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Single cell transcriptional and chromatin
accessibility profiling redefine cellular
heterogeneity in the adult human kidney

Yoshiharu Muto® "/, Parker C. Wilson® 27, Nicolas Ledru® !, Haojia Wu', Henrik Dimke ® 34,
Sushrut S. Waikar® ° & Benjamin D. Humphreys® 0™

The integration of single cell transcriptome and chromatin accessibility datasets enables a
deeper understanding of cell heterogeneity. We performed single nucleus ATAC (snATAC-
seq) and RNA (snRNA-seq) sequencing to generate paired, cell-type-specific chromatin
accessibility and transcriptional profiles of the adult human kidney. We demonstrate that
snATAC-seq is comparable to snRNA-seq in the assignment of cell identity and can further
refine our understanding of functional heterogeneity in the nephron. The majority of differ-
entially accessible chromatin regions are localized to promoters and a significant proportion
are closely associated with differentially expressed genes. Cell-type-specific enrichment of
transcription factor binding motifs implicates the activation of NF-kB that promotes VCAM1
expression and drives transition between a subpopulation of proximal tubule epithelial cells.
Our multi-omics approach improves the ability to detect unique cell states within the kidney
and redefines cellular heterogeneity in the proximal tubule and thick ascending limb.
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ARTICLE

he kidney is composed of diverse cell types with distinct

subpopulations and single-cell sequencing can dissect

cellular heterogeneity at high resolution!. For example, a
small subset of cells within the proximal tubule and Bowman’s
capsule express vimentin, CD24, and CD13323, These cells have
a distinct morphology and expression profile and undergo
expansion after acute kidney injury. Furthermore, they have
reported potential for tubular and podocyte regeneration*~7 and
have been implicated in the development of renal cell
carcinoma8. However, the sparsity of these cells has hampered
further characterization. Another example of cellular hetero-
geneity is seen in the thick ascending limb. Studies in mouse and
human suggest that there are structural and functional differ-
ences between medullary and cortical thick ascending limb,
however, the signaling pathways that drive these differences are
not well defined®.

Single-cell or nucleus RNA sequencing (scRNA-seq or snRNA-
seq) has fostered a greater understanding of the genes and
pathways that define cell identity in the kidney!. Multiple scRNA-
seq atlases of mature human!?-13 and mouse kidney!#!> have
established how transcription contributes to cell-type specificity.
Recent methods have expanded this approach to single-cell pro-
filing of chromatin accessibility!®-18. Single nucleus assay for
transposase-accessible chromatin using sequencing (snATAC-
seq) is an extension of bulk ATAC-seq!® that employs hyper-
active Tn5 transposase to measure chromatin accessibility in
thousands of individual cells!”. Chromatin accessibility is a
dynamic process that drives nephron development and nephron
progenitors have distinct chromatin accessibility profiles that
change as they differentiate!8. The role of chromatin accessibility
in the promotion or inhibition of kidney repair and regeneration
has important implications for designing therapies for acute and
chronic kidney disease and may help to improve directed dif-
ferentiation of kidney organoids2(. Joint profiling by scRNA-seq
and snATAC-seq in the adult mouse kidney has provided a fra-
mework for understanding how chromatin accessibility regulates
transcription!® however, the single-cell epigenomic landscape of
the human kidney has not been described.

Integration and analysis of multimodal single-cell datasets is an
emerging field with enormous potential for accelerating our
understanding of kidney disease and development?!. Bioinfor-
matics tools can extract unique information from snATAC-seq
datasets that is otherwise unavailable by scRNA-seq. Prediction of
cell-type-specific cis-regulatory DNA interactions?? and tran-
scription factor activity?? are two methods that complement the
transcriptional information obtained by scRNA-seq. Long-range
chromatin-chromatin interactions play an important role in
transcriptional regulation and are influenced by transcription
factor binding?%. Chromatin accessibility profiling will help to
identify distant regulatory regions that influence transcription via
long-range interactions.

We have performed snATAC-seq and snRNA-seq to examine
how chromatin accessibility can refine our understanding of cell
state and function in the mature human kidney. We generated
an interactive multimodal atlas encompassing both tran-
scriptomic and epigenomic data (http://humphreyslab.com/
SingleCell/). Data tracks for the cis-coaccessibility networks
and cell-specific differentially accessible chromatin are available
for download and viewing with the UCSC genome browser
(https://genome.ucsc.edu/s/parkercwilson/control_celltype_cr).
Combined snRNA-seq and snATAC-seq analysis improved our
ability to detect unique cell states within the proximal tubule and
thick ascending limb and redefines cellular heterogeneity that
may contribute to kidney regeneration and cell-specific cation
permeability.

