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Proteogenomic and metabolomic characterization of human 
glioblastoma

A full list of authors and affiliations appears at the end of the article.

SUMMARY

Glioblastoma (GBM) is the most aggressive nervous system cancer. Understanding its molecular 

pathogenesis is crucial to improving diagnosis and treatment. Integrated analysis of genomic, 

proteomic, post-translational modification and metabolomic data on 99 treatment-naive GBMs 

provides insights to GBM biology. We identify key phosphorylation events (e.g., phosphorylated 

PTPN11 and PLCG1) as potential switches mediating oncogenic pathway activation, as well as 

potential targets for EGFR-, TP53-, and RB1-altered tumors. Immune subtypes with distinct 

immune cell types are discovered using bulk omics methodologies, validated by snRNA-seq, and 

correlated with specific expression and histone acetylation patterns. Histone H2B acetylation in 

classical-like and immune-low GBM is driven largely by BRDs, CREBBP, and EP300. Integrated 

metabolomic and proteomic data identify specific lipid distributions across subtypes and distinct 

global metabolic changes in IDH-mutated tumors. This work highlights biological relationships 

that could contribute to stratification of GBM patients for more effective treatment.
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In Brief

Wang et al. perform integrated proteogenomic analysis of adult glioblastoma (GBM), including 

metabolomics, lipidomics, and single nuclei RNA-Seq, revealing insights into the immune 

landscape of GBM, cell-specific nature of EMT signatures, histone acetylation in classical GBM, 

and the existence of signaling hubs which could provide therapeutic vulnerabilities.

INTRODUCTION

Glioblastoma (GBM) is the most common primary malignant brain tumor, with roughly 

12,000 new cases annually in the United States and median survival under 2 years (Delgado-

López and Corrales-García, 2016; Ostrom et al., 2019). The Cancer Genome Atlas (TCGA) 

(Brennan et al., 2013; The Cancer Genome Atlas Research Network, 2008) and other studies 

(Yan et al., 2009) have reshaped the World Health Organization classification of nervous 

system tumors (Louis et al., 2016) to include molecular features (Brat et al., 2018; Louis et 

al., 2017). GBM is categorized as either IDH-wild type (IDH-WT; ~90%) or IDH-mutant 

(~10%). IDH-WT GBMs fall into three distinct subclasses (proneural, classical, and 

mesenchymal) based on genomic alterations and gene expression signatures (Verhaak et al., 

2010; Wang et al., 2017). Methylome-based classification is being used to differentially 

diagnose brain tumors (Karimi et al., 2019; Nassiri et al., 2019) and may become clinically 

useful for GBM.
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Surgical resection, chemotherapy, and radiotherapy remain the standard of care (Stupp et al., 

2005; Perry et al., 2017), with the recent addition of tumor treating fields (Stupp et al., 

2017). Promising immunotherapies have been proposed, including immune checkpoint 

inhibitors, vaccines, chimeric antigen receptor T cell (CAR-T) therapy, and viral therapy, 

though none have cleared Phase III trials (Lim et al., 2018; McGranahan et al., 2019). 

Despite different subtypes, no specific treatment works more effectively in a pre-specified 

subset of patients based on transcriptomics, though those with MGMT promoter methylation 

respond better to temozolomide (Stupp et al., 2005).

Here, we integrated proteogenomic and metabolomic data from 10 platforms including 

whole genome sequencing (WGS), whole exome sequencing (WES), RNA sequencing 

(RNA-seq), microRNA-seq (miRNA-seq), single nuclei RNA-seq (snRNA-seq), DNA 

methylation arrays, proteome, phospho-proteome, acetylome, lipidome, and metabolome to 

investigate 99 treatment-naive GBMs prospectively collected by the Clinical Proteomic 

Tumor Analysis Consortium (CPTAC). We report new immune-based subtypes, activation of 

DNA repair pathways via upregulated phosphosite levels of DNA repair genes in TP53-

mutated tumors, an apparent phospho-signaling bottleneck in receptor tyrosine kinase 

(RTK)-altered tumors, and enrichment of histone H2B acetylation and low macrophage 

content in classical-like GBM tumors. We used single-cell data to investigate contributions 

of various cell types to bulk tumor signatures and analyzed the mesenchymal subtype to 

discern epithelial-mesenchymal transition (EMT) signatures in tumor and infiltrating 

immune cells. The data presented here furnish a resource for future GBM studies.

RESULTS

Proteogenomic and metabolomic features delineate molecular subtypes of glioblastoma

We characterized the proteogenomic landscape of 99 GBMs and 10 unmatched GTEx 

normal brain samples. This cohort has diverse origins and clinical characteristics typical of 

adult GBM (Table S1). Six cases harbored IDH1 R132H mutations and had earlier disease 

onset than those with IDH1-WT (median 47 vs. 59 years, t test p = 0.055). We detected one 

additional non-hotspot IDH1 mutation (R222C).

All samples were homogenized and aliquoted for each of the ten different omics assays 

(Figures 1A and S1A–S1C; STAR methods). Mass spectrometry (MS) quantified protein, 

phosphorylation and acetylation, as previously described (Dou et al., 2020; Mertins et al., 

2016) (Figures S1A–S1C). Metabolome and lipidome levels were respectively measured by 

label-free gas and liquid chromatography coupled to MS.

Genomic properties of our cohort were comparable to those of TCGA GBM cohort 

(Brennan et al., 2013) (Figure 1B). We identified many structural variants (SV) in 

oncogenes, including EGFR and PDGFRA, and tumor suppressors PTEN and NF1. EGFR 
mutations often co-occurred with EGFR SV and amplification events (p < 0.01). WES and 

WGS identified TERT promoter (TERTp) mutations with variant allele frequency (VAF) 

>5% (Figure 1B). Copy number analysis identified common focal and arm-level copy 

number variations (CNVs) (Figure S2A).
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We added protein and phosphosite abundance to prior clustering studies of gene expression 

(Figures 1C and S2B–S2F; STAR methods). While our results are concordant with TCGA 

expression-based classification (Wang et al., 2017), 27 tumors (29%) were classified as a 

different subtype (Figures 1C and S2B). Based on similarities with gene expression 

subtypes, we designated the three clusters observed in IDH-WT tumors as nmf1 (proneural-

like; n = 29), nmf2 (mesenchymal-like; n = 37), and nmf3 (classical-like; n = 26). Pathway 

enrichment analysis of RNA, protein, and phosphosite abundances indicated that nmf1 was 

enriched for synaptic vesicle cycle and neurotransmission transport; nmf2 was enriched for 

innate immune response, including neutrophil degranulation, phagocytosis, and extracellular 

matrix organization; and nmf3 was enriched for mRNA splicing and RNA metabolism. 

Based on the known functional effects of protein acetylation (Narita et al., 2019), nmf1/

proneural-like cluster had a higher abundance of acetylated proteins involved in the TCA 

cycle and metabolism of amino acids, whereas the nmf2/mesenchymal-like cluster was 

enriched for innate immune system activation, peroxisomal protein import and glycolysis. 

The nmf3/classical-like subtype was enriched for acetylation of chromatin modifiers and 

DNA repair proteins.

Clinical data associated with the three subtypes indicated that tumors with relatively low 

multi-omics membership scores for two or more subtypes, i.e. those of “mixed subtype” (n = 

12) (Figure S2B) were associated with worse prognosis (log rank test p = 1.7e-4; Figure 

S2C) compared with those of non-mixed subtype (excluding IDH1-mutant tumors). We 

identified three proteins associated with poor survival across all tumors: low expression of 

HIST3H2BB (log rank test p = 0.0034), high expression of MT-CYB (p = 0.03), and high 

expression of PRODH (p = 0.096). Genome-wide DNA methylation profiling identified six 

DNA methylation subtypes, including two distinct glioma CpG is-land methylator 

phenotype (G-CIMP) subtypes (dm2 and dm6). The dm6 subtype is IDH-mutant-specific 

with upregulation of chromatin organization pathways, while dm2 consists of IDH-WT 

tumors with upregulation of transcription and mRNA splicing pathways (Figure S2D). Two 

subtypes showed elevated expression of different de novo DNA methylases (Figure S2E). 

We also examined cis associations of DNA methylation with RNA or protein abundances 

using iProFun (Song et al., 2019) (Table S3). For example, 38 of 90 tumors (42%) exhibited 

hypermethylation of the MGMT promoter region and significantly decreased MGMT RNA 

and protein levels (Welch’s t test p = 4.9e-11 and 2.6e-6, respectively) (Figure S2G; Table 

S2).

Driver genetic alterations influence oncogenic protein abundance and phosphorylation

We associated genetic alterations (mutations, CNVs, fusions, and SVs) with RNA, protein 

expression and phosphorylation levels, observing 95 cis-trans phosphorylation events 

(Figures 2A and 2B). We found strong cis effects for EGFR and PDGFRA, with significant 

increases in RNA and protein expression and increased phosphorylation at S1166 and 

S1067/S1070, respectively. At the trans level, tumors with EGFR alterations presented 

elevated CTNNB1 (β-catenin) protein despite decreased mRNA, and increased 

phosphorylation of both PTPN11 (Shp2) at Y62 and PLCG1 at Y783 (Figures 2A and 2B). 

These observations illustrate the importance of protein measurements to study pathway 

activation.
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Tumor suppressors RB1, NF1, PTEN, and ATRX demonstrated good concordance between 

genetic alterations and decreased RNA, protein, and phosphorylation levels of their 

respective gene products. Although the general effect of TP53 mutations on increased 

protein stability is known, we identified specific phosphosites that correlate with increased 

stability. Phosphorylation of TP53 at S315 and TP53BP1 at S1099, S1106, and S1109 

correlated with increased TP53 protein expression (Pearson r = 0.89 and 0.53, respectively) 

(Figures 2A, 2B, and S3A). TP53 alterations were largely missense mutations (Figure 2C) 

within its DNA binding domain (Figure S3B), including hotspot sites and several rare 

variants. TP53 protein expression was consistently elevated relative to TP53 WT GBMs, an 

effect not seen at the RNA level. RNA-seq read alignment demonstrated that a recurrent 

splice-site mutation, X126_splice, results in an alternative splice site, producing an in-frame 

7aa truncation in exon 5 (Figures 2C and S3C).

We assessed kinases known to phosphorylate TP53 and its downstream targets. In TP53 
mutants (Figures 2A, 2B, and 2D), we detected elevated protein and/or phosphorylation in 

ATR, MAPK3, CDK2, and CDK9, while MDM2 was decreased at both RNA and protein 

levels. Tumors with TP53 mutations showed upregulated phosphosites, but not increased 

protein levels, of DNA repair genes (Figure 2D), suggesting specific phosphosite regulation.

We observed negative feedback between RB1 and downstream targets, CDK2, CDK6, 
MCM2, MCM4, and MCM6, while NF1 had similar effects on IRF8 (Figures 2A and 2B). 

RB1-altered samples (12% of the cohort) showed significantly downregulated RB1 and 

upregulated MCM2, MCM4, and MCM6 protein expression (Figure 2E). In addition, in 

samples with NF1 alterations, we observed upregulation of protein and RNA of IRF8, a 

transcription factor that controls microglial motility (Masuda et al., 2014) (Figures 2A and 

2B)

GBMs exploit various telomere lengthening mechanisms. WGS data identified TERTp 

hotspot mutations in 74% of primary GBMs (NM_198253.2:c.−124C>T [C228T] and c.

−146C>T [C250T]) (Killela et al., 2013), resulting in increased TERT RNA expression 

(Figures S3D and S3E). We also found that ATRX mutations were mutually exclusive with 

TERTp hotspot mutations and co-occurred with TP53 and IDH1 R132H mutations (Figure 

S3F). Nine ATRX mutants had significantly diminished ATRX RNA and protein levels 

(Figure S3G). Immunohistochemistry (IHC) staining confirmed the loss of ATRX protein in 

tumor cells in ATRX-WT IDH1 R132H mutant tumors (Figure S3H). Despite ATRX loss, 

expression of its complex partners was not affected at RNA or protein levels, raising 

questions about the function of the complex in the absence of ATRX protein (Figures S3I 

and S3J).

RTK signaling cascades are activated in GBM

Genomic loci associated with RTKs, such as EGFR, PDGFRA, and MET, are frequently 

amplified in GBM (Brennan et al., 2013). We identified 45 tumors with EGFR SVs, all 

having copy number amplifications, suggesting high concordance between SV and CNV 

(Figures 3A and S4A). All tumors with mutated EGFR and SV have correspondingly high 

RNA, protein, and Y1172 phosphorylation levels, indicating EGFR pathway activation.
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In EGFR-altered samples, high EGFR autophosphorylation was observed, along with 

increased abundance and phosphorylation of pleckstrin homology-like domain family A 

member proteins (PHLDA1 and PHLDA3), transcription factor SOX9, cell adhesion protein 

CTNND2 (δ-catenin), and cell cycle proteins CDK6 and CDKN2C (Figures 3B and 3C). 

PHLDA1 and PHLDA3 were not differentially expressed in RNA, consistent with activation 

of downstream EGFR pathway components (Ling et al., 2011; Liu et al., 2019). SOX9 

expression was validated in five of six tumors (three EGFR-altered and three EGFR-WT) 

using IHC (Figure S4D).

We also observed increased phosphorylation levels of PTPN11-Y62, PLCG1-Y783, RB1-

S795Y805, MAP3K1-S1408, and specific EGFR sites in EGFR-altered samples (Figure 3B, 

bottom). Notably, the total protein level of PTPN11 was comparable between the two 

groups, suggesting its activity is regulated primarily by phosphorylation (Figure 3C). A 

similar pattern is observed with PLCG1 (PLCγ1), where Y783 phosphorylation was 

significantly higher in EGFR-altered versus EGFR-WT samples (Wilcox false discovery rate 

[FDR] < 0.01; Figure S4C), despite no significant difference in PLCγ1 protein expression 

(FDR = 0.11). Since phosphorylation of PLCG1 on Y783 is activating (Poulin et al., 2005), 

this could provide a mechanism for EGFR activation of PLCG1’s known effects on 

proliferation, migration, and invasiveness (Kunze et al., 2014).

We performed a kinase-substrate study for EGFR and PDGFRA and identified high levels of 

GAB1 phosphorylation at Y689 and Y657, consistent with high EGFR expression. In 

addition, PTPN11 phosphosites at Y546 and Y584 were associated with high PDGFRA 

expression (Figure 3D) and have been observed in lung cancers with ALK fusions (Voena et 

al., 2007). Activation of PTPN11 through either EGFR- or PDGFRA-related 

phosphorylation in GBM suggests it may represent a shared RTK signaling hub. PTPN11, 

GAB1, and GRB2 form a complex and are co-regulated by RTKs to activate the RAS 

pathway (Montagner et al., 2005). Figures 2A and S4C show that EGFR activation status is 

associated with upregulated GAB1 and downregulated GRB2 protein expression. We 

validated the elevated GAB1 expression in EGFR-altered tumors using IHC (Figure S4D).

Distinct immune marker expression and epigenetic events characterize GBM immune 
subtypes

We generated cell-type immune enrichment scores using single-sample GSEA by xCell 

(Aran et al., 2017), finding four distinct immune-based GBM subtypes (Figure 4A; STAR 

methods). Immune subtype 1 (im1) showed overall higher scores (Figure S5A), including 

elevated levels of microglia, macrophages, and lymphocytes. Immune subtypes 2 and 3 (im2 

and im3) displayed reciprocal ratios of macrophages and lymphocytes, with im2 higher in 

macrophages and lower in lymphocytes and im3 having higher neuron score (Figures 4A 

and S5A). Immune subtype 4 (im4) is distinct from the others, with substantially lower 

enrichment for all immune cell types (Figures 4A and S5A). The mesenchymal subtype was 

enriched in im1 and im2 (Fisher test p = 1.65e–15), while IDH mutants were 

overrepresented in im3 (p = 1.02e–5). The DNA methylation dm3 subtype was strongly 

associated with im1 (Fisher test p = 1.26e–5), consistent with the association of dm3 with 

immune gene expression (Figure S2D). The four immune subtypes were confirmed in the 
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TCGA GBM cohort using transcriptome data (Figures S5A and S5B) and protein 

deconvolution (Figures 4A and S5C).

We performed snRNA-seq on 18 GBM samples using the same cryopulverized material 

from previous analyses (7 im1, 5 im2, 1 im3, 5 im4 samples; Figure 4A). TAMs comprised 

the major non-neoplastic cell population in the GBM TME (Figure 4B). Im4 samples 

showed consistently low percentages of T cell and TAM infiltration (1.3% and 6% on 

average, respectively) compared with those of the other immune subtypes (7% and 19% on 

average, respectively). Im1 tumors showed higher scores for microglia and macrophages at 

the bulk level, but this was not observed in im1–3 in snRNA-seq (Figure S5D), which may 

be explained by the bulk data being driven by the percentage of TAMs and the expression of 

genes in the TAMs themselves. Supporting this hypothesis, we observed genes upregulated 

at the RNA and protein levels in TAMs in im1 (Figure 4C). We validated key immune 

markers (CD3, CD68, CD163, PD-1, and PD-L1) in five tumors from three immune 

subtypes using IHC (Figures S4E and S4F).

We identified differentially expressed proteins (DEPs) and phosphoproteins (DEPPs) in 

known immune targets (Chen and Hambardzumyan, 2018). Gene and protein expression 

levels of immune targets, including negative regulatory immune check-points (e.g., PD-1 

and TIM-3), chemokines (e.g., CCL2), macrophage-specific cytokines (e.g., CSF-1), and 

their receptors (CSF-1R), were significantly higher in im1 (Figure 4A) (Butowski et al., 

2016). We also identified overrepresented pathways among DEPs and DEPPs (Table S4). 

Pathways in im1, including immune system and microglia pathogen phagocytosis, were 

mostly immune-related, whereas collagen formation and angiogenesis-related proteins were 

upregulated in im2, neuronal system pathways in im3, and cell cycle and gliogenesis 

pathways in im4 (Figure 4A, Table S4).

We analyzed morphologic differences between immune subtypes by applying a deep 

learning model using sampled tumor tiles from H&E-stained sections. Dimensional 

reduction (t-SNE) of im4 compared with other clusters (im1–3) (Figures 4D–4F) revealed a 

substantial number of large cells, some of which are giant cells, in im4 tiles, with few in 

im1–3 tiles. Biological relevance of these cells is unclear. Inflammatory cell fractions were 

noted in ~20% of im1–3 tiles compared to 5% in im4 tiles.

