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Abstract
Fungal infections are an increasing threat to global public health. There are more than six million fungal species worldwide, 
but less than 1% are known to infect humans. Most of these fungal infections are superficial, affecting the hair, skin and 
nails, but some species are capable of causing life-threatening diseases. The most common of these include Cryptococcus 
neoformans, Aspergillus fumigatus and Candida albicans. These fungi are typically innocuous and even constitute a part 
of the human microbiome, but if these pathogens disseminate throughout the body, they can cause fatal infections which 
account for more than one million deaths worldwide each year. Thus, systemic dissemination of fungi is a critical step in 
the development of these deadly infections. In this review, we discuss our current understanding of how fungi disseminate 
from the initial infection sites to the bloodstream, how immune cells eliminate fungi from circulation and how fungi leave 
the blood and enter distant organs, highlighting some recent advances and offering some perspectives on future directions.
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Introduction

The prevalence of fungal infections has been steadily 
increasing over the last three decades due to the increased 
use of immunosuppressants, as well as the increased number 
of patients with HIV/AIDS [1–3]. It is estimated that there 
are more than 6 million fungal species worldwide, but only 
a small fraction (less than 600) are capable of causing dis-
eases in humans [3, 4]. While the majority of these fungal 
infections are superficial, some fungal species are capable 
of causing life-threatening infections [3]. The most com-
mon of these include Cryptococcus neoformans, Aspergillus 
fumigatus and Candida albicans [5].

C. neoformans and A. fumigatus are found throughout the 
environment and are inhaled into the lungs, where they ini-
tially cause pulmonary infections [1, 6]. C. albicans on the 
other hand is a human commensal and commonly colonizes 

mucosal tissues but can also be acquired in healthcare set-
tings [1, 3, 7]. When these opportunistic pathogens dissemi-
nate from sites of initial infection, they can cause serious 
diseases including meningoencephalitis, invasive aspergil-
losis and invasive candidiasis, respectively. Together, these 
and other fungal infections affect over one billion people 
each year and kill more than 1.5 million annually [8]. In the 
USA alone, fungal diseases are estimated to cost upwards of 
$7.2 billion each year, a trend that is expected to continue to 
rise as advances in medical care for immunocompromised 
patients continue to be made [9]. As such, fungal infections 
impose a considerable economic burden on healthcare sys-
tems worldwide and represent an increasing threat to global 
public health [9]. Furthermore, current antifungal treatment 
options remain limited and are threatened by the continued 
emergence of resistant fungal strains [10, 11]. For these rea-
sons, it is critical that we understand the pathogenesis of 
fungal diseases, specifically the ways by which mycopatho-
gens disseminate, in order to develop alternative antifungal 
therapies. In this review, we discuss how C. neoformans, A. 
fumigatus and C. albicans disseminate from initial sites of 
infection to distant organs.
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Dissemination of C. neoformans

C. neoformans is an encapsulated yeast fungus found glob-
ally in soil and avian excrement [6]. Infectious propagules 
in the form of desiccated yeast or spores are inhaled into 
the respiratory tract on a daily basis [12]. Due to their small 
size, these organisms are able to avoid cough and muco-
ciliary clearance and penetrate deep into alveolar spaces 
[1]. Here, C. neoformans encounters lung resident immune 
cells. In healthy, or immunocompetent, individuals, these 
fungi are either successfully cleared or establish long-term, 
latent infections [1]. Alternatively, in the case of immuno-
compromised individuals, including AIDS patients, organ 
transplant recipients and patients treated with immunosup-
pressive therapies, C. neoformans can establish symptomatic 
pulmonary infections resulting in pneumonia, acute respira-
tory distress syndrome, and subsequent extrapulmonary 
dissemination [13]. Disseminated C. neoformans enters the 
bloodstream and can infect distant organs, but preferentially 
targets the central nervous system (CNS) [12]. If these fun-
gal cells cross the blood–brain barrier (BBB) and enter the 
brain parenchyma, they can cause meningoencephalitis [14]. 
The global incidence of cryptococcal meningoencephalitis is 
estimated to be more than 220,000 cases annually and results 
in approximately 180,000 deaths each year [15].

Extrapulmonary dissemination

There are a number of proposed routes by which C. neo-
formans is thought to escape the lungs. These include an 
intracellular route within phagocytes known as the “Trojan 
horse” mechanism, transcellular crossing through epithelial 
cells, paracellular crossing between epithelial cells and an 
extracellular route in which free fungi escape through dam-
aged epithelial barriers [12] (Fig. 1).

Trojan horse

Following pulmonary infection, one of the first immune 
cells C. neoformans encounters are lung resident alveolar 
macrophages. These professional phagocytes rapidly ingest 
cryptococcal cells for degradation [16, 17]. However, C. 
neoformans is a facultative intracellular pathogen and is 
equipped to survive and replicate within these cells [16]. 
This enables viable yeast to be transported out of the lungs 
within migrating phagocytes, a process known as the Trojan 
horse mechanism of dissemination [12].

Early studies provided indirect evidence supporting this 
mechanism, by demonstrating that the inability to survive 
within macrophages correlates with decreased extrapulmo-
nary dissemination [18–20], while adoptive transfer studies 

confirmed that macrophages could indeed facilitate hema-
togenous dissemination to the brain [18, 21]. In addition, 
depletion of macrophages using clodronate liposomes signif-
icantly diminished dissemination to the CNS, suggesting that 
these cells may contribute to the extrapulmonary spread of 
C. neoformans [21–23]. It was later determined that CD11c+ 
lung resident cells, primarily alveolar macrophages and to 
a lesser extent dendritic cells, are responsible for internal-
izing and transporting cryptococci to the lymph system fol-
lowing intranasal instillation [24]. This event occurs early 
during infection, as fungal burdens were detected in medi-
astinal lymph nodes in as little as 24 h post-infection [24], 
and indicates that transport of C. neoformans may be an 
unintended consequence of the antigen-presenting function 
of these phagocytes. Depletion of these CD11c+ populations 
in transgenic mice resulted in a complete loss of dissemina-
tion [24], further supporting the role of these cells in Trojan 
horse transport.