Results

Single-cell transcriptional and chromatin accessibility profiling
in the adult human kidney. snRNA-seq and snATAC-seq were
performed on five healthy adult kidney samples (Fig. 1a). Selected
patients ranged in age from 50 to 62 years and included men
(n=3) and women (n=2). All patients had preserved kidney
function (mean sCr = 1.07 mg/dl, eGFR = 64.4 + 4.7 ml/min/
1.73 m2). Histologic review showed no significant glomerulo-
sclerosis or interstitial fibrosis and tubular atrophy (Supplemen-
tary Table 1). We processed these samples at different timepoints.
Batch correction was performed with the R package “Harmony”
for both snATAC-seq and snRNA-seq datasets. We used Seurat
to determine the cellular composition of our snRNA-seq samples,
annotate cells based on their transcriptional profiles, and inform
our snATAC-seq analysis (Fig. 1a). snRNA-seq identified all
major cell types within the kidney cortex (Fig. 1b, Supplementary
Fig. la) based on the expression of lineage-specific markers
(Fig. 1c, Supplementary Fig. 1b). We detected proximal tubule
(PT), parietal epithelial cells (PEC), thick ascending limb (TAL),
distal tubule (DCT1, DCT?2), connecting tubule (CNT), collecting
duct (PC, ICA, ICB), endothelial cells (ENDO), glomerular cell
types (MES, PODO), fibroblasts (FIB), and a small population of
leukocytes (LEUK) (Supplementary Table 2, Supplementary
Data 1). Notably, there was a subpopulation of proximal tubule
that had increased expression of VCAMI1 (PT_VCAMI). This
subpopulation also expressed HAVCRI (kidney injury molecule-
1), which is a gene upregulated in the proximal tubule after acute
injury and a predictor of long-term renal outcomes?°.

Integration of single nucleus RNA and ATAC datasets for
prediction and validation of ATAC cell-type assignments.
snATAC-seq captures the chromatin accessibility profile of
individual cells!7. Relatively less is known about cell-type-specific
chromatin accessibility profiles; so we leveraged our annotated
snRNA-seq dataset to predict snATAC-seq cell types with Seurat
using label transfer?!. Label transfer was performed by creating a
gene-activity matrix from the snATAC-seq data, which is a
measure of chromatin accessibility within the gene body and
promoter of protein-coding genes. Transfer anchors were iden-
tified between the “reference” snRNA-seq dataset and “query”
gene activity matrix followed by the assignment of predicted cell
types. The distribution of snATAC-seq prediction scores showed
that the vast majority of cells had a high prediction score and
were confidently assigned to a single-cell type (Supplementary
Fig. 2). The snATAC-seq dataset was filtered using a 97% con-
fidence threshold for cell-type assignment to remove heterotypic
doublets. Comparison between snATAC-seq cell-type predictions
obtained by label transfer (Fig. 1d) and curated annotations of
unsupervised clusters (Fig. le, f, Supplementary Fig. 1c, d and
Supplementary Table 3) indicates that all major cell types were
present in both datasets and that snATAC-seq is comparable to
snRNA-seq in the detection and assignment of cell identities
(Supplementary Fig. 3). We performed downstream analyses with
gene-activity-based cell-type assignments, which were obtained
by unsupervised clustering of the snATAC-seq dataset. Interest-
ingly, snATAC-seq was able to detect two subpopulations within
the proximal tubule cluster, which likely represent the proximal
convoluted tubule (Fig. 1e, PCT) and the proximal straight tubule
(Fig. le, PST). PCT showed greater chromatin accessibility in
SLC5A2, which encodes sodium glucose cotransporter 2 (SGLT2);
whereas PST showed greater accessibility in SLC5A1 (Fig. 1f,
Supplementary Fig. 4) which encodes the sodium glucose
cotransporter 1 (SGLT1). SGLT2 reabsorbs glucose in the S1 and
S2 segments of the proximal tubule and SGLT1 is located in $3%6.
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The delineation between S1/S2 and S3 was less clear in the
snRNA-seq dataset (Supplementary Fig. 4), which suggests that
snATAC-seq provides complementary information that may
refine cell-type assignment; particularly for genes transcribed at
low levels or genes that are not detected by snRNA-seq. To fur-
ther illustrate this point, we down-sampled the snATAC-seq
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dataset so that it contained the same number of cells as the
snRNA-seq dataset. The down-sampled snATAC-seq dataset
retained the ability to distinguish between PCT and PST segments
even after we further reduced the number of snATAC-seq cells to
half the number of snRNA cells (Supplementary Fig. 5). The
chromatin accessibility profile of S1/52 may be of clinical interest
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Fig. 1 Single-cell transcriptional and chromatin accessibility profiling on the human adult kidneys. a Graphical abstract of experimental methodology.
n=>5 human adult kidneys were analyzed with snRNA-seq and snATAC-seq. b UMAP plots of snRNA-seq dataset. PT, proximal tubule; PT_VCAM1,
subpopulation of proximal tubule with VCAMT expression; PEC, parietal epithelial cells; TAL, thick ascending limb; DCT, distal convoluted tubule; CNT,
connecting tubule; PC, principle cells, ICA, Type A intercalated cells; ICB, Type B intercalated cells; PODO, podocyte; ENDO, endothelial cells; MES,
mesangial cells, FIB, fibroblasts; LEUK, leukocytes. € Dot plot of snRNA-seq dataset showing gene expression patterns of cluster-enriched markers. The
diameter of the dot corresponds to the proportion of cells expressing the indicated gene and the density of the dot corresponds to average expression
relative to all cell types. d Multi-omics integration strategy for processing the snATAC-seq dataset. Following integration and label transfer, the snATAC-
seq dataset was filtered using a 97% prediction score threshold for cell-type assignment. e UMAP plot of snATAC-seq dataset with gene activities-based
cell-type assignments. PCT, proximal convoluted tubule; PST, proximal straight tubule. f Dot plot of snATAC-seq dataset showing gene-activity patterns of
cell-type markers. The diameter of the dot corresponds to the proportion of cells with detected activity of indicated gene and the density of the dot

