with semi-mature dendritic cells presenting the 

autoantigenic peptide of interest. Recent work has reported the possibility to expand Tregs 

using low dose IL-2 in vivo. Further work is, however needed to validate all of these 

approaches.
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