In order to utilize phagocytes as vehicles for dissemina-
tion, C. neoformans must successfully survive within and 
exit from these cells following internalization. This requires 
that C. neoformans defends against acidic, oxidative and 
nitrosative stresses commonly encountered within mac-
rophages [12]. Unlike A. fumigatus and C. albicans, which 
inhibit phagolysosomal maturation and must escape to the 
cytoplasm in order to establish an intracellular niche, C. neo-
formans can survive and replicate within phagosomes [25, 
26]. The ability to grow in those acidic pHs found within 
mature phagolysosomes is dependent on C. neoformans 
expression of inositol phosphosphingolipid–phospholipase 
C 1 (Isc1) [20, 27]. Protection against oxidative and nitrosa-
tive stresses on the other hand is conferred by the cryptococ-
cal capsule (a complex polysaccharide structure composed 
primarily of glucuronoxylomannan (GXM) and glucuron-
oxylomannogalactan (GXMGal)) [28–34], the iron oxidase 
laccase [35, 36] and the antioxidant melanin [19, 35–38]. In 
addition, phospholipase B1 (Plb1) is thought to alter mac-
rophage activation through the production of immune regu-
latory eicosanoids in order to further promote intracellular 
survival and replication [39–41].

Once phagocytosed, C. neoformans can exit macrophages 
following intracellular replication. Cryptococcal replication 
within phagocytes is accompanied by the formation of a 
leaky phagosome and the accumulation of polysaccharide-
containing vesicles in the cytoplasm and eventually cul-
minates in the lysis of host cells [42]. This event triggers 
local inflammation and leaves extracellular C. neoformans 
exposed to host immune responses [43]. Conversely, C. 
neoformans can exit macrophages via non-lytic exocytosis, 
or vomocytosis. Vomocytosis is mediated by phagosomal 
extrusion: a process in which mature phagosomes contain-
ing cryptococcal cells fuse with the plasma membrane and 
release fungi into the extracellular milieu [43–46]. The 
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cellular and molecular mechanisms governing vomocytosis 
remain poorly understood, but are reported to involve both 
host and pathogen factors [45, 47, 48]. After the expulsion 
event, both phagocytes and fungi remain viable, allowing C. 
neoformans to stealthily exit macrophages without trigger-
ing cell death-associated inflammation [43]. C. neoformans 
promotes vomocytosis through its expression of urease [49]. 
Urease catalyzes the hydrolysis of urea to yield the weak 
base ammonia [50, 51], which acts as a buffer and raises the 
pH within phagosomes [49]. For other pathogens, this activ-
ity can inhibit acid-induced damage; however, in the case of 

C. neoformans, this increase in pH results in yeast entering 
into a quiescent state, in which intracellular replication is 
delayed [25, 49]. This prolongs intracellular residence of 
C. neoformans and increases the likelihood that fungal cells 
will be transported outside of the lung prior to the non-lytic 
expulsion of dormant yeast.

Transcytosis

In addition to intracellular means of escape, C. neoformans 
can exit the lungs as free fungi via a number of extracellular 

Fig. 1   Mechanisms mediating extrapulmonary dissemination of C. 
neoformans a Trojan horse: following phagocytosis, C. neoformans 
(green) is able to survive within alveolar macrophages (purple) and 
is transported across the epithelium inside these migrating phago-
cytes where they can access the interstitium, lymph system and/or 
bloodstream. C. neoformans can exit macrophages through vomocy-
tosis and disseminate throughout the host as free fungi or be taken 
up by peripheral monocytes in the bloodstream and transported to the 
vasculature of various organs including the brain. b Transcytosis: C. 
neoformans adheres to epithelial cells through interactions between 

glucuronoxylomannan (GXM) and CD14 as well as palmitic acid 
(PA) and surfactant protein-D (SP-D) receptors. Following adherence, 
epithelial cells endocytose yeast, transporting them across the epi-
thelium. c Paracellular crossing and loss of barrier integrity: C. neo-
formans induces the production of IL-33 (peach), which along with 
urease (purple) disrupts tight junctions and allows fungal cells to pass 
between epithelial cells. C. neoformans also secretes Plb1 (green), 
urease (purple) and proteases (yellow) which damage epithelial barri-
ers, allowing fungi to cross the epithelium and access the bloodstream
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routes. One such pathway is transcellular crossing, also 
known as transcytosis. This mechanism involves exploitation 
of host cell endocytic pathways to facilitate fungal traversal 
of epithelial barriers and grants C. neoformans access to the 
lung interstitium, vasculature or lymph system [12].

Transcytosis is preceded by fungal cell adherence to the 
epithelium. To date, a limited number of adhesins have been 
identified as mediating cryptococcal–epithelial interactions. 
Initial findings demonstrated that both encapsulated and aca-
psular strains of C. neoformans adhere to A549 lung epithe-
lial cells in vitro [52, 53]. In the case of encapsulated C. neo-
formans, the major capsule component GXM is responsible 
for mediating adherence by binding to CD14 on epithelial 
cells [54, 55]. As for acapsular strains, the mannoprotein 
MP84 was determined to bind A549 cells through interac-
tions with a yet identified host cell receptor [56]. In addition, 
a temperature-sensitive adhesin was reported to facilitate 
adherence independently of GXM and was determined to 
be cryptococcal Plb1 [52, 54, 57]. Plb1 possesses multiple 
enzymatic activities that allow it to break down phospholip-
ids found in host cell membranes and lung surfactant [40, 
58, 59]. Degradation of dipalmitoylphosphatidylcholine 
(DPPC), the main component of lung surfactant, results in 
the release of palmitic acid (PA) which is thought to medi-
ate adherence by binding to surfactant protein D (SP-D) 
receptors on A549 cells [41, 57]. This is supported by the 
dose-dependent increase in adherence that occurs when PA 
is added to co-cultures of A549 cells and a Plb1-deficient 
strain of C. neoformans [53, 57].