corresponds to average gene activity relative to all cell types.
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Fig. 2 Distribution of cell-type-specific chromatin accessible regions. a Heatmap of average number of Tn5 cut sites within a differentially accessible
region (DAR) for each cell type (left). The color scale represents a z-score of the number of Tn5 sites within each DAR scaled by row. Fragment coverage

(frequency of Tn5 insertion) around the DAR (DAR + 50 Kb) on the LRP2 gene promoter is shown (right). b Bar plot of annotated DAR locations for each

cell type.

in determining the factors that drive glucose reabsorption, which
is the therapeutic target of SGLT2 inhibitors26. Together, our
multimodal snATAC-seq and snRNA-seq analysis improved our
ability to dissect cellular heterogeneity.

Chromatin accessibility defines cell type. We detected 214,890
accessible chromatin regions among 27,034 cells in the snATAC-
seq library. We compared these regions to a previously published
dataset of DNase I-hypersensitive sites (DHS) in bulk glomeruli
and tubulointerstitium?’. DNase hypersensitivity is an alternative

4

measure of chromatin accessibility and approximately 50% of all
regions identified by our pipeline were overlapping with a DHS in
the glomerulus or tubulointerstitium. The proportion of over-
lapping regions increased to ~85% when our dataset was filtered
for regions contained in at least 10% of nuclei (Supplementary
Fig. 6). These data suggest that snATAC-seq is a robust method
for the detection of accessible chromatin in the adult kidney.
We used the R package Signac?! to investigate differences in
chromatin accessibility between cell types. Cell types can be
distinguished based on whether differentially accessible chroma-
tin regions (DAR) are “open” or “closed” (Fig. 2a, Supplementary
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Data 2). We employed a log-fold-change threshold of 0.25 and
used Bonferroni-adjusted p-values to assess significance (padj <
0.05) of DAR. Approximately 20% (mean proportion = 0.203 +
0.04) of DAR were closely associated with differentially expressed
genes in their respective cell types (Supplementary Table 4). For
example, LRP2 is a lineage-specific gene expressed in the
proximal tubule and a coverage plot in this region shows an
increase in number and amplitude of ATAC peaks within its
promoter and gene body (Fig. 2a). In fact, the majority of DAR
were located in a promoter region within 3kb of the nearest
transcriptional start site (Fig. 2b, Supplementary Fig. 7. The
second most common location was intronic and the distribution
of DAR was relatively conserved across cell types (Fig. 2c). A
minority of cell-type-specific differentially expressed genes were
closely associated with a DAR (mean proportion = 0.358 = 0.07),
which raises the question of assigning function to DAR that are
not located near differentially expressed genes. Regulatory regions
can associate via long-range interactions and a DAR does not
necessarily regulate the closest gene. Bioinformatics tools can
infer regulatory chromatin interactions and may be useful for
assigning function to DAR?2. Long-range interactions mediate
the association between enhancers and promoters via chromatin
looping and are regulated in part by transcription factors?4.