Mesenchymal tumor and microenvironment characteristics

Application of CausalPath (Babur et al., 2018) to the protein and phosphoprotein expression 

data (Figure S7A, Table S5) showed upregulation of the hypoxia pathway in mesenchymal 

tumors, evidenced by significant activation of multiple HIF-1 downstream targets (network 

permutation p = 0.0012). Increased angiogenesis was also evident in mesenchymal tumors, 

as demonstrated by upregulation of FLT1, MMP14, ENG, and SERPINE1. We observed 

complex regulation of macrophage activation and polarization through the upregulation of 

STAT3, ICAM1, SPI1, and CEBPB. In addition, the M1 polarization marker ARG1 showed 

increased expression (Arlauckas et al., 2018), along with SERPINE1 and HCK proteins, 

which promote M2 polarization (Kubala et al., 2018). The elevated inflammatory response 

in mesenchymal tumors may result in downstream activation of either hypoxia or 
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macrophage polarization through multiple mediators, including LANE, IL18, and CD40 

(Figure S7A).

While the origin of the mesenchymal signature in GBM has been controversial, snRNA-seq 

data enabled identifying mesenchymal features in tumor and immune cells. We found EMT-

related genes upregulated in the tumor cells of nmf2 samples (Figures 4G and S5E). Among 

those, mesenchymal markers CHI3L1 and MET had the highest expression in tumor cells, 

along with other EMT-related genes, such as TNC, ITGA3, and PDPN. Some EMT-related 

genes were also expressed by nontumor cell types, including TAMs, T-cells, pericytes, 

endothelial cells, and oligodendrocytes. However, there were few subtype-specific 

differences in expression of these markers by nontumor cells. Accordingly, all EMT-related 

genes that were upregulated in tumor cells were also significantly increased in bulk RNA 

and protein data in nmf2 GBMs (Figure 4G). In addition to immune infiltration, nmf2 

GBMs evidently have intrinsic mesenchymal tumor cell-specific properties as measured by 

bulk proteomics.

Differential acetylation of histone proteins is associated with specific subtypes and 
pathways

Histone acetylation regulates gene expression but is frequently aberrant in cancer 

(Eberharter and Becker, 2002). We detected more than 30 acetylation sites on histones H1, 

H2A, H2B, H3.3, and H4. Unsupervised clustering of these sites across all samples 

identified subsets of tumors with differentially acetylated histones H1, H2B, H3.3, and H4 

(Figure 5A). Histone acetylation was generally upregulated in tumors compared to normal 

samples, with a subset of tumors having elevated H1, H3, and H4 acetylation, while a 

different cluster exhibited significantly increased acetylation of H2B N-terminal sites 

(Figure 5A).

We performed Lasso linear regression between histone acetylation sites and the protein and 

acetylation abundances of histone acetyltransferases (HATs), bromodomain-containing 

proteins (BRDs), and deacetylases (HDACs). It revealed potential connections between 

HATs and BRDs and H2B acetylation sites, for example CREBBP and EP300, whose 

protein and acetylation levels showed substantial respective associations with H2B-K12, 

K13, K16, K17, and K21 and H2B-K21, and K24 sites (Figure 5B). These observations 

suggest that H2B hyperacetylation in some tumors may depend on CREBBP/EP300 activity. 

H2B acetylation sites also correlated with protein and acetylation abundance of BRD1, 

BRD3, and BRD4 proteins, which bind acetylated histones and mediate transcription 

(LeRoy et al., 2008). We observed significant negative correlation between H2B acetylation 

and the TME enrichment score (Figure 5D), while other histones showed positive 

associations. Our analysis identified that some pathways related to immune infiltration, such 

as ferroptosis, mast cells, and reactive oxygen species pathways had negative correlations 

with H2B acetylation, while spliceosome, nuclear receptors and SUMOylation pathways 

were positively correlated (Figure 5C). Two key proteins in the SUMOylation pathway, 

SUMO1 and UBE2I, were upregulated in samples with high H2B acetylation (Figure 5E). 

Interestingly, UBE2I correlated moderately with cell cycle regulator CDK6 (Pearson r = 

0.413), a UBE2I target that is stabilized upon SUMOylation (Figure S6A) (Bellail et al., 
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2014). These observations suggest that H2B acetylation assists in distinguishing immune 

cells and other cell types.

Lipid composition and metabolomic features associated with GBM subtypes

We quantified 582 lipids in 75 tumors and 7 GTEx normal samples (Figure 6A; STAR 

methods), identifying more than 500 lipids that were differentially abundant across the four 

multi-omics subtypes (Wilcoxon; FDR < 0.05, Figure 1C). The mesenchymal subtype 

demonstrated elevated abundance of triacylglycerols (TGs), as well as depleted levels of 

phosphatidylcholines (PCs) and other types of phospholipids (Figures 6A and 6B). The 

proneural-like subtype was enriched for very long chain fatty acid lipids (VLCFAs) and 

glycerophospholipids with long-chain (LC) polyunsaturated fatty acids (PUFAs) (Figure 

6B). As for metabolites, the proneural-like cluster exhibited significantly increased levels of 

creatinine and homocysteine and reduced levels of L-cysteine and palatinitol (Wilcoxon; 

FDR ≤ 0.05).

We explored the connection between the differential abundance of 22:4- and 22:6-containing 

lipids and their metabolically related neuroprotective proteins (Bhagat and Das, 2015). A co-

regulation example is shown with 22:6 (likely docosahexaenoic acid, DHA) and ACSL6 (an 

acyl-coA synthetase) (Figure 6C). Tumor samples had drastically diminished protein 

expression of ACSL6 (Figure 6D) and increased content of DHA-containing 

phosphatidylglycerols (PGs) (Figure S6C) and TGs (Figure S6D), while other 

phosphatidylethanolamine (PE), PC, and phosphatidylserine (PS) DHA-containing lipids 

were downregulated (Figure S6E). In addition, the proneural-like subtype demonstrated 

elevated expression of ACSL6 and phospholipids carrying DHA compared to the 

mesenchymal-like subtype. With respect to DHA metabolism, normal tissues were most 

similar to the proneural-like subtype and least similar to the mesenchymal-like subtype.

H2B acetylation-related pathway analysis identified upregulation of the ferroptosis pathway 

in mesenchymal-like GBMs (Figure 5C). For example, proteins ACSL4 and ALOX5 

(arachidonate 5-lipoxygenase) were significantly upregulated only in the mesenchymal-like 

subtype (Figure 6D). ACSL4 incorporates arachidonic acid (AA - 20:4) and adrenic acid 

(AdA - 22:4) into PEs (Doll et al., 2017; Kagan et al., 2017) and ALOX5 catalyzes oxidation 

of PUFAs (Gaschler and Stockwell, 2017). Their upregulation could indicate a higher 

content of oxidized PEs in this subtype. Downregulation of intact PE with PUFAs was also 

observed in this subtype (Figure S6G). We also examined diacylglycerol (DG) levels in the 

context of enzymes related to DG production (Figure 6E). Figure 6F shows significant 

correlation between DGs and AKT1, PLCD3, and PLCG1 protein expression. PLCG1 

phosphorylation was also affected by EGFR alterations (Figure 2B).

We compared metabolite abundances in IDH-mutant versus IDH-WT tumors. While 2-HG 

was the most highly abundant metabolite in IDH-mutant tumors (median log2FC = 3.62, 

FDR < 0.05), we found other differentially present metabolites with p < 0.05, although they 

did not pass the FDR cutoff (Figure 6G). Several metabolites involved in glycolysis showed 

increased abundance in IDH mutants, while serine and glutamate levels were reduced. 

Glutamate may contribute to alpha-ketoglutarate levels and to 2-HG levels via GLUD1- and 

IDH1-catalyzed reactions. Supporting this hypothesis is the negative correlation between 
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GLUD1 protein expression and glutamate abundance (Pearson’s r = −0.29, p < 0.01) and 

significant upregulation of GLUD1 in IDH mutants (Wilcoxon p-value < 0.05). Our 

validation cohort confirmed this elevated expression of GLUD1 in IDH-mutant tumors 

(Wilcoxon p-value = 0.07, Figure 6H).

Key oncogenic pathways and therapeutic opportunities in GBM

We integrated genetic alterations and the RNA, protein, and phosphosite levels per 

expression subtype to examine three important oncogenic signaling pathways in GBM: 

RTK/RAS, PI3K/AKT, and p53/cell cycle (Figure 7A). We found that expression outlier 

percentage was much higher than genetic alteration rate in RTK pathways (Figure 3). 

Moreover, analyzed tumors harbored at least one genetic alteration or outlier expression in at 

least one of the three pathways.

In the RTK/RAS pathway, classical tumors predominantly showed amplified EGFR, while 

proneural and IDH-mutant tumors showed amplified PDGFRA, both resulting in higher 

RNA, protein, and phosphosite abundances of EGFR and PDGFRA, respectively, illustrating 

convergence at the functional level. For mesenchymal tumors, we observed upregulated 

MET and downregulated NF1 protein abundance.

In the PI3K pathway, proneural, mesenchymal, and classical tumors showed lower 

expression of PTEN due to mutations and deletions, which potentially activate AKT1 and 

AKT2 through phosphatidylinositol (3,4,5)-trisphosphate (PIP3). In contrast, AKT3 

expression was higher in IDH-mutant and proneural tumors, explained by active expression 

of AKT3 in adult brains (Easton et al., 2005). In the p53/cell cycle pathway, we observed 

subtype-specific amplification and increased expression of MDM2 in mesenchymal and 

MDM4 in proneural and classical tumors. We also observed differences between IDH WT 

and mutant tumors in CDKN2A/B.

In conjunction with druggability information from DGIdb (Cotto et al., 2018) and DEPO 

(Sun et al., 2018), we conducted kinase-substrate and outlier analyses to identify druggable 

pairs (Figure 7B; Table S5). We found that GSK3B phosphorylation is positively associated 

with phosphorylation of its downstream proteins involved in mammalian target of rapamycin 

(mTOR) signaling (e.g., RPTOR and TSC1) and Wnt signaling (e.g., CTNNB1 and APC). 

Another player in mTOR signaling, AKT1S1, had many significant connections with AKT1, 

AKT2, and AKT3 kinases. EGFR was also found to phosphorylate CTNNB1 S33 at the N-

terminal, known to mediate CTNNB1 proteasomal degradation (Park et al., 2004). 

Phosphosite outlier analysis corroborated these findings with interactions for GSK3B, 

AKT1, MAPK1, MAPK3, and EGFR (Figure S7B; Table S5). The MAP kinase cascade was 

associated with diverse proteins, including ABL1 kinase, which in turn had a strong 

association with HDAC2 deacetylase with ~5% of outliers. We also found increased HDAC2 

S422 phosphorylation, coinciding with its functional activity (Eom and Kook, 2015).

Using the Library of Integrated Network-Based Cellular Signatures (LINCS) (Keenan et al., 

2018; Stathias et al., 2019), we calculated the similarity between alteration-specific RNA or 

phosphoprotein signatures from our study with corresponding transcriptional (L1000 assay) 

(Subramanian et al., 2017) and phosphoproteomic LINCS signatures (P100 assay) 
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(Litichevskiy et al., 2018) to identify compounds predicted to reverse tumor signatures of the 

cohort. Phosphoproteomic data yielded more robust results than the transcriptional-response 

data. For example, while RNA signatures suggested that HDAC inhibitors might reverse the 

EGFR signature, phosphoproteomic data indicated kinase inhibitors, beyond the expected 

EGFR inhibitors, to be more highly connected with potential inhibitory effects (Figure 7C). 

In contrast, NF1-altered samples exhibited concordance between the transcriptional and 

phosphoproteomic perturbation-response analyses: both suggested MAPK inhibitors as top 

signature-reversing candidates (Figure 7C). RB1 alteration and immune subtypes agreed 

variously when comparing perturbations predicted to reverse the gene-altered cell states 

using transcriptomics versus phosphoproteomics readouts (Figure S7C, Table S6).

DISCUSSION

GBM was one of the earliest subjects of deep genomic and transcriptomic analysis (Brennan 

et al., 2013) and targeted MS studies (Gu et al., 2017; He et al., 2007). However, most 

patients are still treated with a standard of care developed almost two decades ago (Stupp et 

al., 2005), underscoring the need for deeper insights. Here, we extended classical sequencing 

approaches with comprehensive integration of MS-based proteome, phosphoproteome, 

acetylome, metabolome, and lipidome analyses and single-cell transcriptomics. Multi-omics 

analysis identified a subset of patients with mixed subtypes compared with traditional 

sequencing-based subtypes, who exhibit shortened overall survival. Phosphoproteomic data 

indicate that PLCG1 and PTPN11 act as a common signaling hub for multiple RTKs.

RNA and protein expression data from bulk tumors indicate that GBM subtypes differ in 

infiltrating macrophages and the distribution of specific immune cell types. In particular, we 

discovered an unexpected immune subtype im3 exhibiting a relative depletion of the 

macrophage-microglia immunosuppressive infiltration typical of GBM, but which contains 

significant enrichment of T lymphocytes and natural killer (NK) cells. It is also enriched for 

IDH-mutated tumors. We validated these findings using IHC and an independent patient 

cohort. Interestingly, im1 TAMs demonstrated upregulation of M2 polarization markers, 

such as CD163 and MRC1, suggesting a role in tumor promotion (Pinto et al., 2019).

The mesenchymal subtype has high bulk-level RNA expression of EMT signatures (Behnan 

et al., 2019), but it was not known if this was due to the tumor cells themselves or the high 

number of infiltrating immune cells. Our data indicate that tumor cells in the mesenchymal 

subtype display an enhanced EMT signature, along with an increase in the relative 

proportion of immune cells in the tumor stroma. Cell-type-specific gene expression indicates 

that both the tumor cells and the stromal components contribute to the overall mesenchymal 

signatures. This study reveals an association between H2B acetylation and patterns of 

protein expression associated with immune cell functions in GBM. Furthermore, comparison 

of the lipid and metabolic signatures in GBM subtypes and normal brain tissues reveals 

shared characteristics that may be associated with neuronal phenotypes and IDH status. 

Similarly, from a metabolomic view, mesenchymal-like GBMs differ substantially from 

other subtypes and have specific metabolic vulnerabilities not present in other GBMs.
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The multidimensional analysis of patient specimens described in this investigation adds 

context to prior genomic and transcription-based investigations of GBM and suggests 

avenues for further mechanistic studies. Rapid advancement of single-cell genomics and 

proteomics technologies will facilitate deeper analyses of GBM heterogeneity and TME 

interactions. We hope these advances will improve patient stratification for clinical trials and 

lead, ultimately, to personalized treatments.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Li Ding (lding@wustl.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Clinical data and raw proteomic data reported in this paper 

can be accessed via the CPTAC Data Portal at: https://cptac-data-portal.georgetown.edu/

cptac/s/S048. Genomic, transcriptomic, and snRNA-seq data files can be accessed via 

Genomic Data Commons (GDC) at: https://portal.gdc.cancer.gov/projects/CPTAC-3. 

Clinical and processed genomic data of our validation cohort from Children’s Brain Tumor 

Tissue Consortium (CBTTC) can be accessed via PedcBioPortal at: https://

pedcbioportal.kidsfirstdrc.org/study/summary?id=phgg_cbttc and via CAVATICA at: https://

cavatica.sbgenomics.com/u/cavatica/pbta-cbttc/. Proteomic data files can be accessed via 

Proteomic Data Commons (PDC) at: https://pdc.cancer.gov/. Processed data used in this 

publication can be found the CPTAC Data Portal at: https://cptac-data-

portal.georgetown.edu/study-summary/S057, at Table S2, the cptac Python package, and 

LinkedOmics (Vasaikar et al., 2018).

ADDITIONAL RESOURCES

The CPTAC program website, which includes details about program initiatives, 

investigators, and datasets, can be accessed at: https://proteomics.cancer.gov/programs/cptac.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Specimens and clinical data—Tumor and germline blood samples from 99 qualified 

cases were collected from 10 tissue source sites in strict accordance with the CPTAC-3 

protocol with informed consent from the patients. No adjacent tissue was collected as part of 

this study, however, 10 normal samples from the frontal cortex were used in the analysis 

from the GTEx project (https://gtexportal.org/). This study contained both males (n = 55) 

and females (n = 44) from 6 different countries. Histopathologically defined adult 

glioblastoma tumors were only considered for analysis, with an age range of 24–88. Clinical 

data were obtained from the tissue source sites and reviewed for correctness and 

completeness of data.

Sample processing—The CPTAC Biospecimen Core Resource (BCR) at the Pathology 

and Biorepository Core of the Van Andel Research Institute in Grand Rapids, Michigan 
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manufactured and distributed biospecimen kits to the Tissue Source Sites (TSS) located in 

the US, Europe, and Asia. Each kit contains a set of pre-manufactured labels for unique 

tracking of every specimen respective to TSS location, disease, and sample type, used to 

track the specimens through the BCR to the CPTAC proteomic and genomic characterization 

centers.

Tissue specimens averaging 200 mg were snap-frozen by the TSS within a 30 min cold 

ischemic time (CIT) (CIT average = 13 min) and an adjacent segment was formalin-fixed 

paraffin-embedded (FFPE) and H&E stained by the TSS for quality assessment to meet the 

CPTAC GBM requirements. Routinely, several tissue segments for each case were collected. 

Tissues were flash frozen in liquid nitrogen (LN2) then transferred to a liquid nitrogen 

freezer for storage until approval for shipment to the BCR.

Specimens were shipped using a cryoport that maintained an average temperature of under 

−140°C to the BCR with a time and temperature tracker to monitor the shipment. Receipt of 

specimens at the BCR included a physical inspection and review of the time and temperature 

tracker data for specimen integrity, followed by barcode entry into a biospecimen tracking 

database. Specimens were again placed in LN2 storage until further processing. Acceptable 

GBM tumor tissue segments were determined by TSS pathologists based on the percent 

viable tumor nuclei (>60%), total cellularity (>50%), and necrosis (<50%). Segments 

received at the BCR were verified by BCR and Leidos Biomedical Research (LBR) 

pathologists and the percent of total area of tumor in the segment was also documented. 

Additionally, disease-specific working group pathology experts reviewed the morphology to 

clarify or standardize specific disease classifications and correlation to the proteomic and 

genomic data.