Adherence to epithelial cells results in the internalization 
of C. neoformans as well as eventual epithelial cell lysis [52, 
54]. While little is known about the mechanisms involved 
in this process, it is likely actin-dependent, similar to those 
facilitating C. neoformans invasion of brain endothelial cells 
[60, 61].

Paracellular crossing and loss of barrier integrity

In addition to traveling through epithelial cells, C. neo-
formans can pass between epithelial cells as the result of 
mechanical or biochemical disruption of tight junctions, a 
process known as paracellular crossing or paracytosis [12]. 
During pulmonary infection, C. neoformans induces the 
production of interleukin (IL)-33 by alveolar type 2 epi-
thelial cells [62]. IL-33 promotes type 2 innate immune 
responses and suppresses the expression of the tight junc-
tion protein E-cadherin which may allow fungal cells to 
pass through weakened tight junctions. Similarly, urease 
activity is thought to disrupt the integrity of the pulmonary 
epithelium. While the effects of cryptococcal urease on 
epithelial tissues have yet to be fully examined, its activity 
has been extensively studied in the context of the bacterial 
pathogen Helicobacter pylori and was reported to increase 

phosphorylation of myosin regulatory light chains (MLCs) 
in epithelial cells, which can in turn disrupt tight junctions 
and result in a loss of barrier function [63]. In this way, C. 
neoformans may disrupt tight junctions allowing for free 
fungi to pass between epithelial cells.

Extracellular C. neoformans can also pass freely through 
weakened or damaged epithelial barriers [12]. This model is 
supported by the observation that prolonged incubation of C. 
neoformans with A549 cells results in significant amounts of 
host cell death [54] and the fact that C. neoformans produces 
a number of enzymes capable of disrupting host tissues [64]. 
Of these, urease, phospholipases and proteases have been 
implicated in contributing to fungal dissemination [65].

In addition to disrupting epithelial tight junctions, urease 
activity was found to be toxic to host cells [50, 51]. Ammo-
nia derived from H. pylori urease was reported to cause local 
tissue damage and induce host cell death [50, 51]. Urease 
has also been implicated in causing immune-mediated injury 
to host tissues, as it can act as a chemotactic factor and cause 
local inflammation as well as result in the production of 
inducible nitric oxide synthase (iNOS) which may also have 
cytotoxic effects [50, 51]. It is possible that cryptococcal 
urease may function similarly during pulmonary infection 
and could damage the epithelium, thereby promoting fungal 
dispersal and subsequent dissemination [65, 66].

Plb1 activity is also thought to contribute to the disrup-
tion of epithelial barriers. Once C. neoformans is in proxim-
ity to the epithelium, secreted or cell wall-associated Plb1 
can access and degrade epithelial cell membranes [47, 67]. 
Disruption of these membranes can result in the lysis of host 
cells and lead to a weakened barrier through which extracel-
lular yeast can pass [18, 65].

Finally, C. neoformans produces one or more unnamed 
serine proteases [68, 69]. These enzymes are capable of 
degrading extracellular matrix (ECM) and basement mem-
brane elements [68]. Together, these proteolytic activities 
can assist C. neoformans in tissue invasion and dissemina-
tion by degrading structural components of the epithelium 
[68]. Supporting their role in the breakdown of host barrier 
tissues is the report that cryptococcal serine proteases medi-
ate disruption of the BBB [69]. It is possible that within the 
lungs, these proteases could act similarly to disrupt epithelial 
barriers.

Intravascular clearance

Once outside of the lungs, cryptococcal cells can enter 
into the bloodstream resulting in blood infections known 
as fungemia [18, 19]. Early studies have demonstrated that 
brain infections occur following fungemia and that there is 
a direct correlation between the severity of the infection and 
the magnitude of fungemia [70–72]. As such, intravascular 
recognition and clearance of C. neoformans represent an 
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important step in preventing dissemination to the central 
nervous system (Fig. 2).

Neutrophils

Neutrophils are the most abundant phagocytes in the blood-
stream and are typically the first immune cells to be recruited 
to sites of infection [73]. To date, their role in defense against 
C. neoformans remains controversial. In vitro, neutrophils 
were found to effectively kill cryptococci [74–81], although 
it was also reported that C. neoformans can negatively 
regulate the extracellular killing activity of these cells [82, 
83]. In vivo, augmentation of neutrophil activity enhanced 
anticryptococcal activity [84–86], while impaired neutrophil 
activity significantly compromised survival during crypto-
coccal infection [87, 88]. These suggest that neutrophils may 
be protective. By contrast, depletion of neutrophils markedly 
reduced pulmonary fungal burdens following infection with 
C. neoformans [89], and in AIDS patients with cryptococ-
cosis, enhanced blood neutrophil counts are associated with 
mortality [90], indicating instead that neutrophils may play 
a detrimental role during cryptococcal infection. Neverthe-
less, neutrophils have been shown to contribute to the intra-
vascular clearance of disseminating C. neoformans through 
the efficient phagocytosis and removal of fungal cells from 
the microvasculature of organs as demonstrated by intravital 
imaging in both a mouse and zebrafish model [91, 92].

As C. neoformans circulates throughout the host, they 
can become mechanically trapped in the microvasculature 
of organs with closed capillary networks, including the 
brain [93]. Here, cryptococci activate the complement 
system [93–97] which induces neutrophil migration to 
arrested fungal cells [98–100]. Neutrophils then bind and 
ingest opsonized C. neoformans [91, 98] and, in turn, can 
secrete leukotriene B4 (LTB4), which attracts additional 
neutrophils to sites of fungal infection [101, 102]. Follow-
ing phagocytosis, neutrophils can kill yeast through oxida-
tive [74, 77–80] and nonoxidative mechanisms [81]. In this 
way, neutrophils help to limit dissemination by directly 
killing and/or removing fungal cells from the endothelium 
[91, 92, 98, 100].