Chromatin accessibility is associated with cell-type-specific
transcription factor activity and chromatin interaction net-
works. Transcription factors are key determinants of cell fate that
drive cellular differentiation in kidney aging and development28,
Transcription factor “activity” can be predicted for individual cell
types based on the presence of binding motifs within DAR. We
used chromVAR?3 to infer transcription-factor-associated chro-
matin accessibility in our snATAC-seq dataset. We observed that
individual cell types can be defined by transcription factor
“activity” (Fig. 3a, Supplementary Data 3), suggesting that cell-
type-specific transcription factors likely regulate chromatin
accessibility. HNF4A encodes a key transcription factor that
drives proximal tubule differentiation2°. chromVAR detected an
enrichment of HNF4A binding motifs within DAR in the prox-
imal tubule (Fig. 3b, motif activity) that was supported by
increased chromatin accessibility in HNF4A (Fig. 3b, gene
activity) and increased HNF4A transcription in the snRNA-seq
dataset (Fig. 3b, gene expression). We validated HNF4A binding
by chromatin immunoprecipitation followed by quantitative PCR
(ChIP-qPCR) to the predicted HNF4A binding sites within DAR
for selected target gene loci (SLC34A1, SLC5A2, HNF4A) in pri-
mary renal proximal tubule epithelial cells (RPTEC, Supple-
mentary Fig. 8a). HNF4A expression was detectable in RPTEC,
however, at a lower level than kidney cortex, suggesting robust
interactions of HNF4A and these loci in this cell type (Supple-
mentary Fig. 8b).

A similar pattern was seen for TFAP2B, which regulates
development in the distal nephron3?, There was increased
TFAP2B transcription factor “activity” in the thick ascending
limb and distal convoluted tubule (Fig. 3b, motif activity), in
addition to increased chromatin accessibility in TFAP2B (Fig. 3b,
gene activity) and increased TFAP2B transcription (Fig. 3b, gene
expression). The AP-2 family of transcription factors consists of
five proteins in mice and humans encoded by TFAP2A, TFAP2B,
TFAP2C, TFAP2D, and TFAP2E3! with a well-established role in
kidney development3032, To further explore the role of
transcription factors in determining distal nephron fate, we
performed pseudotemporal ordering of the distal convoluted
tubule (DCT), connecting tubule (CNT), and principal cells (PC),
which form a distinct cluster of transcriptionally related cell types
in both the snRNA and snATAC datasets (Fig. 1). We identified

pseudotime-dependent chromatin regions that distinguish
between DCT and PC while progressing from proximal to distal
along the distal nephron (Supplementary Fig. 9a, b) and
performed a transcription factor motif enrichment within these
regions with Signac. We identified 24 transcription factor motifs
that were significantly enriched (FDR<0.05) with a fold
enrichment greater than two. TFAP2B was among those
transcription factors which also included a couple of candidate
transcription factors that potentially regulate distal nephron fate
(ZBTB33, CREB3, E2FI). Subsequently, we performed pseudo-
temporal ordering of the distal nephron cells in snRNA dataset to
identify pseudotime-dependent gene modules that change their
expression pattern from proximal to distal (Supplementary
Fig. 9¢, d). We intersected the genes in the gene module with
the highest activity in PC and CNT with enriched transcription
factor motifs to identify transcription factors that change their
motif activity as well as their expression (Supplementary Fig. 9e,
f). As a result, we identified additional members of the AP-2
family (TFAP2A, TFAP2C) and several candidate transcription
factors (EGRI1, ZSCAN4, STATI1, STAT3, KLF9, NR2F2, IRFI)
that may also play a role in determining distal nephron fate.