Specimens selected for the discovery set were determined on the maximal percent in the 

pathology criteria and best weight. Specimens were pulled from the biorepository using an 

LN2 cryocart to maintain specimen integrity and then cryopulverized. The cryopulverized 

specimen was divided into aliquots for DNA (30 mg) and RNA (30 mg) isolation and 

proteomics (50 mg) for molecular characterization. Nucleic acids were isolated and stored at 

−80°C until further processing and distribution; cryopulverized protein material was 

returned to the LN2 freezer until distribution. Shipment of the cryopulverized segments used 

cryoports for distribution to the proteomic characterization centers and shipment of the 

nucleic acids used dry ice shippers for distribution to the genomic characterization centers; a 

shipment manifest accompanied all distributions for the receipt and integrity inspection of 

the specimens at the destination. The DNA sequencing was performed at the Broad Institute, 

Cambridge, MA and RNA sequencing was performed at the University of North Carolina, 

Chapel Hill, NC. Material for proteomic analyses was sent to the Proteomic Characterization 

Center (PCC) at Pacific Northwest National Laboratory (PNNL), Richland, Washington.

Validation cohort sample collection and processing—High grade glioma 

adolescent and young adults (AYA) cohort was used in validation studies were collected 

through Children’s Brain Tumor Tissue Consortium (CBTTC) sites including Children’s 

Hospital of Philadelphia (CHOP), Seattle Children’s Hospital, Meyer Children’s Hospital, 

UCSF Benioff Children’s Hospital, University of Pittsburgh, Lurie Children’s Hospital, 
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Children’s National Medical Center) and through the HUP-CHOP Neurosurgery Tumor 

Tissue Bank Collaborative at the Hospital of University of Pennsylvania. All samples were 

fresh frozen collected at the time of surgery, shipped and stored in BioRC (Biorepository 

Resource Center) at Children’s Hospital of Philadelphia. 30 mg tissue pieces were cut/

chipped off using disposable scalpels on dry ice and delivered to Fred Hutchinson Cancer 

Research Center for sample preparation and proteomic analysis.

METHOD DETAILS

Sample processing for genomic DNA and total RNA extraction—Our study 

sampled a single site of the primary tumor from surgical resections, due to the internal 

requirement to process a minimum of 125 mg of tumor issue and 50 mg of adjacent normal 

tissue. DNA and RNA were extracted from tumor and blood normal specimens in a co-

isolation protocol using Qiagen’s QIAsymphony DNA Mini Kit and QIAsymphony RNA 

Kit. Genomic DNA was also isolated from peripheral blood (3–5 mL) to serve as matched 

normal reference material. The Qubit™ dsDNA BR Assay Kit was used with the Qubit® 2.0 

Fluorometer to determine the concentration of dsDNA in an aqueous solution. Any sample 

that passed quality control and produced enough DNA yield to go through various genomic 

assays was sent for genomic characterization. RNA quality was quantified using both the 

NanoDrop 8000 and quality assessed using Agilent Bioanalyzer. A sample that passed RNA 

quality control and had a minimum RIN (RNA integrity number) score of 7 was subjected to 

RNA sequencing. Identity match for germline, normal adjacent tissue, and tumor tissue was 

assayed at the BCR using the Illumina Infinium QC array. This beadchip contains 15,949 

markers designed to prioritize sample tracking, quality control, and stratification.

Whole exome sequencing

Library construction: Library construction was performed as described in (Fisher et al., 

2011), with the following modifications: initial genomic DNA input into shearing was 

reduced from 3 μg to 20–250 ng in 50 μL of solution. For adapter ligation, Illumina paired-

end adapters were replaced with palindromic forked adapters, purchased from Integrated 

DNA Technologies, with unique dual-indexed molecular barcode sequences to facilitate 

downstream pooling. Kapa HyperPrep reagents in 96-reaction kit format were used for end 

repair/A-tailing, adapter ligation, and library enrichment PCR. In addition, during the post-

enrichment SPRI cleanup, elution volume was reduced to 30 μL to maximize library 

concentration, and a vortexing step was added to maximize the amount of template eluted.

In-solution hybrid selection: After library construction, libraries were pooled into groups 

of up to 96 samples. Hybridization and capture were performed using the relevant 

components of Illumina’s Nextera Exome Kit and following the manufacturer’s suggested 

protocol, with the following exceptions. First, all libraries within a library construction plate 

were pooled prior to hybridization. Second, the Midi plate from Illumina’s Nextera Exome 

Kit was replaced with a skirted PCR plate to facilitate automation. All hybridization and 

capture steps were automated on the Agilent Bravo liquid handling system.

Preparation of libraries for cluster amplification and sequencing: After post-capture 

enrichment, library pools were quantified using qPCR (automated assay on the Agilent 
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Bravo) using a kit purchased from KAPA Biosystems with probes specific to the ends of the 

adapters. Based on qPCR quantification, libraries were normalized to 2 nM.

Cluster amplification and sequencing: Cluster amplification of DNA libraries was 

performed according to the manufacturer’s protocol (Illumina) using exclusion amplification 

chemistry and flowcells. Flowcells were sequenced utilizing sequencing-by-synthesis 

chemistry. The flowcells were then analyzed using RTA v.2.7.3 or later. Each pool of whole 

exome libraries was sequenced on paired 76 cycle runs with two 8 cycle index reads across 

the number of lanes needed to meet coverage for all libraries in the pool. Pooled libraries 

were run on HiSeq 4000 paired-end runs to achieve a minimum of 150x on target coverage 

per each sample library. The raw Illumina sequence data were demultiplexed and converted 

to fastq files; adapter and low-quality sequences were trimmed. The raw reads were mapped 

to the hg38 human reference genome and the validated BAMs were used for downstream 

analysis and variant calling.

PCR-free whole genome sequencing

Preparation of libraries for cluster amplification and sequencing: An aliquot of genomic 

DNA (350 ng in 50 μL) was used as the input into DNA fragmentation (aka shearing). 

Shearing was performed acoustically using a Covaris focused-ultrasonicator, targeting 385bp 

fragments. Following fragmentation, additional size selection was performed using a SPRI 

cleanup. Library preparation was performed using a commercially available kit provided by 

KAPA Biosystems (KAPA Hyper Prep without amplification module) and with palindromic 

forked adapters with unique 8-base index sequences embedded within the adapter 

(purchased from IDT). Following sample preparation, libraries were quantified using 

quantitative PCR (kit purchased from KAPA Biosystems), with probes specific to the ends 

of the adapters. This assay was automated using Agilent’s Bravo liquid handling platform. 

Based on qPCR quantification, libraries were normalized to 1.7 nM and pooled into 24-

plexes.

Cluster amplification and sequencing (HiSeq X): Sample pools were combined with 

HiSeq X Cluster Amp Reagents EPX1, EPX2, and EPX3 into single wells on a strip tube 

using the Hamilton Starlet Liquid Handling system. Cluster amplification of the templates 

was performed according to the manufacturer’s protocol (Illumina) with the Illumina cBot. 

Flowcells were sequenced to a minimum of 15x on HiSeq X utilizing sequencing-by-

synthesis kits to produce 151bp paired-end reads. Output from Illumina software was 

processed by the Picard data processing pipeline to yield BAMs containing demultiplexed, 

aggregated, aligned reads. All sample information tracking was performed by automated 

LIMS messaging.

Illumina infinium methylationEPIC beadchip array—The MethylationEPIC array 

uses an 8-sample version of the Illumina Beadchip capturing > 850,000 DNA methylation 

sites per sample. 250 ng of DNA was used for the bisulfite conversation using Infinium 

MethylationEPIC BeadChip Kit. The EPIC array includes sample plating, bisulfite 

conversion, and methylation array processing. After scanning, the data was processed 
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through an automated genotype calling pipeline. Data generated consisted of raw idats and a 

sample sheet.

RNA sequencing

Quality assurance and quality control of RNA analytes: All RNA analytes were assayed 

for RNA integrity, concentration, and fragment size. Samples for total RNA-seq were 

quantified on a TapeStation system (Agilent, Inc. Santa Clara, CA). Samples with RINs > 

8.0 were considered high quality.

Total RNA-seq library construction: Total RNA-seq library construction was performed 

from the RNA samples using the TruSeq Stranded RNA Sample Preparation Kit and bar-

coded with individual tags following the manufacturer’s instructions (Illumina, Inc. San 

Diego, CA). Libraries were prepared on an Agilent Bravo Automated Liquid Handling 

System. Quality control was performed at every step and the libraries were quantified using 

the TapeStation system.

Total RNA sequencing: Indexed libraries were prepared and run on HiSeq 4000 paired end 

75 base pairs to generate a minimum of 120 million reads per sample library with a target of 

greater than 90% mapped reads. Typically, these were pools of four samples. The raw 

Illumina sequence data were demultiplexed and converted to FASTQ files, and adapter and 

low-quality sequences were quantified. Samples were then assessed for quality by mapping 

reads to the hg38 human genome reference, estimating the total number of reads that 

mapped, amount of RNA mapping to coding regions, amount of rRNA in sample, number of 

genes expressed, and relative expression of housekeeping genes. Samples passing this 

QA/QC were then clustered with other expression data from similar and distinct tumor types 

to confirm expected expression patterns. Atypical samples were then SNP typed from the 

RNA data to confirm source analyte. FASTQ files of all reads were then uploaded to the 

GDC repository.

miRNA-seq library construction: miRNA-seq library construction was performed from the 

RNA samples using the NEXTflex Small RNA-Seq Kit (v3, PerkinElmer, Waltham, MA) 

and bar-coded with individual tags following the manufacturer’s instructions. Libraries were 

prepared on Sciclone Liquid Handling Workstation Quality control was performed at every 

step, and the libraries were quantified using a TapeStation system and an Agilent 

Bioanalyzer using the Small RNA analysis kit. Pooled libraries were then size selected 

according to NEXTflex Kit specifications using a Pippin Prep system (Sage Science, 

Beverly, MA).

miRNA sequencing: Indexed libraries were loaded on the Hiseq 4000 to generate a 

minimum of 10 million reads per library with a minimum of 90% reads mapped. The raw 

Illumina sequence data were demultiplexed and converted to FASTQ files for downstream 

analysis. Resultant data were analyzed using a variant of the small RNA quantification 

pipeline developed for TCGA (Chu et al., 2016). Samples were assessed for the number of 

miRNAs called, species diversity, and total abundance. Samples passing quality control were 

uploaded to the GDC repository.
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Single-nuclei RNA library preparation and sequencing: About 20–30 mg of 

cryopulverized powder from GBM specimens was resuspended in Lysis buffer (10 mM Tris-

HCl (pH 7.4); 10 mM NaCl; 3 mM MgCl2; and 0.1% NP-40). This suspension was pipetted 

gently for 6–8 times, incubated on ice for 30 seconds, and pipetted again for 4–6 times. The 

lysate containing free nuclei was filtered through a 40 μm cell strainer. We washed the filter 

with 1 mL Wash and Resuspension buffer (1X PBS + 2% BSA + 0.2 U/μL RNase inhibitor) 

and combined the flow through with the original filtrate. After a 6-minute centrifugation at 

500 × g and 4°C, the nuclei pellet was resuspended in 500 μL of Wash and Resuspension 

buffer. After staining by DRAQ5, the nuclei were further purified by Fluorescence Activated 

Cell Sorting (FACS). FACS-purified nuclei were centrifuged again and resuspended in a 

small volume (about 30 μL). After counting and microscopic inspection of nuclei quality, the 

nuclei preparation was diluted to about 1,000 nuclei/μL. About 20,000 nuclei were used for 

single-nuclei RNA sequencing (snRNA-seq) by the 10X Chromium platform. We loaded the 

single nuclei onto a Chromium Chip B Single Cell Kit, 48 rxns (10x Genomics, 

PN-1000073) and processed them through the Chromium Controller to generate GEMs (Gel 

Beads in Emulsion). We then prepared the sequencing libraries with the Chromium Single 

Cell 3’ GEM, Library & Gel Bead Kit v3, 16 rxns (10x Genomics, PN-1000075) following 

the manufacturer’s protocol. Sequencing was performed on an Illumina NovaSeq 6000 S4 

flow cell. The libraries were pooled and sequenced using the XP workflow according to the 

manufacturer’s protocol with a 28×8×98bp sequencing recipe. The resulting sequencing files 

were available as FASTQs per sample after demultiplexing.

MS sample processing and data collection

Protein extraction and Lys-C/Trypsin tandem digestion: Approximately 50 mg of each 

of the cryopulverized tumor and normal tissues were homogenized separately in 200 μL of 

lysis buffer (8 M urea, 75 mM NaCl, 50 mM Tris, pH 8.0, 1 mM EDTA, 2 μg/mL aprotinin, 

10 μg/mL leupeptin, 1 mM PMSF, 10 mM NaF, 1:100 v/v Sigma phosphatase inhibitor 

cocktail 2, 1:100 v/v Sigma phosphatase inhibitor cocktail 3, 20 μM PUGNAc, and 5 mM 

sodium butyrate). Lysates were precleared by centrifugation at 20,000 × g for 10 min at 4°C 

and protein concentrations were determined by BCA assay (ThermoFisher Scientific) and 

adjusted to 8 μg/μL with lysis buffer. Proteins were reduced with 5 mM dithiothreitol for 1 h 

at 37°C and subsequently alkylated with 10 mM iodoacetamide for 45 min at 25°C in the 

dark. Samples were diluted 1:3 with 50 mM Tris, pH 8.0 and digested with Lys-C (Wako) at 

1:50 enzyme-to-substrate ratio. After 2 h of digestion at 25°C, an aliquot of the same 

amount of sequencing-grade modified trypsin (Promega, V5117) was added to the samples 

and further incubated at 25°C for 14 h. The digested samples were then acidified with 100% 

formic acid to 1% of the final concentration of formic acid and centrifuged for 15 min at 

1,500 × g at 4°C before transferring samples into new tubes leaving the resulting pellet 

behind. After 3 fold dilution with 0.1% formic acid, tryptic peptides were desalted on C18 

SPE (Waters tC18 SepPak, WAT054925) and dried using Speed-Vac.

TMT-11 labeling of peptides: Desalted peptides from each sample were labeled with 11-

plex TMT reagents (ThermoFisher Scientific). Peptides (400 μg) from each of the samples 

were dissolved in 80 μL of 50 mM HEPES, pH 8.5 solution, and mixed with 400 μg of TMT 

reagent that was dissolved freshly in 20 μL of anhydrous acetonitrile according to the 
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optimized TMT labeling protocol described previously (Zecha et al., 2019). Channel 126 

was used for labeling the internal reference sample (pooled from all tumor and normal 

samples) throughout the sample analysis. After 1 h incubation at RT, 60 μL 50 mM HEPES 

pH8.5, 20% ACN solution was added to dilute the samples, and 12 μL of 5% hydroxylamine 

was added and incubated for 15 min at RT to quench the labeling reaction. Peptides labeled 

by different TMT reagents were then mixed, dried using Speed-Vac, reconstituted with 3% 

acetonitrile, 0.1% formic acid and desalted on tC18 SepPak SPE columns.

Peptide fractionation by basic reversed-phase liquid chromatography 
(bRPLC): Approximately 3.5 mg of 11-plex TMT labeled sample was separated on a 

reversed phase Agilent Zorbax 300 Extend-C18 column (250 mm × 4.6 mm column 

containing 3.5-μm particles) using the Agilent 1200 HPLC System. Solvent A was 4.5 mM 

ammonium formate, pH 10, 2% acetonitrile and solvent B was 4.5 mM ammonium formate, 

pH 10, 90% acetonitrile. The flow rate was 1 mL/min and the injection volume was 900 μL. 

The LC gradient started with a linear increase of solvent B to 16% in 6 min, then linearly 

increased to 40% B in 60 min, 4 min to 44% B, 5 min to 60% B and another 14 of 60% 

solvent B. A total of 96 fractions were collected into a 96 well plate throughout the LC 

gradient. These fractions were concatenated into 24 fractions by combining 4 fractions that 

are 24 fractions apart (i.e., combining fractions #1, #25, #49, and #73; #2, #26, #50, and 

#74; and so on). For proteome analysis, 5% of each concatenated fraction was dried down 

and re-suspended in 2% acetonitrile, 0.1% formic acid to a peptide concentration of 0.1 

mg/mL for LC-MS/MS analysis. The rest of the fractions (95%) were further concatenated 

into 12 fractions (i.e., by combining fractions #1 and #13; #3 and #15; and so on), dried 

down, and subjected to immobilized metal affinity chromatography (IMAC) for 

phosphopeptide enrichment.

Phosphopeptide enrichment using IMAC: Fe3+-NTA-agarose beads were freshly prepared 

using the Ni-NTA Superflow agarose beads (QIAGEN, #30410) for phosphopeptide 

enrichment. For each of the 12 fractions, peptides were reconstituted in 500 μL IMAC 

binding/wash buffer (80% acetonitrile, 0.1% trifluoroacetic acid) and incubated with 20 μL 

of the 50% bead suspension for 30 min at RT. After incubation, the beads were sequentially 

washed with 50 μL of wash buffer (1X), 50 μL of 50% acetonitrile, 0.1% trifluoroacetic acid 

(1X), 50 μL of wash buffer (1X), and 50 μL of 1% formic acid (1X) on the stage tip packed 

with 2 discs of Empore C18 material (Empore Octadecyl C18, 47 mm; Supleco, 66883-U). 

Phosphopeptides were eluted from the beads on C18 using 70 μL of elution buffer (500 mM 

K2HPO4, pH 7.0). Sixty microliter of 50% acetonitrile, 0.1% formic acid was used for 

elution of phosphopeptides from the C18 stage tips after two washes with 100 μL of 1% 

formic acid. Samples were dried using Speed-Vac and later reconstituted with 12 μL of 3% 

acetonitrile, 0.1% formic acid for LC-MS/MS analysis.

Immunoaffinity purification of acetylated peptides: Tryptic peptides from the flow-

through of IMAC were combined into four samples follow concatenation scheme by 

combining 3 fractions that were 4 fractions apart (i.e., combining fractions #1, #5 and #9 as 

a new fraction) and dried down using Speed-Vac. The dried peptides were reconstituted in 

1.4 mL of the immunoaffinity purification (IAP) buffer (50 mM MOPS/NaOH pH 7.2, 10 
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mM Na2HPO4 and 50 mM NaCl). After dissolving the peptide, the pH of the peptide 

solution was checked using pH indicator paper. The antibody beads from PTMScan® 

Acetyl-Lysine Motif [Ac-K] Kit (Cell Signaling, #13416) were freshly prepared. Briefly, the 

antibody beads were centrifuged at 2,000 × g for 30 sec and all buffers from the beads were 

removed; the antibody beads were then washed with 1 mL of IAP buffer for four times and 

finally resuspend in 40 μL of IAP buffer. For each fraction, half of the antibody in each tube 

was transferred to the peptide solution and incubated on a rotator overnight at 4°C. After 

removing the supernatant, the reacted beads were washed with 1 mL of PBS buffer five 

times. For the elution of acetylated peptides, the antibody beads were incubated 2 times each 

with 50 μL of 0.15% TFA at room temperature for 10 min. The eluted peptides were 

transferred to the stage tip packed with two discs of Empore C18 material. The C18 stage 

tips were washed by 1% formic acid and 50% acetonitrile, and 0.1% formic acid was used 

for elution of peptides from the C18 stage tips. The eluted peptides were dried using Speed-

Vac, and reconstituted with 13 μL of 2% acetonitrile, 0.1% formic acid contained 0.01% 

DDM (n-Dodecyl β-D-maltoside) right before the LC-MS/MS analysis.