This ability for neutrophils to clear intravascular cryp-
tococci is less efficient in the brain as compared to other 
organs such as the lungs [100]. This is likely due to the 
fact that brain vasculature structure is different and lacks 
complement, which may explain the lower rates of neu-
trophil recruitment to the brain and the increased suscep-
tibility of the CNS to infections by C. neoformans [99, 
103]. Indeed, enhancing the recruitment of neutrophils to 
the brain vasculature significantly improves intravascu-
lar clearance of C. neoformans in the brain [100], further 
supporting the role of neutrophils in the clearance of dis-
seminating C. neoformans in the blood.

Fig. 2   Clearance of intra-
vascaular C. neoformans a 
Neutrophils (dark purple) are 
recruited to intravascular C. 
neoformans (green) in a C5a-
dependent manner. Fungal cells 
are phagocytosed by neutrophils 
via iC3b–CR3 interactions and 
are killed through oxidative 
and nonoxidative mechanisms. 
b Liver-resident Kupffer cells 
(light purple) recognize and 
bind C3b/iC3b on circulating 
C. neoformans through CRIg 
receptors. Following phagocy-
tosis, Kupffer cells can inhibit 
cryptococcal growth and limit 
fungal dissemination to target 
organs
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Kupffer cells

In addition to neutrophils, liver-resident macrophages, 
known as Kupffer cells (KCs), have been shown to play 
a role in clearing intravascular C. neoformans. The liver 
is the largest internal organ, receiving 30% of the total 
volume of blood in the body each minute, and contains 
approximately 90% of the total tissue macrophages in 
the body [104, 105]. Here, KCs scan passing blood and 
remove potentially harmful substances [104–109] and have 
been identified as playing an important role in maintaining 
blood sterility through the capture and removal of intra-
vascular bacteria and parasites [107–110]. Although the 
liver is not the target organ of C. neoformans, evidence 
suggests that liver disease is a risk factor for cryptococco-
sis [111–114]. In this context, recent results revealed that 
the liver plays a prominent role in filtering disseminating 
C. neoformans and C. albicans out of circulation through 
KCs [115, 116].

Intravital imaging showed that disseminating C. neofor-
mans is captured in the liver sinusoids [116]. This capture 
is mediated by KCs through the recognition of comple-
ment C3 on fungal cells by complement receptor CRIg 
(complement receptor of the immunoglobulin superfam-
ily). As such, depletion of KCs significantly reduces the 
fungal burden in the liver, leading to enhanced fungemia in 
the blood and increased deposition of fungi in other organs 
[116]. Following capture, KCs phagocytose C. neoformans 
and can inhibit fungal growth in a manner independent of 
IFN-γR signaling [116]. This demonstrates an important 
role for KCs in reducing fungal dissemination to other 
organs by directly removing organisms from circulation 
[116] and likely explains the association between liver 
disease and increased susceptibility to fungal infections 
[112–114].

Brain invasion

If C. neoformans avoids intravascular clearance, circulating 
fungal cells are preferentially deposited in the brain vascu-
lature and eventually invade the brain [117]. Once inside the 
brain, C. neoformans begins to proliferate and causes fatal 
meningoencephalitis. Thus, although cryptococcal infection 
starts in the lungs, the most devastating event occurs when 
the fungus crosses the BBB and migrates to the brain paren-
chyma [117, 118]. The mechanism by which C. neoformans 
invades the brain remains to be completely understood. To 
date, there are a number of competing hypotheses that have 
been proposed for brain invasion by C. neoformans and 
include the Trojan horse mechanism, transcytosis, paracel-
lular crossing and free entry through damaged endothelial 
barriers [118, 119] (Fig. 3).

Trojan horse

It has been well reported that phagocytes can transmigrate 
from the blood to the brain parenchyma across the BBB 
[73], and as described, C. neoformans can survive within 
phagocytes [16]. This raised the possibility that, follow-
ing phagocytosis of fungal cells, phagocytes can escort C. 
neoformans to the brain parenchyma through the so-called 
Trojan horse mechanism.

To directly visualize the dynamics of brain invasion by 
C. neoformans using Trojan horse crossing, live cell imag-
ing was performed in vitro using human endothelial cell 
lines [120, 121]. The results confirmed that both C. neo-
formans and C. gattii can use the Trojan horse mechanism 
to cross endothelial cell layers [120]. Phagocytes derived 
from human monocytic cell lines containing C. neoformans 
were also seen to cross endothelial cell layers in real time 
[121]. Interestingly, transcellular transmigration (through 
endothelial cells) of monocytes harboring C. neoformans 
is the major pathway for Trojan horse crossing [121]. In 
contrast, paracellular transmigration (between endothelial 
cells) likely represents a small percentage of Trojan horse 
crossing as transendothelial electrical resistance (TEER) 
values remained stable during in vitro assays, indicating 
little to no disruption of endothelial tight junctions [121]. 
In vivo, monocytes containing C. neoformans were observed 
in the perivascular space of cortical post-capillary venules 
in the brains of infected mice [71, 122]. This is thought to 
be the major site of Trojan horse entry [122]. Once here, C. 
neoformans can escape the phagocyte and access the brain 
parenchyma and cerebrospinal fluid (CSF) [123], further 
confirming a role for these cells in dissemination to the CNS.

In addition to carrying yeast across the BBB, it has been 
proposed that phagocytes transport C. neoformans to the 
brain vasculature where they instead pass them directly to 
endothelial cells [124]. This cell-to-cell spread, known as 
lateral transfer or dragotcytosis, is an actin-dependent pro-
cess that requires donor and acceptor cells to be in physical 
contact [124–126]. Originally, lateral transfer was observed 
between two macrophages [124, 125], but was later reported 
to occur between monocytes and endothelial cells in vitro 
[121]. Alternatively, phagocytes may carry fungal cells to 
the brain, where they then escape and cross the BBB alone 
through an extracellular mechanism [121].