We used the R package Cicero?? to predict cis-regulatory
chromatin interactions for individual cell types. Cis-
coaccessibility networks (CCAN) are families of chromatin
regions that co-vary their accessibility and can be used to predict
chromatin interactions. Within HNF4A, we observed a robust
CCAN in the proximal convoluted tubule with multiple
connections (red or blue arcs) between differentially accessible
regions (Fig. 3¢, red boxes) in the promoter, gene body, and distal
regions (Fig. 3c). Overall, we observed poor correlation between
Cicero gene activity and gene expression (Pearson r2 = 0.12), but
good agreement with public databases of known chromatin-
chromatin interactions. We compared our predicted interactions
with the GeneHancer database33 to determine which connections
had been previously-reported in the literature. GeneHancer is a
collection of human enhancers and their inferred target genes
created using four methods: promoter capture Hi-C, enhancer-
targeted transcription factors, expression quantitative trait loci,
and tissue co-expression correlation between genes and enhancer
RNA. The subset of GeneHancer interactions with “double elite”
status is the most stringent set of interactions in the database?3
and the majority of predicted Cicero interactions within 50 kb of
a cell-type-specific DAR were overlapping with “double elite”
GeneHancer interactions (Fig. 3c, blue arcs). The proportion of
Cicero connections present in the “double elite” GeneHancer
database was dependent on the Cicero coaccessibility score, which
is a measure of increased confidence of the predicted interaction
(Supplementary Fig. 10). The Cicero connections with a lower
coaccessibility score were less likely to be in the GeneHancer
“double elite” database compared to Cicero connections with a
higher coaccessibility score (p < 2.2 x 10719, chi-squared). Within
the proximal convoluted tubule, the majority of Cicero connec-
tions were either within a promoter region or between a promoter
and another location (Fig. 3d) and this distribution was similar in
other cell types (Supplementary Fig. 11). Data tracks for the cis-
coaccessibility networks and cell-specific differentially accessible
chromatin are available for download and viewing with the UCSC
genome browser (Supplementary Fig. 12).

On a global level, transcription factor activity had modest
correlation with transcription factor expression (Pearson r2=
0.36, p-value = 4.2 x 10712, Fig. 3e), however, transcription
factors can act as either activators or repressors depending on cell
type and context. We categorized transcription factors into three
groups: (1) those that showed significant positive correlation
between motif activity and gene expression (n = 38), 2) those that
showed negative correlation (n = 11) and 3) those that showed no
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correlation (n=403). We hypothesize that transcription factors expression whereas mineralocorticoid receptor (NR3C2) showed
with positive correlation between motif activity and transcription  a negative correlation (Fig. 3f). NR3C1 and NR3C2 are closely-
factor expression may be acting as transcriptional activators related steroid hormones with nearly-identical binding motifs
within DAR and those with negative correlation are acting as that have different biologic functions in the nephron3* and this
transcriptional repressors. Surprisingly, glucocorticoid receptor opposing relationship between motif activity and expression may
(NR3C1I) showed a positive correlation between motif activity and  regulate cell-specificity.
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Fig. 3 Cell-type-specific transcription factor activity and chromatin interaction networks. a Heatmap of average chromVAR motif activity for each cell
type. The color scale represents a z-score scaled by row. b UMAP plot displaying chromVAR motif activity (left), gene activity (middle) and gene
expression (right) of HNF4A or TFAP2B. The color scale for each plot represents a normalized log-fold-change (LFC) for the respective assay. ¢ Cis-
coaccessibility networks (CCAN, red or blue arcs) near the HNF4A locus in the proximal convoluted tubule (PCT) with multiple connections between DAR
(red boxes). DAR overlapping with high-confidence GeneHancer interactions are shown as blue arcs. Fragment coverage (frequency of Tn5 insertion) and
called ATAC peaks are shown in the lower half. HNF4A gene track is shown along the bottom of the image. d Circos plot displaying CCAN in the PCT.
e Cell-specific mean chromVAR motif activity from the JASPAR database was plotted against cell-specific average log-fold-change expression for the
corresponding transcription factor for all cell types and transcription factors (left), transcription factors with significant positive correlation (middle) and
transcription factors with significant negative correlation (right). f Mean chromVAR activity was plotted against average log-fold-change for glucocorticoid
receptor (NR3CI, left) and mineralocorticoid receptor (NR3C2, right). Significant correlation was assessed with Pearson’s product moment correlation
coefficient using the cor.test function in R. snATAC-seq cell types were assigned using the label-transferred annotations from the snRNA-seq Seurat
object. Cell types without significant chromVAR activity or transcription factor expression as determined by the Seurat FindMarkers function were not

included in the plots.