The acetylated peptides prepared by IP from the IMAC flow-through may very well miss 

those peptides that are both phosphorylated and acetylated. Splitting the samples for 

independent IP and IMAC may improve the chance of recovering such peptides, assuming 

having both PTMs on the same peptide does not impact the affinity of either the IP or IMAC 

process. However, acetylated peptides are estimated to be 10 times lower in abundance than 

the phosphopeptides, hence much larger input may be needed to recover the dual-modified 

peptides. Given the extremely low stoichiometry of these dual-modified peptides and the 

sample size limitations, it was not pursued in this work.

LC-MS/MS analysis: Fractionated samples prepared for global proteome, 

phosphoproteome, and acetylome analysis were separated using a nanoACQUITY UPLC 

system (Waters) by reversed-phase HPLC. The analytical column was manufactured in-

house using ReproSil-Pur 120 C18-AQ 1.9 μm stationary phase (Dr. Maisch GmbH) and 

slurry packed into a 25-cm length of 360 μm o.d. × 75 μm i.d. fused silica picofrit capillary 

tubing (New Objective). The analytical column was heated to 50°C using an AgileSLEEVE 

column heater (Analytical Sales and Services). The analytical column was equilibrated to 

98% Mobile Phase A (MP A, 0.1% formic acid/3% acetonitrile) and 2% Mobile Phase B 

(MP B, 0.1% formic acid/90% acetonitrile) and maintained at a constant column flow of 200 

nL/min. The sample was injected into a 5-μL loop placed in-line with the analytical column 

which initiated the gradient profile (min:%MP B): 0:2, 1:6, 85:30, 94:60, 95:90, 100:90, 

101:50, 110:50 (for global proteome and phosphoproteome analysis); 0:2, 1:6, 235:30, 

244:60, 245:90, 250:90, 251:50, 260:50 (for acetylome analysis). The column was allowed 

to equilibrate at start conditions for 30 minutes between analytical runs.

MS analysis was performed using an Orbitrap Fusion Lumos mass spectrometer 

(ThermoFisher Scientific). The global proteome and phosphoproteome samples were 

analyzed under identical conditions. Electrospray voltage (1.8 kV) was applied at a carbon 

composite union (Valco Instruments) coupling a 360 μm o.d. × 20 μm i.d. fused silica 

extension from the LC gradient pump to the analytical column and the ion transfer tube was 

set at 250°C. Following a 25-min delay from the time of sample injection, Orbitrap 
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precursor spectra (AGC 4 × 105) were collected from 350–1800 m/z for 110 min at a 

resolution of 60K along with data dependent Orbitrap HCD MS/MS spectra (centroid) at a 

resolution of 50K (AGC 1 × 105) and max ion time of 105 ms for a total duty cycle of 2 

seconds. Masses selected for MS/MS were isolated (quadrupole) at a width of 0.7 m/z and 

fragmented using a collision energy of 30%. Peptide mode was selected for monoisotopic 

precursor scan and charge state screening was enabled to reject unassigned 1+, 7+, 8+, and > 

8+ ions with a dynamic exclusion time of 45 seconds to discriminate against previously 

analyzed ions between ±10 ppm. The acetylome samples were analyzed under similar 

conditions except that the max ion time was 125 ms.

Construction and utilization of the comparative reference samples: As a quality control 

measure, two different types of “Comparative Reference” (“CompRef”) patient-derived 

xenograft (PDX) samples were generated as previously described (Li et al., 2013; Tabb et 

al., 2016) and used to monitor the longitudinal performance of the proteomics workflow 

throughout the course of this study. Briefly, the PDX tumors from established basal and 

luminal breast cancer intrinsic subtypes were raised subcutaneously in 8-week old NOD.Cg-

Prkdcscid Il2rgtm1Wjl/SzJ mice (Jackson Laboratories, Bar Harbor, ME) using procedures 

reviewed and approved by the Institutional Animal Care and Use Committee at Washington 

University in St. Louis. Xenografts were grown in multiple mice, pooled, and cryopulverized 

to provide a sufficient amount of uniform material for the duration of the study. Full 

proteome, phosphoproteome and acetylome process replicates of each of the two types of 

CompRef samples were prepared and analyzed as standalone 11-plex TMT experiments 

alongside every 4 TMT-11 experiments of the study samples, using the same analysis 

protocol as the patient samples. These interstitially analyzed CompRef samples were 

evaluated for depth of proteome, phosphoproteome, and acetylome coverage and for 

consistency in quantitative comparison between the basal and luminal models.

Global proteome and phosphoproteome analysis of high grade brain tumor 
samples: An independent cohort of 39 high grade (age 14–39 years old) brain tumors 

obtained from the Children’s Brain Tumor Tissue Consortium (CBTTC) were analyzed 

using the same procedures for TMT-based quantitative global proteome and 

phosphoproteome analysis of the adult GBM and normal brain tissue samples, with 

modifications in front-end protein extraction and digestion described as follows: 

Approximately 50 mg of each of brain tumor tissues were cryopulverized and lysed 

separately in 800 μL of lysis buffer (6 M urea, 25 mM Tris, pH 8.0, 1 mM EDTA, 1 mM 

EGTA, 1:100 v/v Sigma protease inhibitor, 1:100 v/v Sigma phosphatase inhibitor cocktail 

2, and 1:100 v/v Sigma phosphatase inhibitor cocktail 3). Lysates were precleared by 

centrifugation at 20,000 × g for 10 min at 4°C. After adjusting the protein concentration to 

approximately 1.5 μg/μL, proteins were reduced with 5 mM dithiothreitol for 1 h at 37°C, 

and subsequently alkylated with 10 mM iodoacetamide for 45 min at 25°C in the dark. 

Samples were diluted to 2 M urea concentration with 25 mM Tris, pH 8.0 and digested with 

Lys-C at 1:50 enzyme-to-substrate ratio. After 2 h of digestion at 25°C, aliquot of 

sequencing grade modified trypsin at 1:25 enzyme-to-substrate ratio was added to the 

samples and further incubated at 25°C for 14 h.
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Polar metabolites and lipid mass spectrometry

Metabolite and lipid extraction: Lipids and metabolite extracts were generated from the 

same pulverized tissue with a minimum of 30 mg using a modified Folch extraction 

(Nakayasu et al., 2016). Additional solvent was added such that the final volume was 

proportionate to the mass of the sample ensuring the solvent ratio is 3:8:4 

H2O:CHCl3:MeOH. Sample were vortexed for 30 sec, chilled in an ice block for 5 min, and 

vortexed again for 30 sec. The samples were then centrifuged at 10,000 × g for 10 min at 

4°C. The polar metabolite extract was transferred into a glass vial, dried in a speedvac, and 

stored at −20°C until chemical derivatization for gas chromatography mass spectrometry 

(GC-MS) analysis. The total lipid extract (TLE) was transferred into a glass vial, dried in a 

speedvac, and then reconstituted in 500 μL 1:1 chloroform/methanol for storage at −20°C 

until analysis.

Chemical derivatization of polar metabolites: Polar metabolites along with 50% of the 

TLE were chemically derivatized prior to metabolomics analysis. Chemical derivatization of 

metabolites was previously detailed (Webb-Robertson et al., 2014). To protect carbonyl 

groups and reduce the number of tautomeric isomers, 20 μL of methoxyamine in pyridine 

(30 mg/mL) was added to each sample, followed by vortexing for 30 seconds and incubation 

at 37°C with generous shaking for 90 minutes. To derivatize hydroxyl and amine groups to 

trimethylsilylated (TMS) forms, 80 μL of N-methyl-N-(trimethylsilyl)trifluoroacetamide 

(MSTFA) with 1% trimethylchlorosilane (TMCS) was added to each vial, followed by 

vortexing for 10 seconds and incubation at 37°C with shaking for 30 minutes. The samples 

were allowed to cool to room temperature and were analysed on the GC-MS the same day.

GC-MS analysis: An Agilent GC 7890A coupled with a single quadrupole MSD 5975C 

was used to analyze chemically derivatized metabolites. GC-MS analysis was previously 

detailed (Webb-Robertson et al., 2014). Briefly, 1 μL of each sample was injected onto a 

HP-5MS column (30 m × 0.25 mm × 0.25 μm; Agilent Technologies, Inc). The injection 

port temperature was held at 250°C throughout the analysis. The GC oven was held at 60°C 

for 1 minute after injection then increased to 325°C by 10°C/min, followed by a 5-minute 

hold at 325°C. Total analysis time was 34 minutes per injection. The helium gas flow rates 

were determined by the Agilent Retention Time Locking function based on analysis of 

deuterated myristic acid. Data were collected over the mass range 50 – 550 m/z. A mixture 

of fatty acid methyl esters (C8–C28) was analyzed once per day at the beginning of each 

batch together with the samples for retention index alignment purposes during subsequent 

data analysis.

LC-MS analysis: Stored plasma TLEs were dried in vacuo (45 min) and reconstituted in 5 

μL chloroform plus 95 μL of methanol. The TLEs were analyzed as outlined in the previous 

study (Kyle et al., 2017). A Waters Acquity UPLC H class system interfaced with a Velos-

ETD Orbitrap mass spectrometer was used for liquid chromatography tandem mass 

spectrometry (LC-MS/MS) analyses. 10 μL of reconstituted sample was injected onto a 

Waters CSH column (3.0 mm × 150 mm × 1.7 μm particle size) and separated over a 34-

minute gradient (mobile phase A: ACN/H2O (40:60) containing 10 mM ammonium acetate; 

mobile phase B: ACN/IPA (10:90) containing 10 mM ammonium acetate) at a flow rate of 
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250 μL/min. Eluting lipids were introduced to the MS via electrospray ionization in both 

positive and negative modes, and lipids were fragmented using higher-energy collision 

dissociation (HCD) and collision-induced dissociation (CID).

Metabolite identification and data processing: Metabolite identifications and data 

processing were conducted as previously detailed (Webb-Robertson et al., 2014). GC-MS 

raw data files were processed using Metabolite Detector software v2.0.6 beta (Hiller et al., 

2009). Retention indices (RI) of detected metabolites were calculated based on the analysis 

of the FAMEs mixture, followed by their chromatographic alignment across all analyses 

after deconvolution. Metabolites were identified by matching experimental spectra to an 

augmented version of the Agilent Fiehn Metabolomics Retention Time Locked (RTL) 

Library (Kind et al., 2009), containing spectra and validated retention indices. All metabolite 

identifications were manually validated. The NIST 08 GC-MS library was also used to cross 

validate the spectral matching scores obtained using the Agilent library and to provide 

identifications for metabolites that were initially unidentified. The three most abundant 

fragment ions in the spectra of each identified metabolite were automatically determined by 

Metabolite Detector, and their summed abundances were integrated across the GC elution 

profile. A matrix of identified metabolites, unidentified metabolite features, and their 

corresponding abundances for each sample in the batch were exported for statistics.

Lipid idetification and data processing: LC-MS/MS lipidomics data were analyzed using 

LIQUID (Lipid Informed Quantitation and Identification) (Kyle et al., 2017). Confident 

identifications were selected by manually evaluating the MS/MS spectra for diagnostic and 

corresponding acyl chain fragments of the identified lipid. In addition, the precursor isotopic 

profile, extracted ion chromatogram, and mass measurement error along with the elution 

time were evaluated. To facilitate quantification of lipids, a reference database for lipids 

identified from the MS/MS data was created and features from each analysis were then 

aligned to the reference database based on their identification, m/z and retention time using 

MZmine 2 (Pluskal et al., 2010). Aligned features were manually verified and peak apex 

intensity values were exported for subsequent statistical analysis.

Immunohistochemistry (IHC) validation of genetic alteration downstream 
impact and immune cell compositions—IHC stains for IDH1, ATRX, SOX9, GAB1, 

CD3, CD68, CD163, PD-1, and PD-L1 were performed at the Johns Hopkins Hospital 

clinical IHC laboratory using the autostainers (Ventana XT and Dako). Briefly, tissue blocks 

were cut into 5-micron thickness sections prior to incubation with primary antibodies. Heat 

antigen retrieval was performed to enhance signal detection. Primary antibodies were diluted 

according to standard protocols and/or manufacturer suggestions. A mouse-HRP and/or 

rabbit-AP polymer detection systems were used to develop immunostaining. Slides were 

counterstained with hematoxylin and dehydrated for permanent mounting. Appropriate 

positive and negative controls were also included during the assay.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Tumor exclusion criteria—One sample (C3L-03747) was excluded from the downstream 

analysis since it failed the expert pathology review (high necrosis) and had low correlation 

of RNA and protein or phosphoprotein.

Genomic data analysis

Harmonized genome alignment: WGS, WES, RNA-Seq sequence data were harmonized 

by NCI Genomic Data Commons (GDC) https://gdc.cancer.gov/about-data/gdc-data-

harmonization, which included alignment to GDC’s hg38 human reference genome 

(GRCh38.d1.vd1) and additional quality checks. All the downstream genomic processing 

was based on the GDC aligned BAMs to ensure reproducibility. However, RNA-Seq of 9 

GTEx and 4 CPTAC samples didn’t have the GDC harmonized BAMs available at the time 

of the analysis. We followed GDC’s pipeline (same tool and parameters) to align those 

RNA-Seq samples. To ensure our alignment pipeline is identical to GDC, we randomly 

selected 10 samples with GDC BAMs available to apply our pipeline and obtain their gene 

level read count. All selected samples had identical gene counts using GDC or our BAMs.

Copy number variant calling: Copy Number Variant (CNV) were detected using BIC-

Seq2 (NBICseq-norm v0.2.4 and NBICseq-seg v0.7.2) (Xi et al., 2016) from WGS tumor 

and normal paired BAMs using Li Ding Lab’s BIC-Seq2 pipeline v2.0 https://github.com/

ding-lab/BICSEQ2. We used a bin size of 100bp and a lambda of 3 (smoothing parameter 

for CNV segmentation). To further summarize the arm-level copy number change, we used a 

weighted sum approach (Vasaikar et al., 2019), in which the segment-level log2 copy ratios 

for all the segments located in the given arm were added up with the length of each segment 

being weighted. We then used GISTIC2 v2.0.22 (Mermel et al., 2011) to integrate results 

from individual patients and identify genomic regions recurrently amplified or deleted in our 

samples. The threshold of arm-level CNV was 0.3 for gain and −0.3 for loss.

We defined a tumor with chr7 amplification or chr10 deletion when the GISTIC results of at 

least one chromosome arm exceeded the threshold (± 0.3). For samples that both 

chromosome arms were within the GISTIC threshold or its GISTIC result was not available, 

we considered the tumor with the chromosome amplification or deletion if the averaged 

CNV values exceeded the threshold (± 0.2).

Somatic variant calling: Somatic variants were called from WES tumor and normal paired 

BAMs using somaticwrapper v1.5, a pipeline designed for detection of somatic variants 

from tumor and normal exome data. The pipeline merges and filters variant calls from four 

callers: Strelka v2.9.2 (Kim et al., 2018), VarScan v2.3.8 (Koboldt et al., 2012), Pindel 

v0.2.5 (Ye et al., 2009), and MuTect v1.1.7 (Cibulskis et al., 2013). SNV calls were obtained 

from Strelka, Varscan, and Mutect. Indel calls were obtained from Stralka2, Varscan, and 

Pindel. The following filters were applied to get variant calls of high confidence:

• Normal VAF ≤ 0.02 and tumor VAF ≥ 0.05

• Read depth in tumor ≥ 14 and normal ≥ 8

• Indel length < 100 bp
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• All variants must be called by 2 or more callers

• All variants must be exonic

• Exclude variants in dbSNP but not in COSMIC

We additionally called somatic whole-genome variants using WGS tumor and normal paired 

BAMs using somaticwrapper v1.3 identical to the exome version except that we kept non-

exonic variants.

Germline variant calling and annotation: Germline variant calling was performed using 

Li Ding Lab’s pipeline germlinewrapper v1.1, which implements multiple tools for the 

detection of germline INDELs and SNVs. Germline SNVs were identified using VarScan 

v2.3.8 (with parameters: –min-var-freq 0.10 –p-value 0.10, –min-coverage 3 –strand-filter 1) 

operating on a mpileup stream produced by samtools v1.2 (with parameters: -q 1 -Q 13) and 

GATK v4.0.0.0 (McKenna et al., 2010) using its haplotype caller in single-sample mode 

with duplicate and unmapped reads removed and retaining calls with a minimum quality 

threshold of 10. All resulting variants were limited to the coding region of the full-length 

transcripts obtained from Ensembl release 95 plus additional two base pairs flanking each 

exon to cover splice donor/acceptor sites. We required variants to have allelic depth ≥ 5 

reads for the alternative allele in both tumor and normal samples. We used bam-readcount 

v0.8 for reference and alternative alleles quantification (with parameters: -q 10 -b 15) in both 

normal and tumor samples. Additionally, we filtered all variants with ≥ 0.05% frequency in 

gnomAD v2.1 (Karczewski et al., 2019) and The 1000 Genomes Project (The 1000 

Genomes Project Consortium, 2015).

TERT promoter mutation calling: We used bam-readcount to count reads in WGS tumor 

and blood normal BAMs at the known hotspot positions at hg38 chr5:1295113 and 

chr5:1295135. We called a mutation if it was not observed in matching blood normal BAM 

and VAF > 5%. For all tumor samples lacking a TERTp hotspot mutation, we performed the 

readcount across the entire TERT promoter region from chr5:1294200 to chr5:1295601 

(hg38). In these cases, we applied a more stringent VAF cutoff of 10%.

Structural variant calling: Structural variants (SVs) were called by Manta v1.6.0 (Chen et 

al., 2016) and DELLY v0.8.1 (Rausch et al., 2012) from WGS tumor and normal paired 

BAMs. We ran Manta on canonical chromosomes with the default record- and sample-level 

filters. For DELLY, we followed somatic SV workflow Only SV calls with PASS filter status 

were kept for downstream analysis. Lastly, we manually reviewed all the SV calls in the 

genes of interest (e.g. EGFR and PDGFRA).

DNA methylation microarray processing: Raw methylation idat files were downloaded 

from CPTAC DCC and GDC. Beta values of CpG loci were reported after functional 

normalization, quality check, common SNP filtering, and probe annotation using Li Ding 

Lab’s methylation pipeline v1.1 https://github.com/ding-lab/cptac_methylation. Resulting 

beta values of methylation were used for downstream analysis.