Blood-derived monocytes have been implicated 
in the transport of C. neoformans across the BBB. In 
humans, these monocytes exist in two major populations: 
CD14hiCD16− and CD14lowCD16hi monocytes [127]. The 
corresponding populations in mice are CCR2+Ly6Chi 
and CX3CR1+Ly6Clow monocytes, respectively [128]. 
During intravenous infection with C. neoformans, 
CX3CR1+Ly6Clow monocytes are recruited to the brain 
vasculature starting at 12 h post-infection [129]. Through 
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the use of intravital microscopy, these cells were observed 
to engulf C. neoformans in brain vasculature and carry the 
yeast as they crawled on and adhered to the luminal wall 
of brain vasculature and migrated to the brain parenchyma 
[129], suggesting the involvement of these monocytes in 
cryptococcal crossing of the BBB. CCR2+Ly6Chi mono-
cytes on the other hand were observed to accumulate in the 
brain starting 14 days after intravenous infection, indicating 
that these cells are not involved in the early transport of 
C. neoformans to the CNS [130]. Instead, CCR2+Ly6Chi 
monocytes promote brain inflammation, leading to lethal 

immune pathology in the brain in mice as well as in humans 
[131, 132].

Transcytosis

In addition to Trojan horse crossing, extracellular C. neo-
formans cells can directly transmigrate across the BBB and 
invade the brain via transcytosis. Indirect evidence sup-
porting this comes from a mouse model of C. neoformans 
infection, in which yeasts were detected in the cytoplasm 
of endothelial cells of small capillaries, suggesting that 

Fig. 3   Mechanisms mediating brain invasion by C. neoformans a 
Trojan horse: peripheral monocytes (dark pink) ingest intravascular 
C. neoformans (green) and transport them to the brain vasculature. 
Monocytes can carry yeast across the BBB through transendothelial 
pores (transcellular transmigration), or can paracellularly transmi-
grate  between endothelial cells. In addition, monocytes can transfer 
C. neoformans directly to endothelial cells (red) (lateral transfer), 
facilitating transmigration of cryptococci across the BBB. b Transcy-
tosis: hyaluronic acid (HA)–CD44 interactions along with Mpr1 pro-
mote C. neoformans adherence to brain endothelial cells. Engagement 

of CD44 activates EphA2, while cryptococcal Plb1 activates host cell 
Rac1 which in turn activates PKCα. Activation of these pathways 
induces endocytosis of C. neoformans. Following internalization, 
C. neoformans engages host AnxA2 via Mpr1 which facilitates exit 
of endothelial cells and successful crossing of the BBB. c Paracel-
lular crossing and loss of barrier integrity: C. neoformans disrupts the 
BBB through the utilization of host plasmin (pink) and secretion of 
urease (purple) and other proteases (yellow) and migrates across the 
endothelium into the brain parenchyma
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endothelial cells internalize C. neoformans in vivo [71]. 
Direct evidence on the other hand is derived from in vitro 
studies using human brain microvascular endothelial cells 
(HBMECs) [60, 133, 134]. In this model, free C. neofor-
mans cells were observed to have crossed endothelial mon-
olayers via a transcellular pathway that did not affect mon-
olayer integrity [133].

Similar to the lungs, transcytosis in the brain involves 
exploitation of host cell endocytic pathways in order to 
traverse the BBB [119] and is dependent on cryptococcal 
adherence to and internalization by brain endothelial cells 
[133, 135]. Adherence of C. neoformans to endothelial cells 
occurs independently of capsule expression and is mediated 
by hyaluronic acid (HA) [136–139]. HA is the product of an 
HA synthase encoded by the gene CPS1 and binds primarily 
to CD44 receptors on brain endothelial cells, although the 
RHAMM receptor has also been reported to play a minor 
role in binding HA [140]. Interestingly, in response to the 
high levels of inositol found in mammalian brains, C. neo-
formans upregulates its expression of CPS1, leading to an 
increased production of HA and an enhanced association of 
cryptococcal cells and HBMECs [141].

Upon binding, C. neoformans is internalized by endothe-
lial cells in an actin-dependent manner [60, 61, 142, 143]. 
Cryptococcal Plb1 activates host cell Rac1 (Ras-related 
C3 botulinum toxin substrate 1) which in turn activates the 
actin reorganizing protein, protein kinase C-α (PKCα) [138, 
144, 145]. The mechanism by which this occurs is not well 
understood, though it has been suggested that Plb1 activity 
might generate lipid mediators required to facilitate Rac1 
activation [145, 146]. In addition, engagement of CD44 by 
C. neoformans activates ephrin type-A receptor 2 (EphA2). 
This receptor is involved in various signaling pathways 
that regulate cytoskeleton remodeling [147] and has been 
reported to be utilized by a number of pathogens in order to 
invade host cells suggesting that C. neoformans could also 
use this pathway to enter endothelial cells [147].

Lipid rafts also play a role in the internalization of C. 
neoformans by endothelial cells. Supporting this is the 
report that the HA receptor CD44 co-localizes with the lipid 
raft marker ganglioside GM1 on the plasma membrane of 
endothelial cells and that C. neoformans adheres to host 
cells in areas where GM1 is enriched [143]. CD44 was also 
found to co-localize with and activate the caveolae mem-
brane marker caveolin-1 (Cav1) upon engagement with C. 
neoformans [148]. These demonstrate that transcytosis of 
C. neoformans across the BBB occurs through a lipid raft/
caveolae-dependent endocytotic process [143, 148].

C. neoformans can further promote internalization by 
endothelial cells, through secretion of C. neoformans-
derived extracellular microvesicles (CnMVs). These vesicu-
lar compartments, referred to as “virulence bags,” contain 
polysaccharides, lipids and cytoplasmic proteins and can 

fuse with host cells independently of CD44 [149, 150]. This 
interaction increases lipid raft activity and promotes CD44 
migration to membrane rafts [149]. In this way, CnMVs may 
enhance fungal adherence and endocytosis.