Allele-specific expression at the single-cell level. Genetic varia-
tion is one of many factors that influences gene expression pat-
terns. Allele-specific expression (ASE) refers to the relative
contribution of maternal and paternal alleles that can be used to
identify cis-regulatory variants that underlie phenotypic differ-
ences in a population®®>. We used GATK3® to discover hetero-
zygous germline single nucleotide variants (SNV) that overlap with
coding transcripts (mRNA) and examined allelic-bias between
donors using ASEP3 after employing the WASP pipeline’” to
mitigate mapping bias. We first aggregated all cells into a “pseudo-
bulk” dataset and analyzed 401 genes after applying our SNV fil-
tering criteria. Among these 401 genes, we identified 84 with
evidence of ASE after adjustment for multiple comparisons
(Supplementary Data 4, Benjamini-Hochberg padj < 0.05). A
subset of genes with ASE in the pseudo-bulk dataset are known to
have important functions in the kidney, including CLCNKB and
SLCI2A3 (Supplementary Fig. 13). We de-multiplexed our
pseudo-bulk mRNA dataset to examine ASE limited to the prox-
imal tubule (PT). Within the PT, we examined 77 genes and
identified 17 with ASE. The majority of genes with ASE in the PT
were also identified in the pseudo-bulk dataset (n = 12/17), how-
ever, there were a limited number of genes that were unique to the
PT (n=5/17). These genes were predominantly from the UDP-
glycosyltransferase family (UGT1A10, UGT1A8, UGT1A9), which
are involved in the elimination of exogenous chemicals and by-
products of endogenous metabolism38. Subsequently, we expanded
our analysis to include intronic reads (pre-mRNA), which
increased the number of analyzed genes to 1430. Among these
1430 genes in the pre-mRNA analysis, we identified 432 with ASE
that were enriched for GO biological processes, including glucur-
onidation and sodium ion transport. A total of 68 (n=68/84,
80%) ASE genes in the pseudo-bulk pre-mRNA analysis were also
identified in the mRNA analysis. We de-multiplexed our pseudo-
bulk pre-mRNA dataset to examine ASE in the proximal tubule
where we analyzed 221 genes and identified 62 with ASE. Among
these 62 genes, 16 (n = 16/62, 25%) were only identified in the PT-
specific pre-mRNA analysis, which suggests that allele-specific bias
may be enriched in specific cell types.

Multimodal analysis highlights cellular heterogeneity in the
thick ascending limb. The thick ascending limb in the cortex and
medulla regulates sodium chloride balance, urinary concentra-
tion, and calcium and magnesium homeostasis. The majority of
divalent cations are reabsorbed in the cortical segment and are
regulated by the expression of claudins®. To determine if we
could detect subpopulations of cells with variable claudin
expression patterns, we performed unsupervised clustering on
the thick ascending limb in our snRNA-seq dataset (Fig. 4a)
to identify three groups of cells. There was a group of cells
(SLC12A1+UMOD+) that expressed thick ascending limb

markers (CLDN16, KCNJ10, and PTHIR): TAL1 and a second
group that expressed another set of TAL specific markers such as
CLDNI10: TAL2 (Fig. 4b). The third group of cells was identified
as ascending thin limb (ATL) based on the expression of pre-
viously published markers!?. We used immunohistochemistry to
validate that PTHIR and KCNJ10 were expressed in a subset of
UMOD+ SLCI12A1+ cells (Fig. 4c).