Wang et al. Page 25

Cancer Cell. Author manuscript; available in PMC 2022 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ding-lab/cptac_methylation


Classification of MGMT promoter DNA methylation status: We applied the MGMT-

STP27 model (Bady et al., 2012) to determine the MGMT promoter DNA methylation 

status, which is a logistic regression prediction model based on the M values of the two 

probes in the MGMT promoter region, cg12434587 and cg12981137. M-values were 

converted from the beta values of the processed microarray data by M = log2(beta / (1 − 

beta)). 9 tumors with low data quality of DNA methylation array were excluded from the 

prediction. 38 out of the remaining 90 tumors (42%) were predicted to be MGMT promoter 

DNA hypermethylated.

Telomere length quantification and telomere genotyping: We used Telseq v0.0.1 (Ding et 

al., 2014) to estimate the telomere length using WXS and WGS tumor and blood normal 

paired BAMs. We defined telomere length ratio as the ratio between the estimated tumor 

telomere length and the estimated blood normal telomere length. While WXS and WGS-

based telomere length ratios were well correlated, we used WGS based lengths for the 

downstream analysis. We defined long telomere phenotype as tumors with WGS telomere 

length ratio > 1.2, and short telomere phenotype as WGS telomere length ratio < 0.8.

We identified telomere genotypes as the following:

• TERTp hotspot if tumor has TERTp hotspot mutation

• ATRXmut for all remaining tumors with only ATRX mutation

• ATRXmut IDH1mut for all remaining tumors with both ATRX and IDH1 
mutated

• IDH1mut for all remaining tumors with only IDH1 mutation

• TERTp not hotspot for all remaining tumors without hotspot mutation in TERT 
promoter and expressing TERT

• WT for the remaining tumors that do not fall into any category

RNA quantification and analysis

RNA quantification: We obtained the gene-level readcount, Fragments Per Kilobase of 

transcript per Million mapped reads (FPKM) and FPKM Upper Quartile (FPKM-UQ) values 

by following the GDC’s RNA-Seq pipeline (Expression mRNA Pipeline) https://

docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/, with the 

exception of running the quantification tools in the stranded mode. We used HTSeq v0.11.2 

(Anders et al., 2015) to calculate the gene-level stranded readcount (parameters: -r pos -f 

bam -a 10 -s reverse -t exon -i gene_id -m intersection-nonempty –nonunique=none) using 

GENCODE v22 (Ensembl v79) annotation downloaded from GDC 

(gencode.gene.info.v22.tsv). The readcount was then converted to FPKM and FPKM-UQ 

using the same formula described in GDC’s Expression mRNA Pipeline documentation.

RNA fusion detection: We used three callers, STAR-Fusion v1.5.0 (Haas et al., 2019), 

INTEGRATE v0.2.6 (Zhang et al., 2016), and EricScript v0.5.5 (Benelli et al., 2012), to call 

consensus fusion/chimeric events in our samples. Calls by each tool using tumor and normal 

RNA-Seq data were then merged into a single file and extensive filtering is done. As STAR-
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Fusion has higher sensitivity, calls made by this tool with higher supporting evidence 

(defined by fusion fragments per million total reads, or FFPM > 0.1) were required, or a 

given fusion must be reported by at least 2 callers. We then removed fusions present in our 

panel of blacklisted or normal fusions, which included uncharacterized genes, 

immunoglobulin genes, mitochondrial genes, and others, as well as fusions from the same 

gene or paralog genes and fusions reported in TCGA normal samples (Gao et al., 2018), 

GTEx tissues (reported in STAR-Fusion output), and non-cancer cell studies (Babiceanu et 

al., 2016). Finally, we removed normal fusions from the tumor fusions to curate the final set.

miRNA quantification: miRNA-Seq FASTQ files were downloaded from GDC. We 

reported the mature miRNA and precursor miRNA expression in TPM (Transcripts Per 

Million) after adapter trimming, quality check, alignment, annotation, reads counting using 

Li Ding Lab’s miRNA pipeline https://github.com/ding-lab/CPTAC_miRNA. The mature 

miRNA expression was calculated irrespective of its gene of origin by summing the 

expression from its precursor miRNAs.

Circular RNA prediction and quantification: The hg38 reference genome and GDC’s 

annotations were used for the circRNA analysis. First, CIRI v2.0.6 (Gao et al., 2015) was 

used to call circular RNA with default parameters and BWA v0.7.17-r1188 (Li and Durbin, 

2009) was used as a mapping tool. The cutoff of supporting reads for circRNA was set to 10. 

Then a pseudo-linear transcript strategy was used to quantify circular RNA expression (Li et 

al., 2017). In brief, for each sample, linear transcripts of circular RNAs were extracted and 

75bp (read length) from the 3’ end was copied to the 5’ end. The modified transcripts were 

called pseudo-linear transcripts. Transcripts of linear genes were also extracted and mixed 

with pseudo-linear transcripts. RSEM v1.3.1 (Li and Dewey, 2011) with Bowtie2 v2.3.3 

(Langmead and Salzberg, 2012) as the mapping tool was used to quantify circular RNA 

expression based on the mixed transcripts. After quantification, the upper quantile method 

was applied for normalization and the normalized matrix was log2-transformed.

snRNA-seq quantification and analysis

snRNA-seq data preprocessing: For each sample, we obtained the unfiltered feature-

barcode matrix per sample by passing the demultiplexed FASTQs to Cell Ranger v3.1.0 

‘count’ command using default parameters and a customized pre-mRNA GRCh38 genome 

reference was built to capture both exonic and intronic reads. The customized genome 

reference modified the transcript annotation from the 10x Genomics pre-built human 

genome reference 3.0.0 (GRCh38 and Ensembl 93).

Seurat v3.1.2 (Butler et al., 2018; Hafemeister and Satija, 2019) was used for all subsequent 

analysis. We constructed a Seurat object using the unfiltered feature-barcode matrix for each 

sample. A series of quality filters were applied to the data to remove those cell barcodes 

which fell into any one of these categories recommended by Seurat: too few total transcript 

counts (< 300); possible debris with too few genes expressed (< 200) and too few UMIs (< 

1,000); possible more than one cell with too many genes expressed (> 10,000) and too many 

UMIs (> 10,000); possible dead cell or a sign of cellular stress and apoptosis with too high 

proportion of mitochondrial gene expression over the total transcript counts (> 10%).
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Each sample was scaled and normalized using Seurat’s ‘SCTransform’ function to correct 

for batch effects (with parameters: vars.to.regress = c(“nCount_RNA”, “percent.mito”), 

variable.features.n = 3000). We then merged all samples and repeated the same scaling and 

normalization method. All cells in the merged Seurat object were then clustered using the 

original Louvain algorithm (Blondel et al., 2008) and the top 30 PCA dimensions via 

Seurat’s ‘FindNeighbors’ and ‘FindClusters’ (with parameters: resolution = 0.5) functions. 

The resulting merged and normalized matrix was used for the subsequent analysis.

snRNA-seq cell type annotation: Cell types were assigned to each cluster by manually 

reviewing the expression of marker genes. The marker genes used were TMEM119, 

P2RY12, SLC2A5, TGFBR1, GPR34, SALL1, GAS6, MERTK, C1QA, C3, PROS1, CD68, 

ADGRE1, AIF1, CX3CR1, TREM2, ITGAM, SPI1, CSF1R, LAPTM5, RGS1, PTPRC 

(Microglia); LGALS2, FCER1G, FCN1, CSTA, S100A8, S100A9, S100A12, LYZ, CD68, 

CD14 (Monocytes); AIF1, CD68, LST1, IFITM2 (Macrophages); Microglia, macrophages 

were named together as tumor-associated microglia/macrophages. CD8A, CD8B, CD3E, 

CD3D, PRF1, GZMA, GZMB, GZMK, GZMH, CD4, IL7R, LTB, LDHB, CD69, FAS, 

KLRG1, CD28, DPP4 (CD4/CD8 T-cells); CD19, CD79A, CD79B, MS4A1, SDC1, 

IGHG1, IGHG3, IGH4 (B-cells/Plasma); MBP, PLP1, CLDN11, MOG, KLK6, CNDP1, 

GJB1, MAG, NKX6–2, OPALIN, FOLH1, CARNS1, MOBP, ERMN, TMEM125, CNTN2, 

ENPP2, SH3GL3, MAL, TF, ST18, TPPP (Oligodendrocytes); PPP1R1B, CPNE6, NTSR2, 

GJB6, SLC39A12, GA-BRA2, WIF1, GABRG1, HHATL, C16orf89, ACSBG1, FBXO2, 

MMP28, SNCG, RANBP3L, IQCA1, SLC14A1 (Astrocytes); FSTL5, GAD2, GRIN1, 

SYNPR, GABRG2, DLX5, SULT4A1, RBFOX3, CALY, SLC6A17, SLC32A1, CCK, 

GABRA1, CDH9, DLX6-AS1, KCNC2, MIR7–3HG, FRMPD4, CAMKV, PCP4L1 

(Neurons); EMCN, FLT1, PECAM1, KDR, PLVAP, PLVAP, TEK, VWF, ACTA2, ANGPT2, 

COL1A1, COL3A1, COL5A1, COL12A1, EMILIN1, LUM (Stroma).

snRNA-seq analysis: Differentially expressed genes within TAM cells, T-cells and Tumor 

cells were identified by FindMarkers function comparing cells belonging to one subtype 

(immune subtype or multi-omics subtype) to the rest. Wilcoxon statistical test was used. 

log2FC > 0.25 and FDR < 0.05 was used to filter DEGs.

MS data interpretation

Quantification of TMT global proteomics data: LC-MS/MS analysis of the TMT11-

labeled, bRPLC fractionated samples generated a total of 264 global proteomics data files. 

The Thermo RAW files were processed with mzRefinery to characterize and correct for any 

instrument calibration errors, and then with MS-GF+ v9881(Gibbons et al., 2015; Kim and 

Pevzner, 2014; Kim et al., 2008) to match against the RefSeq human protein sequence 

database downloaded on June 29, 2018 (hg38; 41,734 proteins), combined with 264 

contaminants (e.g., trypsin, keratin). The partially tryptic search used a ± 10 ppm parent ion 

tolerance, allowed for isotopic error in precursor ion selection, and searched a decoy 

database composed of the forward and reversed protein sequences. MS-GF+ considered 

static carbamidomethylation (+57.0215 Da) on Cys residues and TMT modification 

(+229.1629 Da) on the peptide N-terminus and Lys residues, and dynamic oxidation 

(+15.9949 Da) on Met residues for searching the global proteome data.
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Peptide identification stringency was set at a maximum 1% FDR at peptide level using 

PepQValue < 0.005 and parent ion mass deviation < 7 ppm criteria. A minimum of 6 unique 

peptides per 1000 amino acids of protein length was then required for achieving 1% at the 

protein level within the full data set. Inference of parsimonious protein set at gene level 

resulted in the identification of protein groups covering 11,141 genes.

The intensities of all 11 TMT reporter ions were extracted using MASIC software (Monroe 

et al., 2008). Next, PSMs passing the confidence thresholds described above were linked to 

the extracted reporter ion intensities by scan number. The reporter ion intensities from 

different scans and different bRPLC fractions corresponding to the same gene were grouped. 

Relative protein abundance was calculated as the ratio of sample abundance to reference 

abundance using the summed reporter ion intensities from peptides that could be uniquely 

mapped to a gene. The pooled reference sample was labeled with TMT 126 reagent, 

allowing comparison of relative protein abundances across different TMT-11 plexes. The 

relative abundances were log2 transformed and zero-centered for each gene to obtain final 

relative abundance values.

Small differences in laboratory conditions and sample handling can result in systematic, 

sample-specific bias in the quantification of protein levels. In order to mitigate these effects, 

we computed the median, log2 relative protein abundance for each sample and re-centered to 

achieve a common median of 0.

Quantification of phosphopeptides: Phosphopeptide identification for the 132 

phosphoproteomics data files were performed as in the global proteome data analysis 

described above (e.g., peptide level FDR < 1%), with an additional dynamic phosphorylation 

(+79.9663 Da) on Ser, Thr, or Tyr residues. The phosphoproteome data were further 

processed by the Ascore algorithm (Beausoleil et al., 2006) for phosphorylation site 

localization, and the top-scoring sequences were reported. For phosphoproteomic datasets, 

the TMT-11 quantitative data were not summarized by protein but left at the phosphopeptide 

level. All peptides (phosphopeptides and global peptides) were labeled with TMT-11 reagent 

simultaneously. Separation into phospho- and non-phosphopeptides using IMAC was 

performed after the labeling. Thus, all the biases upstream of labeling are assumed to be 

identical between global and phosphoproteomic datasets. Therefore, to account for sample-

specific biases in the phosphoproteome analysis, we applied the correction factors derived 

from median-centering the global proteomic dataset.

Quantification of acetylated peptides: Acetylated peptide identification for the 44 

acetylome data files were performed as in the global proteome data analysis described 

above, with additional dynamic acetylation (+42.0105 Da) and carbamylation (+43.0058 Da) 

on Lys residues. The acetylation site localization, protein inference, and quantification of the 

acetylome data were performed in identical fashion as in the phosphoproteome data.

Preprocessing of proteomics tables: Due to the quantification of small values close to 0 on 

spectrum level, some extreme positive or negative values were generated after log2 transform 

of relative protein/phosphopeptide/acetyl peptide abundance, which may have negative 

impact on the downstream analysis of the data sets. To identify TMT outliers with extreme 
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values, we perform inter-TMT t-test for each individual protein/phosphopeptide/acetyl 

peptide. For a specific protein/phosphopeptide/acetyl peptide, relative abundance level of 

each TMT value was compared against all the other TMT values using Spearman two-

sample test. Outlier was defined if the p-value passed a certain threshold. In the global 

proteome data, 153 TMT values were identified as outliers with inter-TMT t-test p-value 

lower than 10e-6, as a result 1,530 data points (0.14% of all observations) were removed 

from the data sets. In the phosphoproteome data, 379 TMT values were identified as outliers 

with inter-TMT t-test p-value lower than 10e-10, resulting in 3,790 data points (0.09% of all 

observations) removed from the data sets. In the acetylome data, 12 TMT values were 

identified as outliers with inter-TMT t-test p-value lower than 10e-14, and 120 data points 

(0.015% of all observations) were removed from the data sets.

Batch effects were checked using the log2 relative protein/phosphopeptide abundance or 

protein/acetyl peptide abundance, and removed using Combat algorithm (Beausoleil et al., 

2006) after TMT outlier filtering. Imputation was performed after batch effect correction to 

produce a different version of the data tables for some of the data analysis tools that are 

sensitive to missing values. The proteins/phosphopeptide/acetyl peptide with missing rate 

less than 50% were selected and imputed with the DreamAI algorithm https://github.com/

WangLab-MSSM/DreamAI tailored for proteomics data.

Sample outlier identification of metabolome and lipidome: A robust Mahalanobis 

distance based on biomolecule abundance vectors (rMd-PAV) was calculated to identify 

potential sample outliers in the data (Matzke et al., 2011). For proteomics data, this distance 

was calculated based on four metrics: average correlation with samples in the same group, 

skewness of biomolecule abundance distribution, the proportion of missing data, and median 

absolute deviation of abundances. These metrics, minus the proportion missing, were used 

for the metabolomics and lipidomics datasets. To confirm any sample outliers identified by 

rMd-PAV, a correlation heatmap was generated and sequential projection pursuit principal 

component analysis (PCA) was run (Webb-Robertson et al., 2013). No sample outliers were 

identified in the proteomics dataset. One outlier, C3N-01366, was removed from the 

metabolomics dataset; C3N-01370 was removed from the positive lipid dataset and 

C3L-03968 from the negative lipid dataset.

Normalization and protein quantification of metabolome and lipidome: Global median 

centering, where each sample is normalized to the median of its observed values, was used 

to normalize all datasets. Protein quantification was accomplished via R-rollup (Polpitiya et 

al., 2008), in which peptides were scaled by a reference peptide and the protein abundance 

was set as the median of the scaled peptides.

Other proteogenomic analysis

Sample labeling check across data types: While multiple omics data enhance our 

understanding of complex molecular mechanisms underlying GBM, it is sometimes 

inevitable to have sample errors including sample swapping, shifting or data contamination. 

Working on error-containing data is dangerous since it could lead to a wrong scientific 

location. Therefore, it is required to confirm whether different types of molecular data are 
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pertained from the same individuals prior to data integration or public sharing. For the GBM 

dataset, we checked sample labeling across different types of data as described previously 

(Clark et al., 2019). Using MODMatcher (Yoo et al., 2014), we confirmed that all samples 

were well aligned among RNA-Seq, proteomics and CNV (WGS) data.

Ancestry prediction using SNPs from 1000 genomes project: We used a reference panel 

of genotypes and a clustering based on principal components to identify likely ancestry. We 

selected 107,765 coding SNPs with a minor allele frequency > 0.02 from the final phase 

release of The 1000 Genomes Project (1000 Genomes Project Consortium et al., 2010). 

From this set of loci, we measured the depth and allele counts of each sample in our cohort 

using bam-readcount v0.8.0. Genotypes were then called for each sample based on the 

following criteria: 0/0 if reference count ≥ 8 and alternate count < 4; 0/1 if reference count ≥ 

4 and alternate count ≥ 4; 1/1 if reference count < 4 and alternate count ≥ 8; and ./. (missing) 

otherwise. After excluding markers with missingness > 5%, 70,968 markers were kept for 

analysis. We performed PCA on the 1000 Genomes samples to identify the top 20 principal 

components. We then projected our cohort onto the 20-dimensional space representing the 

1000 Genomes data. We then trained a random forest classifier with the 1000 Genomes 

dataset using these 20 principal components. The 1000 Genomes dataset was split 80/20 for 

training and validation respectively. On the validation dataset our classifier achieved 99.6% 

accuracy. We then used the fitted classifier to predict the likely ancestry of our cohort.