Transcytosis was also found to occur independently of 
CD44. C. neoformans further promotes its adherence to 
endothelial cells through expression of the metalloprotease, 
Mpr1 [151, 152]. Once bound, Mpr1 engages host annexin 
A2 (AnxA2), an important signaling protein involved in 
endocytosis that was found to be essential for the transmi-
gration of cryptococcal cells across the endothelium [152, 
153]. While the absence of AnxA2 in HBMECs had no 
effect on adherence or internalization of cryptococci, yeast 
cells were unable to exit endothelial cells and enter into the 
parenchyma following endocytosis, indicating that AnxA2-
Mpr1-mediated interactions promote successful crossing of 
the BBB [152].

Paracellular crossing and loss of barrier integrity

Additional mechanisms of brain invasion by extracellular C. 
neoformans are paracellular crossing between brain endothe-
lial cells as well as migration across damaged endothelial 
barriers [119]. These pathways involve the entry of free 
yeast through a damaged or weakened BBB and are sup-
ported by reports that accumulation of C. neoformans in the 
brain results in severe damage to endothelial cells as well as 
tight junction alterations [60, 121, 136]. In this context, C. 
neoformans produces several degradative enzymes capable 
of disrupting the BBB.

Cryptococcal urease has been identified as a major viru-
lence factor during brain infection [154]. Initial studies 
reported that urease promotes cryptococcal sequestration 
within brain microcapillaries [155]. Later reports suggest 
a more active role for urease in cryptococcal penetration 
of the BBB [93]. While the mechanism remains unknown, 
it is possible that urease-derived ammonia may have toxic 
effects on endothelial cells which weakens the integrity of 
the BBB and promotes opening of tight junctions leading to 
transmigration of C. neoformans [93, 154–156]. This is sup-
ported by the fact that urease-positive cryptococcal strains 
cause a reduction in levels of the tight junction protein ZO1 
in HBMECs, while urease-deficient strains have no effect on 
monolayer integrity [156].

C. neoformans also secretes a number of proteases includ-
ing serine proteases, which were found to degrade key com-
ponents of ECM and the basement membrane [64, 68, 69, 
157, 158]. This activity was reported to increase BBB per-
meability during infection with C. neoformans both in vitro 
and in vivo [68, 69]. In addition to its own proteases, C. neo-
formans is capable of utilizing host proteases. Cryptococ-
cal cells can bind and activate host plasminogen, a plasma 
protein and central component of the fibrinolytic system. 
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This interaction promotes the conversion of plasminogen to 
the serine protease plasmin via the urokinase-type plasmino-
gen activator (uPA) [159–161]. Plasmin digests components 
of the BBB, as well as activates matrix metalloproteinases, 
which are capable of damaging tight junction components 
[159].

In addition to those factors expressed by C. neoformans, it 
is possible that host behaviors can also lead to the disruption 
of endothelial barriers and promote cryptococcal neuroinva-
sion. For example, abuse of methamphetamines was reported 
to enhance dissemination of C. neoformans to the CNS [162] 
and alter BBB integrity through the modified expression of 
tight junction and adhesion molecules [163]. This pharma-
cological disruption to the endothelium promotes transmi-
gration of yeast into the brain parenchyma, demonstrating 
that external factors can also aid in dissemination of C. neo-
formans to the brain [163]. Regardless of entry mechanism, 
once inside the brain, C. neoformans can rapidly proliferate 
and cause life-threatening cases of meningoencephalitis.

Dissemination of A. fumigatus

A. fumigatus is a ubiquitously distributed saprophytic fungus 
that produces small spores known as conidia. On average, 
individuals inhale upwards of 200 conidia per day [164, 
165]. By virtue of their size, conidia are able to avoid cough 
and mucociliary clearance and enter deeper into the lungs. 
In healthy individuals, these conidia are rapidly cleared, but 
in the case of immunocompromised patients, conidia can 
germinate and develop filamentous hyphae [1, 166]. This 
fungal growth can result in invasive aspergillosis: a severe 
and aggressive fungal disease characterized by tissue dam-
age, necrosis and hypoxia [8, 164, 167]. Although the target 
organ of A. fumigatus is the lungs, Aspergillus is known 
to be angiotropic and has an affinity for host vasculature. 
As growing hyphae penetrate pulmonary tissues, they can 
invade the endothelial lining of nearby blood vessels and 
break off into circulation, causing sepsis and dissemination 
accompanied by thrombosis, hemorrhagic infarction and 
invasion of distant organs [8, 164, 167]. It is estimated that 
there are approximately 250,000 cases of invasive aspergil-
losis worldwide each year, with an associated mortality rate 
ranging from 30 to 80% [8].

The primary route by which A. fumigatus is thought to 
traverse the pulmonary epithelium is transcytosis. As with 
C. neoformans, A. fumigatus adheres to and invades epi-
thelial cells [164, 168–170]. A. fumigatus adherence to the 
epithelium is mediated by several fungal factors, including 
sialic acid (SA), galactosaminogalactan (GAG) and β-1,3-
glucan binding to Dectin-1 [171–173]. Following adher-
ence, A. fumigatus is endocytosed in an actin-dependent 
manner [174–178]. The fungal invasin calcineurin A (calA) 

promotes this internalization through interactions with 
integrin α5β1 on host cells [179]. In addition, gliotoxin, a 
major mycotoxin of A. fumigatus, as well as the cell wall 
component β-1,3-glucan, activates actin cytoskeleton rear-
ranging proteins in host epithelial cells, including cofilin-1 
and phospholipase D (PLD) [175, 177, 180, 181], further 
promoting internalization. Inside these cells, a portion of 
engulfed conidia are killed, while approximately 3% remain 
viable [174, 176]. Of those, one-third of surviving conidia 
germinate and form extracellular hyphae without lysing host 
cells [170, 174, 176]. These organisms can continue to grow 
and invade pulmonary tissues and nearby blood vessels.