Multi-omics subtyping using non-negative matrix factorization (NMF): We selected the 

following proteogenomic features to the sample availability: CNV, bulk RNA, protein, and 

phosphoprotein expression. Due to limited sample amounts, not all tumors were analyzed 

for DNA methylome, metabolome, and miRNA. We used non-negative matrix factorization 

(NMF) implemented in the NMF R-package (Gaujoux and Seoighe, 2010) to perform 

unsupervised clustering of tumor samples and to identify proteogenomic features that show 

characteristic expression patterns for each cluster. Briefly, given a factorization rank k 
(where k is the number of clusters), NMF decomposes a p × n data matrix V into two 

matrices W and H such that multiplication of W and H approximates V. Matrix H is a k × n 
matrix whose entries represent weights for each sample (1 to N) to contribute to each cluster 

(1 to k), whereas matrix W is a p × k matrix representing weights for each feature (1 to p) to 

contribute to each cluster (1 to k). Matrix H was used to assign samples to clusters by 

choosing the k with maximum score in each column of H. For each sample, we calculated a 

cluster membership score as the maximal fractional score of the corresponding column in 

matrix H. We defined a “cluster core” as the set of samples with cluster membership score > 

0.5. Matrix W containing the weights of each feature to a certain cluster was used to derive a 

list of representative features separating the clusters using the method proposed in (Kim and 

Park, 2007).

To enable integrative multi-omics clustering we enforced all data types (and converted if 

necessary) to represent log2-ratios to either a common reference measured in each TMT plex 

(proteome, phosphoproteome), an in silico common reference calculated as the median 

abundance across all samples (RNA gene expression) or to gene copy numbers relative to 

matching normal blood sample (CNV). All data tables were then concatenated and all rows 
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containing missing values were removed. To remove uninformative features from the dataset 

prior to NMF clustering, we removed features with the lowest standard deviation (bottom 5th 

percentile) across all samples. Each row in the data matrix was further scaled and 

standardized such that all features from different data types were represented as z-scores.

Since NMF requires a non-negative input matrix we converted the z-scores in the data 

matrix into a non-negative matrix as follows:

1. Create one data matrix with all negative numbers zeroed

2. Create another data matrix with all positive numbers zeroed and the signs of all 

negative numbers removed

3. Concatenate both matrices resulting in a data matrix twice as large as the 

original, but with positive values only and zeros and hence appropriate for NMF

The resulting matrix was then passed to NMF analysis in R using the factorization method 

described in (Brunet et al., 2004). To determine the optimal factorization rank k (number of 

clusters) for the multi-omic data matrix, we tested a range of clusters between k = 2 and 8. 

For each k, we factorized matrix V using 50 iterations with random initializations of W and 

H. To determine the optimal factorization rank, we calculated cophenetic correlation 

coefficients to measure how well the intrinsic structure of the data is recapitulated after 

clustering. Finally, we picked the k with maximal cophenetic correlation for cluster numbers 

between k = 3 and 8.

To achieve robust factorization of the multi-omics data matrix V, we took the optimal 

factorization rank k, repeated the NMF analysis for 200 iterations with random 

initializations of W and H, and partitioned the samples into clusters as described above. Due 

to the non-negative transformation of the z-scored data matrix, feature weight matrix W 
contained two separate weights for positive and negative z-scores of each feature, 

respectively. To revert the non-negative transformation and to derive a single signed weight 

for each feature, we first normalized each row in matrix W by dividing by the sum of feature 

weights in each row, aggregated both weights per feature and cluster by keeping the 

maximal normalized weight and multiplication with the sign of the z-score the initial data 

matrix. Thus, the resulting transformed matrix Wsigned contained signed cluster weights for 

each feature in the input matrix.

For each cluster, we calculated normalized enrichment scores (NES) of cancer-relevant gene 

sets by projecting the matrix of signed multi-omic feature weights Wsigned onto hallmark 

pathway gene sets (Liberzon et al., 2015) using ssGSEA (Barbie et al., 2009) available on 

https://github.com/broadinstitute/ssGSEA2.0 (parameters: 

gene.set.database=“h.all.v6.2.symbols.gmt” sample.norm.type=“rank” weight=1 

statistic=“area.under.RES” output.score.type=“NES” nperm=1000 global.fdr=TRUE 

min.overlap=5 correl.type=“z.score”). To derive a single weight for each gene measured 

across all omics data types, we retained the weight with maximal absolute amplitude. We 

then associated the resulting clusters to sample-level variables by testing for 

overrepresentation in the cluster core sample sets using Fisher’s exact test. The following 

clinical variables were used: expression subtype, sex, vital status, and smoking history.
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The entire NMF workflow has been implemented as a module on Broad’s Cloud platform 

Terra (https://app.terra.bio/). The docker containers encapsulating the source code and the 

required R packages for NMF clustering and ssGSEA were available on Docker-hub 

(broadcptac/pgdac_mo_nmf:9, broadcptac/pgdac_ssgsea:5).

Expression based TCGA subtyping: Gene expression based subtypes were based on the 

150 genes created by Wang et al., the most recent TCGA subtyping effort (Wang et al., 

2017), which contained 50 highly expressed genes in classical, proneural, and mesenchymal 

IDH WT tumors. Tumors with recurrent mutations in IDH1/2 (IDH1 R132H specifically in 

our cohort) were assigned to be IDH mutant tumors. We then performed consensus 

clustering on all tumors based on the selected gene expression in log2(FPKM-UQ + 1) using 

ConsensusClusterPlus R package (parameters: maxK = 10 reps = 2000 pItem = 0.8 pFeature 

= 1 clusterAlg = “hc” distance = “pearson” seed = 201909). We chose the total number of 

clusters k = 5 based on the delta area plot of consensus CDF. The clusters were annotated 

with the TCGA subtypes based on their gene expression profiles. Three clusters (r1, r4, and 

r5) were merged due to their similar expression signature, which was identical to the 

clustering result while choosing k = 3.

Unsupervised clustering of DNA methylation: Methylation subtypes were segregated 

based on the top 8,000 most variable probes using k-means consensus clustering as 

previously described (Sturm et al., 2012). We first removed underperforming probes (Zhou 

et al., 2017), and then the samples with more than 30% missing values. Remaining missing 

values were imputed using the mean of the corresponding probe value. We then performed 

clustering 1000 times using the ConsensusClusterPlus R package (parameters: maxK = 10 

reps = 1000 pItem = 0.8 pFeature = 1 clusterAlg = “km” distance = “euclidean”). We choose 

k = 6 based on the delta area plot of consensus CDF.

MolecularNeuroPathology (MNP) DNA Methylation Classification of Central Nervous 
System (CNS) Tumors: We applied the existing DNA methylation classification of CNS 

tumors developed by the MolecularNeuroPathology group (Capper et al., 2018) to our 

cohort. The processed microarray beta values and the classification of the MNP cohort 

(v11b2) were downloaded from the GEO dataset GSE90496 (the MNP reference set) and the 

supplemental tables of the original publication, consisting of total 600 GBM tumors and 

control samples. We included probes from CPTAC samples with < 20% of missing values 

across all samples. Remaining missing values were imputed using the mean of the 

corresponding probe value. Top 10,000 variable probes out of the total 375,969 shared 

probes across MNP and CPTAC GBM samples were selected to construct the shared DNA 

methylome space. We used PCA (parameters: random_state = 202012) to extract the top 30 

principal components and assigned the MNP classification to CPTAC samples using nearest 

neighbor implemented by scikit-learn (KNeighborsClassifier with parameters: k = 9, 

algorithm=‘-brute’). While an official MNP DNA methylation classifier exists online 

(https://www.molecularneuropathology.org/mnp), we were not able to access it since our 

registration was not approved by the site at the time of writing.
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Unsupervised clustering of miRNA expression: Unsupervised miRNA expression subtype 

identification was performed on mature miRNAs expression (log2 TPM) from 98 tumors 

with miRNA-seq available using Louvain clustering (Blondel et al., 2008) implemented in 

louvain-igraph v0.6.1. Top 50 differentially expressed miRNAs from each miRNA-based 

subtype were selected (Table S3).

Unsupervised clustering of individual data type: We also applied clustering across all 

tumors using individual data types including RNA, protein, phosphoprotein, acetylprotein, 

lipids, and metabolites. The DreamAI-imputed expression values were used for protein, 

phosphoprotein and acetylprotein. For other data types, features with too many missing 

values were discarded (RNA: 40%; metabolites: 80% of all tumors). We then selected the 

top 95% most variable remaining features to perform consensus clustering using 

ConsensusClusterPlus R package (parameters: maxK = 10 reps = 1000 pItem = 0.8 pFeature 

= 1 clusterAlg = “km” distance = “euclidean” seed = 201909). Optimal number of k was 

selected based on the delta area plot of consensus CDF. The resulting clusters per data type 

were shown in Figure S2F.

Determination of stemness score: Stemness scores were calculated as previously described 

(Malta et al., 2018). Firstly, we used MoonlightR (Colaprico et al., 2020) to query, 

download, and preprocess the pluripotent stem cell samples (ESC and iPSC) from the 

Progenitor Cell Biology Consortium (PCBC) dataset (Daily et al., 2017; Salomonis et al., 

2016). Secondly, to calculate the stemness scores based on mRNA expression, we built a 

predictive model using one-class logistic regression (OCLR) (Sokolov et al., 2016) on 

Progenitor Cell Biology Consortium (PCBC) dataset. For mRNA expression-based 

signatures, to ensure compatibility with our cohort, we first mapped the Ensembl IDs to 

Human Genome Organization (HUGO) gene names and dropped any genes that had no such 

mapping. The resulting training matrix contained 12,945 mRNA expression values measured 

across all available PCBC samples. To calculate mRNA-based sternness index (mRNASi), 

we used FPKM-UQ mRNA expression values for all CPTAC GBM tumors and GTEx 

samples. We used TCGAanalyze_Stemness function from the R package TCGAbiolinks 

(Colaprico et al., 2016) and following our previously described workflow (Silva et al., 

2016), with “stemSig” argument set to PCBC stemSig.

Multi-omics cis association analysis using iProFun: We integrated somatic mutation, 

CNV, DNA methylation, RNA, protein, phosphorylation (phospho) and acetylation (acetyl) 

levels via iProFun (Song et al., 2019) to investigate the functional impacts of DNA 

alterations in GBM. All data types were preprocessed to eliminate potential issues for 

analysis such as batch effects, missing data and major unmeasured confounding effects 

before the iProFun analysis. As phosphoprotein and acetylprotein were measured in a small 

subset of the genes in comparison with RNA and protein, we considered three sets of 

iProFun analysis using different combination functional outcomes (mRNA/protein, mRNA/

protein/phospho, and mRNA/protein/acetyl) to include as many as possible genes and omics 

for investigation. For each set of outcomes (e.g. RNA and protein), we considered their 

levels perturbed jointly by three DNA alterations (somatic mutation, CNV, and DNA 

methylation). The effects of DNA methylation on molecular traits are usually smaller than 
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mutation and CNV, and thus adjusting their effects in analysis is critical to obtain 

unconfounded associations for methylation. In addition, we adjusted age, sex, and tumor 

purity in the analysis. Tumor purity was determined using xCell (Aran et al., 2017) from 

RNA-Seq data.

The iProFun procedure was applied to a total of 7,464 genes with measured RNA/protein, 

4,433 genes with measured RNA/protein/phospho, and 1,315 genes with measured RNA/

protein/acetyl data, respectively, for their cis regulatory patterns in tumors. For example, 

when we considered DNA methylation for its effects on RNA/protein/phospho, we started 

with the traditional linear regression for each of the three outcomes separately:

RNA methylation + covariates

protein methylation + covariates

phospho methylation + covariates

The covariates here include CNV, somatic mutations (genes with mutation rate ≥ 10%), age, 

sex, and tumor purity. Then iProFun took the association summary statistics from these three 

regressions as input to call posterior probabilities of belonging to each of the eight possible 

configurations (e.g., “None”, “RNA only”, “protein only”, “phospho only” “RNA & 

protein”, “RNA & phospho”, “protein & phospho” and “all three”) and to determine 

significance associations.

A gene was identified to present significant and biologically meaningful association if the 

association passes three criteria: (1) the satisfaction of biological filtering procedure, (2) 

posterior probabilities > 75%, and (3) empirical false discovery rate (eFDR) < 10%. 

Specifically, the biological filtering criterion requires that CNV presents positive 

associations with all the types of molecular quantitative traits (QTs), DNA methylation 

presents negative associations with all the types of molecular QTs, and mutation requires the 

association across all outcome platforms preserve consistent directions (either positive or 

negative). Secondly, a significance was called only if the posterior probabilities > 75% of a 

predictor being associated with a molecular QT, by summing over all configurations that are 

consistent with the association of interest. For example, the posterior probability of a 

methylation being associated with mRNA expression levels was obtained by summing up 

the posterior probabilities in the following four association patterns – “RNA only”, “RNA & 

protein”, “RNA & phospho” and “all three”, all of which were consistent with methylation 

being associated with mRNA expression. Lastly, we calculated the empirical FDR (eFDR) 

via 100 permutations per molecular QTs by shuffling the label of the molecular QTs and 

required eFDR < 10% by selecting a minimal cutoff value of α that 75% < α < 100%. The 

eFDR is calculated by:

eFDR =  Average#geneswithposteriorprobability > α inpermutateddata 
 Average#geneswithposteriorprobability > α inoriginaldata 
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Table S3 presents the results of whether the DNA methylation/CNV/mutation of a gene has 

perturbed any of its cis QTs (mRNA, protein, phosphoprotein and acetylprotein).

Mutation impact on the RNA, proteome, phosphoproteome, lipidome and 
metabolome: We aggregated a set of interacting proteins (e.g. kinase/phosphatase-substrate 

or complex partners) from OmniPath (downloaded on 2018-03-29) (Türei et al., 2016), 

DEPOD (downloaded on 2018-03-29) (Duan et al., 2015), CORUM (downloaded on 

2018-06-29) (Ruepp et al., 2010), Signor2 (downloaded on 2018-10-29) (Perfetto et al., 

2016), and Reactome (downloaded on 2018-11-01) (Fabregat et al., 2018). We focused our 

analyses on 18 GBM SMGs previously reported in the literature: PIK3R1, PIK3CA, PTEN, 
RB1, TP53, EGFR, IDH1, BRAF, NF1, PDGFRA, ATRX, and TERTp) (Bailey et al., 2018; 

Brennan et al., 2013).

For each interacting protein pair, we split samples with and without mutations in partner A 

and compare expression levels (RNA, protein and phosphosites) both in cis (partner A) and 

in trans (partner B), calculating a median difference in expression and testing for 

significance with the Wilcoxon rank sum test, with the Benjamini-Hochberg multiple test 

correction. For mutational impact analysis on lipidome or metabolome, all possible pairs 

between SMGs and metabolites/lipids were tested.

Protein and RNA marker identification for multi-omics mixed subtype: By comparing 

the tumors of multi-omics mixed subtypes (nmf_cluster_membership score ≤ 0.55) to other 

(non-mixed) tumors, we identified 276 differentially expressed genes and 690 differentially 

expressed proteins. For each differentially expressed gene/protein, we binned all the tumors 

into three groups based on their expression level: high, medium, and low. We then compared 

the survival outcome (log-rank test) in the high expression group to the low expression 

group using the functions TCGAanalyze_divideGroups(), TCGAanalyze_SurvivalKM(), and 

TCGAanalyze_survival() from TCGAbiolinks (Colaprico et al., 2016), and the function 

surv_median() from the R package survminer. We identified 19 genes and 40 proteins with 

significantly differential survival outcome (Table S3).

Kinase-substrate pairs regression analysis: For each kinase-substrate protein pair 

supported by previous experimental evidence (OmniPath, NetworKIN, DEPOD, and 

SIGNOR), we tested the associations between all sufficiently detected phosphosites on the 

substrate and the kinase. For a kinase-substrate pair to be tested, we required both kinase 

protein/phosphoprotein expression and phosphosite phosphorylation to be observed in at 

least 20 samples in the respective datasets and the overlapped dataset. We then applied the 

linear regression model using lm function in R to test for the relation between kinase and 

substrate phosphosite. For the i-th trial for kinase phosphosite abundance in the cis 
associations, kinase phosphosite abundance Ai depends on kinase protein expression Si and 

error Ei,

Ai = M1Si + B + Ei
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For the i-th trial for kinase phosphosite abundance in the trans associations, substrate 

phosphosite abundance Ai depends on kinase phosphosite expression Ki substrate protein 

expression Si and error Ei,

Ai = M1Si + M2Ki + B + Ei

where the regression slope M coefficients are determined by least-square calculation. The 

resulting p-values were adjusted for multiple testing using the Benjamini-Hochberg 

procedure.

For the broader investigation of signaling cascades, we included total 214 kinases and 43 

phosphatases if they satisfied either of the genetic alteration criteria or at least three criteria 

below:

• 5% and more tumors with copy number alterations

• 2 and more tumors with somatic mutations

• Top 20% variable gene expression

• Top 35% variable protein expression

• Significantly different RNA or protein expression between tumor and normal 

(FDR ≤ 0.01)

Differential proteomic, phosphosite, metabolome and lipidome analysis: TMT-based 

global proteomic, phosphoproteomic, and acetylation, as well as metabolome and lipidome 

data were used to perform pairwise differential analysis between groups of samples. A 

Wilcoxon rank-sum test was performed to determine differential abundance of proteins, 

PTMs and metabolites. At least four samples in both groups were required to have non-

missing values and the p-value was adjusted using the Benjamini-Hochberg procedure. For 

phosphorylation markers in each genomic subtype, the adjusted p-value for the protein 

change was required to be ≥ 0.05.

Phosphoproteome outlier analysis: Outlier Analysis was done using BlackSheep’s DEVA 

analysis (Blumenberg et al., 2019). Phosphopeptide analysis was done on data that was 

aggregated per protein, summing together outlier values across all phosphosites. Protein 

analysis was performed using TMT-based global proteomic data, RNA analysis was done 

using FPKM-UQ normalized transcript data. The DEVA method calculates interquartile 

range (IQR) and median values for the given dataset, and then defines outliers as values 

greater than the median plus 1.5 × IQR. Features were prefiltered to include an outlier value 

in at least 30% of samples in the group of interest and for features that had a higher 

proportion of features in the group of interest compared to the rest of the population. 

Statistics were calculated using a Fisher’s exact test and p-values were corrected using the 

Benjamini-Hochberg procedure. Druggability of a gene/protein was performed using 

DGIdbR (Cotto et al., 2018).
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Copy number impact on transcriptome and proteome: To evaluate copy number impact 

on RNA and protein expression, we applied gene-wise correlation analysis on CNV versus 

RNA expression and on CNV versus protein expression. Correlation was performed by 

Pearson’s correlation method. Both correlation coefficient and p-value were computed and 

adjusted by the Benjamini-Hochberg procedure.

Cell type enrichment deconvolution using gene expression: The abundance of each cell 

type was inferred by the xCell web tool (Aran et al., 2017), which performed the cell type 

enrichment analysis from gene expression data for 64 immune and stromal cell types 

(default xCell signature). xCell is a gene signatures-based method learned from thousands of 

pure cell types from various sources. We input the FPKM-UQ expression matrix of this 

study in xCell using the expression levels ranking.

Immune clustering using cell type enrichment scores: Immune subtypes of the GBM 

tumors were generated on the consensus clustering of the cell type enrichment scores by 

xCell (Wilkerson and Hayes, 2010). Among the 64 cell types tested in xCell, we selected 40 

cell types with at least 2 samples with xCell enrichment p < 0.01, which filtered out the cell 

types not typical in the brain. xCell generated an immune score per sample that integrates 

the enrichment scores B cells, CD4+ T-cells, CD8+ T-cells, DC, eosinophils, macrophages, 

monocytes, mast cells, neutrophils, and NK cells. In addition, we included microglia using 

the scores by ssGSEA based on its marker genes: P2RY12, TMEM119, SLC2A5, TGFBR1, 
GPR34, SALL1, GAS6, MERTK, C1QA, PROS1, CD68, ADGRE1, AIF1, CX3CR1, 
TREM2, and ITGAM. The microglia ssGSEA score was computed using the R package 

GSVA (gsva function with method=‘ssgsea’). We performed consensus immune clustering 

based on the z-score normalized xCell and microglia scores. The consensus clustering was 

determined by the R package ConsensusClusterPlus (parameters: clusterAlg=‘kmdist’ 

distance=‘spearman’).

Cell type enrichment deconvolution using protein abundance: We applied CIBERSORTx 

(Newman et al., 2019) to compute immune cell fractions from bulk protein abundance. To 

characterize the immune context using proteomics, we generated a signature matrix based on 

the dataset from Rieckmann et al. (Rieckmann et al., 2017). Briefly, 28 distinct human 

hematopoietic cell types from peripheral blood of healthy donors were sorted by flow 

cytometry. Erythrocytes and platelets were excluded from subsequent analyses. Cellular 

proteomes were analyzed in single runs by high-resolution MS using a quadrupole Orbitrap 

instrument. Each cell type proteome was measured from four donors. The proteomic dataset 

included 10,134 proteins and 104 steady state samples. The samples were first scaled to have 

mean zero and standard deviation equal to one. We grouped the 26 subtypes into nine cell 

types: B cells, basophils, dendritic cells, eosinophils, monocytes, natural killer cells (NKs), 

neutrophils, CD4+ T-cells and CD8+ T-cells. We took imputed values from Table S3 of the 

Rieckmann et al. paper to generate a signature matrix of these nine cell types. CIBERSORT 

was applied to the GBM imputed protein abundance matrix using a batch correction and 

relative values. CD8+ T-cells cells and NKs were merged by summing their relative values. 

Z-scores of relative values were used for boxplots and heatmap.
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Deep learning histopathology image analysis: We trained deep learning models for 3 

different prediction tasks based on histopathology images, including the G-CIMP phenotype 

(positive and negative), immune response (im4 subtype as immune low and the rest of the 

tumors as immune high), and telomere length (short, normal, and long). Digital 

histopathology slides and associated quantified features (cellularity, necrosis, tumor nuclei, 

age, tumor weight) of samples used in proteomics analysis were downloaded from The 

Cancer Imaging Archive (TCIA) database. Labels were at per-case (patient) level. The 

images and their corresponding labels were then divided into 3 datasets at per-case level 

with 70% of cases in training set, 15% of cases in validation set, and 15% of cases in testing 

set. Due to the large size of the scanned histopathology slides, they were tiled into 299-

by-299-pixel pieces with overlapping area of 49 pixels from each edge at 20X, 10X, and 5X 

resolution. In this process, tiles with over 30% of background pixels were removed. 

Qualified tiles, quantified features, and labels of each set were then loaded into a designated 

TFrecords file. After the data preparation, convolutional neural network (CNN) 

architectures, including InceptionV1 to V4, InceptionResNetV1 and V2, and self-designed 

simple CNNs, were trained from scratch. Statistical metrics, such as area under ROC, area 

under PRC, and top-1 accuracy, were used to evaluate the performance. The best model for 

each task was picked at the minimum validation loss point. Trained models were tested on 

the testing set and the statistical metrics of the testing set were used to compare the 

performance of different models on the same tasks.

A visualization method designed to unveil the features learned by the models was applied to 

discover histological features associated with G-CIMP phenotype, telomere length, and 

immune response in the cohort. Firstly, the activation score vectors of each tile from the 

fully connected layer immediately before the output layer in the testing set were extracted as 

representation of the input samples. A randomly sampled subset of these activation score 

vectors was dimensionally reduced into 2-dimensional space by t-SNE with each point 

representing an image tile. Overlay of prediction scores on these points revealed clusters 

corresponding to the labels. Finally, experienced pathologists examined the tiles in each of 

these clusters and summarized the general histological features in these clusters, which 

served as the representation of the histological features of these subgroups.

Gene set enrichment analysis: Differential Expressed Genes (DEGs) were identified using 

DESeq2 (Love et al., 2014) by applying the minimal pre-filtering to keep only genes that 

have at least 10 reads in total. We selected the genes which had FDR ≤ 0.01 and absolute 

fold change larger than 2. To designate the representative pathways of immune subtypes, we 

selected the DEGs between the two immune subtypes and then underwent a pathway 

enrichment analysis of Hallmark, KEGG, and Reactome. The overrepresented pathways 

were selected (FDR < 0.1, only pathways with at least 10 genes observed in each data type 

are considered).

To identify significantly enriched Hallmark, KEGG, PID, and REACTOME gene sets of 

each immune cluster, we applied the ssGSEA on all proteins to calculate the normalized 

enrichment score (NES) for each gene set in each sample. Then we performed the pairwise 

t-test of NES among the 2 immune clusters and adjusted the p-values by FDR. We ranked 

gene sets by FDR and selected the top 50 gene sets (all FDR < 0.01) of each immune cluster.
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Histone protein and acetylation calculation: Core histones H2A, H2B, H3 and H4, and 

linker histone H1 are encoded by multiple genes with minor changes in their sequence. 

Accordingly, we detected a number of peptides and acetylated peptides corresponding to 

either of the core histones and H1 histone. To facilitate the interpretation of histone 

acetylation events, we averaged acetylation values for peptides mapped on different gene 

encoding practically the same histone protein.

Histone acetylation association with HATs and HDACs: To test the association between 

HATs/HDACs protein and acetylation levels of histone sites, we fitted Lasso regression 

model with HATs/HDACs and histone protein expression as independent variables and a 

histone acetylation site as a dependent variable. Lasso regression has been chosen because it 

takes expression of all enzymes into account simultaneously and is insensitive to highly 

correlated dependent variables. We performed 300 bootstraps with 80% training data and 

20% testing data, and reported averaged coefficients returned by the model across 300 

iterations.

Pathway enrichment analysis along histones H2B and H3/H4 acetylation axes: We 

investigated pathways from Hallmark, KEGG, WIkipathways, and REACTOME, positively 

or negatively aligned with averaged H2B and H3/H4 acetylation level. H2B acetylation was 

calculated by averaging acetylation of all H2B peptides detected. Since H3 and H4 histones 

are strongly correlated with each other, we averaged acetylation of histones H3 and H4 

peptides together to obtain H3/H4 acetylation value.

We assumed that true biological activity of a pathway is regulated by collective changes of 

expression levels of majority of proteins involved in this pathway; then a difference in a 

pathway activity between tumors can be assessed by a difference in positioning of 

expression levels of proteins involved in this pathway in ranked list of expression levels of 

all proteins in each of tumors. Following this idea, we assessed relative positioning of 

pathway proteins between tumor by determining two probabilities: (1) probability of 

pathway proteins to occupy by random chance the observed positions in a list of tumor 

proteins ranked by expression level from the top to the bottom and, similarly, (2) probability 

to occupy by random the observed positions in a list of expression levels ranked from the 

bottom to the top. Then, the inferred relative activation of a given pathway across tumors 

was assessed as a negative logarithm of the ratio of the above “top” and “bottom” 

probabilities. Thus, for a pathway of a single protein, its relative activity across tumors was 

assessed as a negative log of ratio of two numbers: a number of proteins with expression 

level bigger than an expression level of given protein, and a number of proteins with 

expression levels less than an expression level of given protein. For pathways of multiple 

proteins, the “top” and “bottom” probabilities were computed as geometrically averaged P 

values computed for each of proteins using Fisher’s exact test, given protein’s ranks in a list 

of pathway proteins and in a list of ranked proteins of a tumor, a number of proteins in a 

pathway, and the total number of proteins with the assessed expression level in a given 

tumor. The thermodynamic interpretation of the inferred pathway activity scoring function is 

a free energy associated with deviation of the system from equilibrium either as a result of 

activation or suppression. Thus, the scoring function is positive, when expression levels of 

Wang et al. Page 40

Cancer Cell. Author manuscript; available in PMC 2022 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathway’s proteins are overrepresented among top expressed proteins of a tumor, and it is 

negative, when pathway’s proteins are at the bottom of expressed proteins of a tumor; the 

scoring function is close to zero, when expression levels are distributed by random. Given 

any biological axis, e.g. histone acetylation levels in each of tumors, one can determine 

pathways which are significantly correlated or anti correlated with the axis.

Causative pathway interaction discovery using CausalPath: To discover the causative 

pathway interactions in our proteomic and phosphoproteomic data, we took the normalized 

expression of protein with < 10% missing values and phosphoprotein with < 25% missing 

values across all tumor and normal samples as the input to CausalPath (commit 7c5b934). 

We ran CausalPath in the mode that tests the mean values between test and control groups 

(value-transformation = significant-change-of-mean), where the test group being the tumors 

of one subtype and control group being the rest of the tumors. The pathway interaction 

discovery data source was Pathway Commons v9 (built-in-network-resource-selection = 

PC). Additionally, we enabled the causal reasoning if all the downstream targets of a gene 

were active or inactive (calculate-network-significance = true, use-network-significance-for-

causal-reasoning = true, permutations-for-significance = 10000). The causative interactions 

with FDR < 0.05 were extracted and visualized (fdr-threshold-for-data-significance = 0.05 

phosphoprotein, fdr-threshold-for-data-significance = 0.05 protein, fdr-threshold-for-

network-significance = 0.05). Full result tables were available in Table S5.

L1000 and P100 drug connectivity analysis: For mRNA abundance, RNA-seq read counts 

were used to perform differential expression analysis between gene-altered and WT samples 

using edgeR (Robinson et al., 2010). The significantly differentially expressed genes (FC R 

1 and FDR < 0.05) were then used as input in the subsequent analysis. For protein and 

phosphoprotein abundance, a Wilcoxon rank sum test was performed to determine 

differential abundance of protein and phosphoprotein measurements between gene altered 

and WT samples. Protein with FDR < 0.05 were considered as differentially expressed.

The differentially expressed genes between gene-altered and WT samples were filtered for 

the 978 genes measured in the L1000 assay and then were processed using the CLUE 

(Subramanian et al., 2017) (summary connectivity score) and iLINCS (Pilarczyk et al., 

2019) connectivity algorithms. The resulting drug connectivities were aggregated to the 

compound level using the summary connectivity score in CLUE and the Connected 

Perturbations Z-score in iLINCS. Target annotations for the ranked compounds were 

extracted from CLUE and iLINCS and combined in a single list.

Level 4 P100 data were downloaded from the LINCS Data Portal (Stathias et al., 2019) and 

were used to calculate drug connectivities on the phosphoprotein level as previously 

described (Litichevskiy et al., 2018). Firstly, the P100 probes were mapped to the CPTAC 

phosphopeptides using their respective modified peptide sequences. The spearman 

correlation was then calculated between the phosphoproteomic mutation signature and each 

drug-treated P100 experiment. The correlation was then converted to a connectivity score by 

comparing the distribution of the observed drug-signature correlations to a background 

distribution of correlations using the two-sample Kolmogorov-Smirnov (KS) test. The 

directionality of the connectivity score (positive/negative) was determined by the 
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comparison of the medians of the two distributions (The score is negative when the median 

of the observed distribution is lower than the one of the background distribution). Significant 

connectivity scores (p-value < 0.05) were then aggregated to the compound level by their 

mean across all tested cell lines.

Full result tables were available in Table S6.
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Highlights

• Phosphorylated PTPN11 and PLCG1 represent a signaling hub in RTK-

altered tumors

• Four immune GBM subtypes exist, characterized by distinct immune cell 

populations

• Mesenchymal subtype EMT signature is specific to tumor cells but not to 

stroma

• Histone H2B acetylation is enriched in classical GBMs with low macrophage 

content
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Figure 1. Proteogenomic summary of the cohort
(A) Summary of 10 data types generated in this study.

(B) Overview of significantly altered genes found in at least 5% of samples, showing tumor 

mutation burden (log2 WES mutation count) and structural, fusion, and CNVs. Subtypes are 

based on results in panel (C).

(C) Multi-omics clustering of tumor samples by NMF using CNV, expression, and protein 

and phosphoprotein abundances. Heatmaps show differential expression between subtypes, 

including DNA methylation, acetylome, metabolome, and lipidome, and characteristic 

features for each subtype. Pathway enrichment analysis highlights differences between 

subtypes. Neuron activity related pathways, immune response pathways, and cell cycle 
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pathways were respectively enriched in the nmf1 (proneural-like), nmf2 (mesenchymal-

like), and nmf3 (classical-like) subtypes.

See also Figures S1 and S2, and Tables S1, S2, and S3.
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Figure 2. Cis and trans effects of SMGs and effects of TP53 regulations on DNA repair genes and 
RB1 on cell cycle genes
(A) Cis and trans effects of significantly mutated genes on RNA (y axis) and protein level (x 

axis) showing that effects are often similar.

(B) Cis and trans effects of significantly mutated genes (y axis) on protein phosphorylation 

status (x axis).

(C) Comparison of RNA and protein expression in TP53-mutated versus WT samples. 

Bottom: alternative TP53 splice site for the X126 mutation.

(D) Differentially expressed proteins and phosphoproteins in DNA repair genes for TP53-

mutant (n = 67) versus TP53 WT (n = 32) samples. Right: a schematic of differences in 

expression and phosphorylation in the context of known pathway regulation.
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(E) RB1 alterations associated with protein expression of CDK2, CDK6, MCM2, MCM4, 

MCM6, and RB1. Right: A schematic of proposed interplay among RB1, MCM2, MCM4, 

and MCM6 in RB1-altered (n = 89) and WT (n = 10) samples.

See also Figure S3.
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Figure 3. Alterations in RTKs and associations with expression, phosphosite status, and 
downstream targets
(A) Structural variations (SV), fusions, mutations (MUT), and copy number variations 

(CNV) in EGFR, PDGFRA, FGFR3, and MET and their cis effects.

(B) Proteins and phosphosites differentially expressed or phosphorylated between EGFR-

altered and EGFR WT samples.

(C) Proteomic association of altered EGFR (n = 53) on protein expression of key genes, 

compared to samples with EGFR WT (n = 46) (left). PTPN11 level is not affected by EGFR 
alterations, while phosphorylation of the Y62 site is increased in EGFR-altered samples 

(right).
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(D) Heatmap showing significant (FDR <0.1) cis- and trans-regulated sites of EGFR and 

PDGFRA kinases. Both EGFR and PDGFR regulate phosphorylation of PTPN11. The 

schematic (right) shows dual regulation of PTPN11 by EGFR and PDGFRA and the 

downstream substrates that PTPN11 may dephosphorylate.

See also Figure S4.
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Figure 4. Cell-type enrichment, immune marker expression, and enrichment pathways among 
the four immune subtypes
(A) The four immune subtypes identified by consensus clustering showing cell-type 

features, immune checkpoints, and potential immunotherapy targets. Differential expression 

is between tumors of one immune subtype versus the rest based on global protein and 

phosphoprotein abundance (DEPs/DEPPs: FDR <0.05 and log2FC > 0.8) and the 

corresponding enriched pathways (FDR <0.05 and log2FC R 3 markers included in the 

pathway).

(B) snRNA-seq UMAP plot colored by cell types observed in 18 discovery cohort GBM 

samples. OPC, oligodendrocyte progenitor cells; TAM, tumor-associated microglia/

macrophage; vSMC, vascular smooth muscle cell.
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(C) Differentially expressed genes in TAMs between im1 subtype samples versus the 

remaining cohort. Figure shows genes with absolute value of average log2FC > 0.25 and 

Wilcoxon test FDR-adjusted p values.

(D) Features captured by the deep learning model. Each dot represents a tile of H&E slides 

in the test set, colored according to prediction score (red: predicted immune-high; blue: 

predicted immune-low). The 20,000 sampled tiles from 99 patients were clustered by t-SNE 

to their activation maps (a 1,250-long vector for each tile) from the final layer of the model.

(E) H&E tile images from im4 tumors, with arrows indicating giant cells. The highlighted 

region contains multiple noncontinuous tiles clustered closely in t-SNE space.

(F) H&E tile images from non-im4 tumors, with arrows indicating the inflammatory cells. 

The highlighted region contains multiple noncontinuous tiles clustered closely in t-SNE 

space.

(G) Heatmaps showing snRNA-seq (left) and bulk protein (right) expression of genes 

upregulated in the nmf2 subtype in tumor cells. Expression values were scaled sample-wise 

across all cell types (or across tumor cells as labeled) and then averaged across multi-omics 

subtypes. Protein expression is shown for samples with snRNA-seq available.

See also Figure S5 and Table S4.
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Figure 5. Histone acetylation associations with immune subtypes and pathways
(A) Unsupervised clustering of histone protein and site-level acetylation reveals distinct 

clusters of tumors enriched for acetylation of histones H2B, H3, and H4.

(B) Significant associations between histone acetylation sites and histone acetyltransferase, 

deacetylases, and bromodomain-containing proteins.

(C) Pathways associated with levels of acetylation of histones H2B, H3, or H4 by multi-

omics subtype.

(D) Significant Spearman correlation between xCell scores and acetylation of histone sites 

(FDR <0.05).

(E) SUMO1 and UBE2I protein expression across samples with high and low H2B 

acetylation.
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See also Figure S6.
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Figure 6. Lipidome and metabolome data map to major metabolic and signaling pathways
(A) Average abundance of all lipids detected across the four tumor subtypes and GTEx 

normal samples. Lipids are sorted by total number of double-chain bonds and total number 

of carbons in side chains.

(B) Lipid Mini-On enrichment analysis of lipid properties upregulated in subtype versus 

second subtype.

(C) Contribution of enzymes that activate PUFAs (ACSL4 and ACSL6) to the phospholipid 

pool and the connection of PUFA-containing PE to ferroptosis.

(D) Protein expression of ACSL6, ACSL4, and ALOX5 across tumor multi-omics subtypes 

and GTEx normal tissues.