A. fumigatus also encodes an array of degradative 
enzymes which may facilitate migration across the epithe-
lium [182–184]. Serine and cysteine proteases, including 
the serine protease AF-ALF, disrupt host epithelial tissues 
[182–184]. The enzyme elastase is required for the devel-
opment of invasive disease suggesting a role in dissemina-
tion [164, 185, 186]. In addition, a number of secondary 
metabolites, including gliotoxin, fumagillin, helvolic acid, 
and verruculogen, have been implicated in modifying the 
epithelium [164, 187, 188]. This combination of proteolytic 
activity may contribute to the disruption of host tissues and 
enable A. fumigatus to penetrate the epithelium and enter the 
bloodstream directly.

As for the Trojan horse mechanism, there is evidence sug-
gesting that A. fumigatus may be able to utilize host phago-
cytes in order to escape the lung. Firstly, A. fumigatus can 
survive within phagocytes [189, 190]. Secondly, there are 
reports that monocyte-derived CD11b+ lung dendritic cells 
internalize and transport A. fumigatus to mediastinal lymph 
nodes [128]. This event is reminiscent of the transport of C. 
neoformans to the lymph system by alveolar macrophages. 
Once inside of the lymph node, Aspergillus could escape 
from dendritic cells and disseminate via the bloodstream. As 
A. fumigatus circulates throughout the host, it can become 
stopped in host microvasculature and can invade various 
organs including the liver, kidneys, spleen and brain [167]. 
To date, the mechanism by which A. fumigatus penetrates 
the BBB is not well understood, though studies have shown 
that gliotoxin (GTX) is able to damage the endothelium 
which may facilitate transmigration [191].

Dissemination of C. albicans

C. albicans is a polymorphic fungus that can transition from 
a yeast phase to a hyphal phase and is commonly found as a 
commensal in the human body, asymptomatically coloniz-
ing the gastrointestinal, respiratory and reproductive tracts, 
as well as skin of approximately 30–80% of people [1, 3, 
7]. While a considerable proportion of C. albicans infec-
tions arise from indwelling medical devices [192], studies 
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have identified the intestinal population of C. albicans as the 
main source of endogenous infection, especially following 
immunosuppression [193]. These organisms can cause lethal 
bloodstream infections (candidemia) and lead to invasive 
disease when they manage to cross the intestinal epithelium 
[193]. Approximately 700,000 cases of invasive candidiasis 
are diagnosed worldwide each year, with mortality rates of 
up to 40% [8, 194].

As with other fungi, invasion of epithelial barriers by C. 
albicans is preceded first by adherence to the intestinal epi-
thelium. C. albicans expresses multiple surface moieties that 
mediate this adherence. These adhesins exhibit differential 
expression in yeast and hyphal forms and promote binding 
by different mechanisms. In the case of yeast, adherence is 
due to passive forces such as hydrophobic and/or electro-
static interactions as well as agglutinin-like sequence (Als) 
5 [2, 195]. In addition, yeast β-glucan is also recognized by 
the nonclassical pattern recognition receptor EphA2 [195]. 
These epithelial–yeast interactions stimulate germination, 
exposing several hyphal-associated adhesins that further pro-
mote adherence. These include a number of proteins from 
the Als family, particularly Als3, as well as hyphal wall pro-
tein 1 (Hwp1) [2, 195–198].

Following adherence, C. albicans invades the epithelium 
through induced endocytosis or active penetration. Induced 
endocytosis involves interactions between fungal invasins 
and host cell proteins. C. albicans invasins include Als3 and 
the heat shock protein Ssa1 [195, 199, 200]. These inva-
sins bind epithelial cell E-cadherin and initiate endocytosis 
through an actin-dependent mechanism that requires clath-
rin [199, 201–205]. Once internalized, C. albicans prevents 
endolysosomal maturation and continues to grow. Intracellu-
lar hyphal extension is dependent on the expression of EED1 
(epithelial escape and dissemination 1) [206], and continued 
growth of hyphae results in the piercing of epithelial cells 
and subsequent dissemination.

Active penetration on the other hand is a separate mecha-
nism that occurs at later time points than endocytosis. It 
requires viable fungi and results from hyphal extension and 
invasion in between or through epithelial cells. To date, the 
process of active penetration remains poorly understood, 
and it is unclear which fungal components are involved, 
although secreted aspartic proteinases (Saps) (especially 
Sap3), lipases and phospholipases are thought to play a role 
through degradation of the epithelial tight junction protein 
E-cadherin [2, 198, 199, 207].

In addition to Saps, C. albicans secretes a number of 
other proteases and phospholipases which may contribute to 
fungal-induced epithelial damage and enable passage across 
the intestinal epithelium [198]. Similar to cryptococcal Plb1, 
candidal Plb1 promotes penetration of the epithelium by 
breaking down host cell membranes [208]. The cytolytic 
peptide toxin candidalysin was also found to be essential for 

C. albicans to damage host enterocytes [193]. In addition, a 
recent report indicates that C. albicans is also able to utilize 
phagocytes and the Trojan horse mechanism to disseminate 
throughout the host [209].

Once the intestinal epithelium has been breached, C. 
albicans can invade local tissues and nearby blood vessels 
and disseminate throughout the host. The primary target 
organs of disseminated C. albicans are the kidneys and 
brain [210–213]. Approximately 50% of patients with dis-
seminated candidiasis have CNS fungal invasion, which can 
cause meningoencephalitis and has an associated mortality 
rate of up to 90% [213]. Kidneys on the other hand are the 
most heavily colonized organ following Candida infection 
[210, 214]. These fungal burdens correlate with mortality, 
suggesting that the kidney is the critical target organ during 
candidiasis [215]. Inside the kidneys, candidal infection can 
result in tissue damage and eventual organ failure [216].

Invasion into these distant organs requires fungal cells 
first adhere to endothelial cells prior to migrating into tis-
sues [217]. C. albicans binding to the endothelium is not 
well understood, but similar to binding of the epithelium, 
endothelial binding involves adhesins and invasins that are 
differentially expressed during yeast and hyphal phases. 
Some such molecules include integrin-like proteins, mem-
bers of the Als family and fungal cell wall components 
[217]. For example, invasins Als3 and Ssa1 bind to the heat 
shock protein gp96 and an unknown endothelial receptor 
respectively, and induce endocytosis into brain endothelial 
cells [211, 218]. Additionally, Als3 has also been reported 
to promote fungal cell internalization into endothelial cells 
by binding N-cadherin [201, 217, 219, 220].