(E) Schematic diagram of lipid conversion reactions essential for cell signaling.
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(F) Correlation among DG, phosphatidic acid (PA), and phospholipases C (PLCs; cleaves 

PIP2 into DG and IP3), Akt kinases (interact with PIP3), protein kinases C (PKCs; interact 

with DG), and DG kinases (DGKs; phosphorylate DG to produce PA).

(G) IDH1 mutants display elevated abundance of glucose, glycolytic intermediate 

metabolites, and 2-HG, along with reduced abundance of glutamate and serine.

(H) GLUD1 protein expression is upregulated in IDH1 mutants in both discovery and 

validation cohorts.

CE, Cholesteryl ester; CL, Cardiolipin; Cer, Ceramide; FA, Fatty acid; GP, 

Glycerophospholipid; Glc, Glucose; Glu, Glutamate; HexCer, Hexosylceramide; LCFA, 

Long chain fatty acid; LacCer, Lactosylceramides; MUFA, Monounsaturated fatty acid; 

OEA, Oleoylethanolamide; PCO, Phosphatidylcholine with an alkyl ether substituent; PCP, 

Phosphatidylcholine with a plasmalogen substituent; PEO, Phosphatidylethanolamine with 

an alkyl ether substituent. PEP (in panel A): Phosphatidylethanolamine with a plasmalogen 

substituent. PEP (G): Phosphoenolpyruvic acid. PI, Phosphatidylinositol; PIO, 

Phosphatidylinositol with an alkyl ether substituent; PIP, Phosphatidylinositol with a 

plasmalogen substituent; PLC, Phospholipase (C) Pyr, Pyruvic acid; SM, Sphingomyelin; 

SP, Sphingolipid; 3PG, 3-Phosphoglyceric acid.

See also Figure S6.
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Figure 7. Summary of pathway alterations and potential therapeutic targets
(A) Three oncogenic pathways frequently altered in GBM. Each gene is annotated with 

mutational and CNV frequency, RNA, protein, and phosphoprotein abundance, by multi-

omics subtype. Horizontal bar below gene box indicates frequency of alteration across all 

tumors. Also indicated are the proportion of tumors with genetic alterations (first 

percentage) and protein and phosphoprotein outlier expression (second percentage) for each 

pathway.

(B) Dysregulated phospho-signaling in RTK, PI3K, WNT, and NOTCH pathways across all 

tumors. Thickness of a kinase-substrate connecting line indicates degree to which variation 

in kinase phosphorylation explains observed variation in the substrate phosphosite 

abundance. Line color indicates percentage of samples with outlier phosphorylation. Kinases 
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governing multiple substrates with substantial phosphorylation outliers may be potential 

therapeutic targets.

(C) Drug connectivity analysis using alteration-specific transcriptional (CLUE and iLINCS) 

and phosphoproteomic (P100) signatures (altered tumors versus WT tumors). Twenty 

compounds that most strongly reverse or enhance the signature are highlighted along with 

their known mechanisms of action.

See also Figure S7 and Tables S5 and S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-IDH1-R132H (clone HO9) Dianova Cat# DIA-H09, RRID:AB_2335716

Rabbit polyclonal anti-ATRX Sigma Cat# HPA001906, RRID:AB_1078249

Rabbit monoclonal anti-SOX9 (clone D8G8H) Cell Signaling Cat# 82630S, RRID:AB_2665492

Mouse monoclonal anti-GAB1 (clone H-7) Santa Cruz Cat# sc-13319, RRID:AB_2107855

Rabbit polyclonal anti-CD3 (clone A0452) Dako Cat# A00452, RRID:AB_2335677

Mouse monoclonal anti-CD68 (clone KP1) Ventana Cat# 790-2931, RRID:AB_2335972

Mouse monoclonal anti-CD163 (clone 10D6) Novacastra Cat# NCL-L-CD163, RRID:AB_2756375

Mouse monoclonal anti-PD-1 (clone NAT105) Cell Marque Cat# 315M-96, RRID:AB_1160829

Mouse monoclonal anti-PD-L1 (clone 22C3) Dako Cat# M3653, RRID:AB_2833074

Bacterial and virus strains

Biological samples

Primary tumor and normal tissue samples This paper See Methods: Experimental Model and Subject 
Details

Patient-derived xenograft tissue samples Washington University in St. 
Louis

See Methods: Method Details

Chemicals, peptides, and recombinant proteins

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES)

Sigma Catalog: H3375

Acetic Acid, glacial Sigma Catalog: AX0074-6

Acetonitrile, HPLC grade J.T. Baker Catalog: 9829–03

Acetonitrile anhydrous Sigma Catalog: 271004

Ammonium hydroxide solution Sigma Catalog: 338818

Aprotinin Sigma Catalog: A6103

Dithiothreitol Thermo Scientific Catalog: 20291

Ethylenediaminetetraacetic acid Sigma Catalog: E7889

Formic acid Sigma Catalog: 0507

Iodoacetamide Sigma Catalog: A3221

Iron (III) chloride Sigma Catalog: 451649

HPLC Grade Water J.T. Baker Catalog: 4218–03

Hydroxylamine Solution 50% Sigma Catalog: 467804

Leupeptin Roche Catalog: 11017101001

Lysyl Endopeptidase Wako Chemicals Catalog 129–02541

Methanol, HPLC grade Fluka Catalog: 34966

Ni-NTA Superflow Agarose Beads Qiagen Catalog: 30410

Phenylmethylsulfonyl fluoride Sigma Catalog: 93482

Phosphatase Inhibitor Cocktail 2 Sigma Catalog: P5726

Phosphatase Inhibitor Cocktail 3 Sigma Catalog: P0044

Potassium phosphate dibasic Sigma Catalog: P3786

Potassium phosphate monobasic Sigma Catalog: P9791
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REAGENT or RESOURCE SOURCE IDENTIFIER

PUGNAc Sigma Catalog: A7229

Reversed-phase tC18 SepPak Waters Catalog: WAT054925

Sequencing grade modified trypsin Promega Catalog: V517

Sodium butyrate Sigma Catalog: 303410

Sodium chloride Sigma Catalog: S7653

Sodium fluoride Sigma Catalog: S7920

Tris (hydroxymethyl)aminomethane hydrochloride 
pH 8.0

Sigma Catalog: T2694

Trifluoroacetic acid Sigma Catalog: 91707

Urea Sigma Catalog: U0631

Critical commercial assays

BCA Protein Assay Kit ThermoFisher Scientific Catalog: A53225

Infinium MethylationEPIC Kit Illumina Catalog: WG-317-1003

TMT-11 reagent kit ThermoFisher Scientific Catalog: A34808

TruSeq Stranded Total RNA Library Prep Kit with 
Ribo-Zero Gold

Illumina Catalog: RS-122-2301

PTMScan® Acetyl-Lysine Motif [Ac-K] Kit Cell Signaling Catalog: 13416

Deposited data

CPTAC GBM proteomic data this study https://cptac-data-portal.georgetown.edu/cptac/s/
S048; https://cptac-data-portal.georgetown.edu/
study-summary/S057; https://pdc.cancer.gov/

CPTAC GBM genomic and snRNA-seq data this study https://portal.gdc.cancer.gov/projects/CPTAC-3

Clinical and genomic data of the validation cohort this study https://pedcbioportal.kidsfirstdrc.org/study/
summary?id=phgg_cbttc; https://
cavatica.sbgenomics.com/u/cavatica/pbta-cbttc/

Software and algorithms

Ascore v1.0.6858 (Beausoleil et al., 2006) https://github.com/PNNL-Comp-Mass-Spec/AScore

MASIC (Monroe et al., 2008) https://github.com/PNNL-Comp-Mass-Spec/MASIC

MS-GF+ v9981 (Kim and Pevzner, 2014) https://github.com/MSGFPlus/msgfplus

mzRefinery (Gibbons et al., 2015) https://omics.pnl.gov/software/mzrefinery

BIC-Seq2 (Xi et al., 2016) http://compbio.med.harvard.edu/BIC-seq/

GISTIC2 v2.0.22 (Mermel et al., 2011) https://github.com/broadinstitute/gistic2

Strelka v2.9.2 (Kim et al., 2018) https://github.com/Illumina/strelka

VarScan v2.3.8 (Koboldt et al., 2012) https://dkoboldt.github.io/varscan/

Pindel v0.2.5 (Ye et al., 2009) https://github.com/genome/pindel

MuTect v1.1.7 (Cibulskis et al., 2013) https://github.com/broadinstitute/mutect

somaticwrapper v1.3 and v1.5 Li Ding Lab https://github.com/ding-lab/somaticwrapper

Samtools v1.2 (Li et al., 2009) https://www.htslib.org/

GATK v4.0.0.0 (McKenna et al., 2010) https://github.com/broadgsa/gatk

bam-readcount v0.8 McDonnell Genome Institute https://github.com/genome/bam-readcount

germlinewrapper v1.1 Li Ding Lab https://github.com/ding-lab/germlinewrapper

Manta v1.6.0 (Chen et al., 2016) https://github.com/Illumina/manta

DELLY v0.8.1 (Rausch et al., 2012) https://github.com/dellytools/delly

Telseq v0.0.1 (Ding et al., 2014) https://github.com/zd1/telseq
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REAGENT or RESOURCE SOURCE IDENTIFIER

HTSeq v0.11.2 (Anders et al., 2015) https://github.com/simon-anders/htseq

EricScript v0.5.5 (Benelli et al., 2012) https://sites.google.com/site/bioericscript/

INTEGRATE v0.2.6 (Zhang et al., 2016) https://sourceforge.net/projects/integrate-fusion/

STAR-Fusion v1.5.0 (Haas et al., 2019) https://github.com/STAR-Fusion/STAR-Fusion

BWA v0.7.17-r1188 (Li and Durbin, 2009) http://bio-bwa.sourceforge.net/

CIRI v2.0.6 (Gao et al., 2015) https://sourceforge.net/projects/ciri/

RSEM v1.3.1 (Li and Dewey, 2011) https://deweylab.github.io/RSEM/

Bowtie2 v2.3.3 (Langmead and Salzberg, 
2012)

http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

R-rollup (Polpitiya et al., 2008) https://omics.pnl.gov/software/danter

MODMatcher (Yoo et al., 2014) https://github.com/integrativenetworkbiology/
Modmatcher

ConsensusClusterPlus v1.48.0 (Wilkerson and Hayes, 2010) https://bioconductor.org/packages/
ConsensusClusterPlus/

louvain-igraph v0.6.1 (Blondel et al., 2008) https://doi.org/10.5281/zenodo.1054103

TCGAbiolinks v2.11.1 (Colaprico et al., 2016) http://bioconductor.org/packages/TCGAbiolinks/

iProFun (Song et al., 2019) https://github.com/songxiaoyu/iProFun

BlackSheep (Blumenberg et al., 2019) https://github.com/ruggleslab/blackSheep

xCell v1.2 (Aran et al., 2017) http://xcell.ucsf.edu/

CIBERSORTx (Newman et al., 2019) https://cibersortx.stanford.edu/

MoonlightR v1.12.0 (Colaprico et al., 2020) http://bioconductor.org/packages/MoonlightR

CausalPath v.7c5b934 (Babur et al., 2018) https://github.com/PathwayAndDataAnalysis/
causalpath

Seurat v3.1.2 (Butler et al., 2018) https://cran.r-project.org/web/packages/Seurat

edgeR v3.28.1 (Robinson et al., 2010) https://www.bioconductor.org/packages/edgeR/

CLUE (data v1.1.1.2 and software v1.1.1.43) (Subramanian et al., 2017) https://clue.io/

iLINCS v2.7.0 (Pilarczyk et al., 2019) https://www.ilincs.org/

R v3.6 R Development Core Team https://www.R-project.org/

Bioconductor v3.9 (Huber et al., 2015) https://bioconductor.org/

Tidyverse (Wickham et al., 2019) https://www.tidyverse.org/

Python v3.7 Python Software Foundation https://www.python.org/

Bioconda (The Bioconda Team et al., 
2018)

https://bioconda.github.io/

Snakemake v5.6 (Köster and Rahmann, 2012) https://snakemake.readthedocs.io/

ComplexHeatmap (Gu et al., 2016) https://www.bioconductor.org/packages/
ComplexHeatmap/

scikit-learn v0.23.2 (Pedregosa et al., 2011) https://scikit-learn.org/

Other

RefSeq (downloaded from UCSC Genome Browser 
on 2018-06-29)

(O’Leary et al., 2016) https://www.ncbi.nlm.nih.gov/refseq/; https://
genome.ucsc.edu/cgi-bin/hgTables; 
RRID:SCR_003496

GENCODE v22 (download from GDC Reference 
Files)

(Frankish et al., 2019) https://www.gencodegenes.org/; https://
gdc.cancer.gov/about-data/data-harmonization-and-
generation/gdc-reference-files

gnomAD v2.1 (Karczewski et al., 2019) https://gnomad.broadinstitute.org/

The 1000 genomes project (final phase release on 
2013-05-02)

(The 1000 Genomes Project 
Consortium, 2015)

https://www.internationalgenome.org/
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REAGENT or RESOURCE SOURCE IDENTIFIER

OmniPath (downloaded on 2018-03-29) (Türei et al., 2016) http://omnipathdb.org/

DEPOD (downloaded on 2018-03-29) (Duan et al., 2015) http://depod.bioss.uni-freiburg.de/

CORUM (downloaded on 2018-06-29) (Ruepp et al., 2010) https://mips.helmholtz-muenchen.de/corum/

SIGNOR v2.0 (downloaded on 2018-10-29) (Licata et al., 2019) https://signor.uniroma2.it/

Reactome (downloaded on 2018-11-01) (Fabregat et al., 2018) https://reactome.org/

NetworKIN 3.0 (Horn et al., 2014) https://networkin.info/

LINCS data portal (P100 Level 4) (Stathias et al., 2019) http://lincsportal.ccs.miami.edu/dcic-portal/

Cancer Cell. Author manuscript; available in PMC 2022 April 12.

http://omnipathdb.org/
http://depod.bioss.uni-freiburg.de/
https://mips.helmholtz-muenchen.de/corum/
https://signor.uniroma2.it/
https://reactome.org/
https://networkin.info/
http://lincsportal.ccs.miami.edu/dcic-portal/

	SUMMARY
	Graphical Abstract
	In Brief
	INTRODUCTION
	RESULTS
	Proteogenomic and metabolomic features delineate molecular subtypes of glioblastoma
	Driver genetic alterations influence oncogenic protein abundance and phosphorylation
	RTK signaling cascades are activated in GBM
	Distinct immune marker expression and epigenetic events characterize GBM immune subtypes
	Mesenchymal tumor and microenvironment characteristics
	Differential acetylation of histone proteins is associated with specific subtypes and pathways
	Lipid composition and metabolomic features associated with GBM subtypes
	Key oncogenic pathways and therapeutic opportunities in GBM

	DISCUSSION
	STAR★METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	ADDITIONAL RESOURCES
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Specimens and clinical data
	Sample processing
	Validation cohort sample collection and processing

	METHOD DETAILS
	Sample processing for genomic DNA and total RNA extraction
	Whole exome sequencing
	Library construction
	In-solution hybrid selection
	Preparation of libraries for cluster amplification and sequencing
	Cluster amplification and sequencing

	PCR-free whole genome sequencing
	Preparation of libraries for cluster amplification and sequencing
	Cluster amplification and sequencing (HiSeq X)

	Illumina infinium methylationEPIC beadchip array
	RNA sequencing
	Quality assurance and quality control of RNA analytes
	Total RNA-seq library construction
	Total RNA sequencing
	miRNA-seq library construction
	miRNA sequencing
	Single-nuclei RNA library preparation and sequencing

	MS sample processing and data collection
	Protein extraction and Lys-C/Trypsin tandem digestion
	TMT-11 labeling of peptides
	Peptide fractionation by basic reversed-phase liquid chromatography (bRPLC)
	Phosphopeptide enrichment using IMAC
	Immunoaffinity purification of acetylated peptides
	LC-MS/MS analysis
	Construction and utilization of the comparative reference samples
	Global proteome and phosphoproteome analysis of high grade brain tumor samples

	Polar metabolites and lipid mass spectrometry
	Metabolite and lipid extraction
	Chemical derivatization of polar metabolites
	GC-MS analysis
	LC-MS analysis
	Metabolite identification and data processing
	Lipid idetification and data processing

	Immunohistochemistry (IHC) validation of genetic alteration downstream impact and immune cell compositions

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Tumor exclusion criteria
	Genomic data analysis
	Harmonized genome alignment
	Copy number variant calling
	Somatic variant calling
	Germline variant calling and annotation
	TERT promoter mutation calling
	Structural variant calling
	DNA methylation microarray processing
	Classification of MGMT promoter DNA methylation status
	Telomere length quantification and telomere genotyping

	RNA quantification and analysis
	RNA quantification
	RNA fusion detection
	miRNA quantification
	Circular RNA prediction and quantification

	snRNA-seq quantification and analysis
	snRNA-seq data preprocessing
	snRNA-seq cell type annotation
	snRNA-seq analysis

	MS data interpretation
	Quantification of TMT global proteomics data
	Quantification of phosphopeptides
	Quantification of acetylated peptides
	Preprocessing of proteomics tables
	Sample outlier identification of metabolome and lipidome
	Normalization and protein quantification of metabolome and lipidome

	Other proteogenomic analysis
	Sample labeling check across data types
	Ancestry prediction using SNPs from 1000 genomes project
	Multi-omics subtyping using non-negative matrix factorization (NMF)
	Expression based TCGA subtyping
	Unsupervised clustering of DNA methylation
	MolecularNeuroPathology (MNP) DNA Methylation Classification of Central Nervous System (CNS) Tumors
	Unsupervised clustering of miRNA expression
	Unsupervised clustering of individual data type
	Determination of stemness score
	Multi-omics cis association analysis using iProFun
	Mutation impact on the RNA, proteome, phosphoproteome, lipidome and metabolome
	Protein and RNA marker identification for multi-omics mixed subtype
	Kinase-substrate pairs regression analysis
	Differential proteomic, phosphosite, metabolome and lipidome analysis
	Phosphoproteome outlier analysis
	Copy number impact on transcriptome and proteome
	Cell type enrichment deconvolution using gene expression
	Immune clustering using cell type enrichment scores
	Cell type enrichment deconvolution using protein abundance
	Deep learning histopathology image analysis
	Gene set enrichment analysis
	Histone protein and acetylation calculation
	Histone acetylation association with HATs and HDACs
	Pathway enrichment analysis along histones H2B and H3/H4 acetylation axes
	Causative pathway interaction discovery using CausalPath
	L1000 and P100 drug connectivity analysis



	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1