Alternative methods of transmigration across the endothe-
lium include Trojan horse transport and paracellular crossing 
between adjacent endothelial cells [217]. Lastly, fungal cell 
migration across damaged endothelial barriers also occurs 
and is facilitated by the host protease plasmin. Similar to C. 
neoformans, C. albicans binds and activates host plasmino-
gen to plasmin via a number of cell wall proteins, includ-
ing enolase [221, 222]. Surface-bound plasmin can degrade 
components of the endothelium and enhance the ability of 
C. albicans to invade tissues [222].

Conclusion

The most medically important fungal diseases are cryptococ-
cosis, aspergillosis and candidiasis. Fungal infections are 
usually limited to initial sites of infection in immunocompe-
tent individuals. However, if fungi disseminate from initial 
infection sites to the bloodstream, they can invade virtually 
any organ and cause fatal infections which account for more 
than one million deaths worldwide each year. Thus, fungal 
dissemination is a critical step in the development of invasive 
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fungal diseases. Although the mechanism(s) involved in fun-
gal dissemination remains incompletely understood, increas-
ing evidence suggests that fungi can hijack phagocytes from 
initial sites of infection to enter the bloodstream, a process 
called Trojan horse crossing. Alternatively, free fungal cells 
can also directly enter into circulation through transcytosis, 
paracellular crossing or across damaged barrier tissues. Dur-
ing fungal dissemination, neutrophils and Kupffer cells have 
been shown to play a role in filtering circulating fungi out of 
the vasculature. Interestingly, fungi in the blood can also use 
similar strategies to those they use to escape from the site of 
initial infection to invade distant organs. The mechanism(s) 
involved in fungal dissemination reflects complicated inter-
actions between the host and the pathogen, and an under-
standing of this mechanism(s) is fundamental for the devel-
opment of therapeutic strategies (Table 1).

Future directions

In vitro studies utilizing HBMECs monolayers as a BBB 
model have been extensively used to study the migration of 
C. neoformans and other pathogens across the BBB. These 
studies have made great contributions to our understand-
ing of those mechanisms governing the transcytosis [133, 
138, 141, 145, 151, 223] and Trojan horse pathways [120, 
121]. However, these BBB models cannot recapitulate some 
important in vivo features in the brain microvasculature, 
such as shear stress, cell–ECM interactions and cylindrical 
geometry characteristics. In addition, the BBB is composed 
of not only endothelial cells, but also pericytes and astro-
cytes. Therefore, what occurs in vivo in terms of fungal dis-
semination could be different to what we have observed in 
those in vitro models [224]. To overcome this weakness and 
to achieve physiological barrier function, three-dimensional 
self-organized microvascular models of the BBB containing 

endothelial cells, pericytes and astrocytes have been recently 
developed [225–228]. It is expected that these three-dimen-
sional models of the BBB would provide us a better platform 
to study fungal dissemination in a way more closely related 
to what happens in vivo.

In vivo models of mouse infection with C. neoformans 
have also been used to study fungal dissemination. In line 
with in vitro findings, histological studies support both the 
Trojan horse mechanism [71, 122] and transcytosis crossing 
[71, 133]. However, fungal dissemination is a dynamic pro-
cess, and histological studies are not an optimal approach to 
address dynamic events. In this regard, intravital microscopy 
has been recently used to study fungal dissemination through 
the imaging of dynamic interactions between fungal cells 
and endothelial cells as well as phagocytes [17, 91–93, 116, 
129, 229]. However, the limitation of intravital microscopy 
is that only a small area can be visualized and that a limited 
number of fungal cells can be analyzed [230]. As such, it is 
unknown whether the observations reflect most of the fungal 
cells. To complement histology and intravital microscopy, 
colony-forming unit (CFU) determination has been used to 
study fungal dissemination in vivo [139, 141, 145, 151]. 
However, CFU analysis fails to distinguish between fungal 
cells residing within the vasculature bed and those in the 
brain parenchyma after crossing the BBB. More recently, 
flow cytometry has been used to determine the invasion of 
brain endothelial cells by the protozoan parasite Toxoplasma 
gondii [231]. This technique is likely a powerful tool that 
can be used for future studies on fungal dissemination by 
quantifying the frequency of endothelial cells containing 
fungal cells.

Lastly, fungal cells can disseminate using numerous dif-
ferent mechanisms, namely Trojan horse crossing, transcyto-
sis, paracellular crossing and passage through damaged tis-
sues [232]. Although there is evidence to support all of these 
mechanisms, an important aspect of fungal dissemination 

Table 1   Summary of 
dissemination mechanisms of 
three fungal pathogens

Fungal species C. neoformans A. fumigatus C. albicans

Initial site of infection Lungs Lungs Mucosal tissues, 
indwelling 
devices

Hematogenous dissemination Yes Yes Yes
Target organ Brain/CNS Lungs Kidneys, brain
Trojan horse escape Yes Yes Yes
Transcytosis escape Yes Yes Yes
Paracellular crossing/loss of barrier integrity escape Yes Yes Yes
Intravascular clearance by neutrophils Yes ? ?
Liver capture Yes ? Yes
Trojan horse entry Yes ? Yes
Transcytosis entry Yes Yes Yes
Paracellular crossing/loss of barrier integrity entry Yes Yes Yes
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left unanswered is the relative frequency of each mechanism 
during infection. Determining the major pathway of fungal 
dissemination is fundamental for developing therapeutic 
strategies for invasive fungal diseases. It is a challenge to 
determine which pathway is the predominant route for fun-
gal dissemination. To address this issue, an in vivo animal 
model of fungal infection is likely required, and when one 
mechanism is analyzed the other two mechanisms must be 
properly blocked simultaneously. With the emergence of 
new technologies and scientific approaches, we believe that 
we will have a better understanding of fungal dissemination 
in the future.
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