We analyzed the thick ascending limb cluster in the snATAC-
seq dataset and identified three groups of cells that echoed our
findings in the snRNA-seq dataset (Fig. 4d, e). Our findings
suggest that thick ascending limb subpopulations can be defined
by either transcription or chromatin accessibility profiles. We
used the Seurat FindMarkers function and chromVAR to identify
increased transcription factor motif activity for HNF1B or ESRRB
in either TAL subset relative to the remaining TAL cells
(Bonferroni padj < 0.05) (Fig. 4f). Subsequently, we used the
Seurat FindMarkers function to identify DAR that differentiate
thick ascending limb cell populations and performed a transcrip-
tion factor motif enrichment of these DAR using the Seurat
FindMotifs function (Fig. 4g). Interestingly, HNF1B was the most
enriched motif in open chromatin regions in TAL1 whereas
ESRRB was enriched in open regions in TAL2. ESRRB is an
orphan nuclear receptor with a critical role in early development
and pluripotency?? and HNF1B is a homeodomain-containing
transcription factor that regulates nephrogenesis. Pathogenic
germline HNFIB variants are a known cause of autosomal
dominant tubulointerstitial kidney disease with hypomagnesemia
and hypercalciuriat!. Collectively, our multimodal analysis
demonstrates heterogeneity within the thick ascending limb at a
transcriptomic and chromatin accessibility level and highlights
transcription factors that likely contribute to these differences.

NF-kB regulates the molecular signature of a subpopulation of
proximal tubule that expresses VCAM1. We detected a subset of
proximal tubule cells that had increased expression and chro-
matin accessibility of VCAM]1, which we designated PT_VCAM1
(Fig. 1). Immunofluorescence studies demonstrated VCAMI
expression in a scattered distribution amongst proximal tubule
epithelium (Fig. 5a). Our single-cell studies estimate that
PT_VCAMI represents ~2% of total cells and 6% of proximal
tubular epithelium. We also confirmed that VCAM1+ tubular
cells were observed in 4.19 + 1.58% of LTL+ PT cells, whereas no
VCAMI+ cells were detected in UMOD+ TAL cells in the
kidney cortex (Fig. 5b). Although previous studies have shown
VCAMI expression in the descending limb of loop of Henle
(dTL), we only observed VCAM1 expressed in a subset of the dTL
by costaining kidney sections with AQP1 (Fig. 5c). These data
suggest that the majority of VCAMI1+ tubular cells are in the
proximal tubules within the cortex. Given that a small minority of
dTL tubules expressed VCAM1 compared to VCAM1+ PT cells,
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we concluded that VCAM1+4 dTL cells are unlikely to be a sig-
nificant portion of the cells in our dataset. Despite the fact that
kidney samples originated from patients without kidney injury,
the PT_VCAM1 population showed increased expression of
kidney injury molecule-1 (KIM1, HAVCRI), which is a bio-
marker that is increased in acute kidney injury and chronic

kidney disease*2. Interestingly, PT_VCAMI also expressed VIM
(vimentin), CD24, and CD133 (Supplementary Fig. 14), which is
consistent with a previously described population of cells with
progenitor-like features in the proximal tubule?-4. We deter-
mined that a subset of VCAMI1+ proximal tubular cells express
CD24 or CD133 (Fig. 5d) in immunofluorescence analysis. We
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Fig. 4 Transcriptional and epigenetic heterogeneity in the thick ascending limb. a Sub-clustering of TAL on the umap plot of snRNA-seq dataset to divide
three subpopulations (TAL1, TAL2, and ATL). ATL, Ascending thin limb (of loop of Henle). b Dot plots showing gene expression patterns of the genes
enriched in each of TAL subpopulations (left). The diameter of the dot corresponds to the proportion of cells expressing the indicated gene and the density
of the dot corresponds to average expression relative to all cell types. Umap displaying gene expressions of CLDNT0, CLDN16, STO0A2 or UMOD (right).
¢ Representative immunohistochemical images of KCNJ10 or PTH1R (brown) and UMOD or SLC12A1 (blue) in the adult human kidneys. Scale bar indicates
50 um. n = 3 samples were independently analyzed and similar results were obtained. d Sub-clustering of TAL on the umap plot of snATAC-seq dataset to
divide three subpopulations (TAL1, TAL2, and ATL). e Dot plots showing gene activity patterns of the genes enriched in each of TAL subpopulations (right).
The diameter of the dot corresponds to the proportion of cells with detected activity of indicated gene and the density of the dot corresponds to average
gene activity relative to all cell types. Umap displaying gene activities of CLDN10, CLDN16, STO0A2, or UMOD (left). f Differentially activated transcription
factor motifs with chromVAR between TAL1 and TAL2. The top 6 motifs with the lowest P values are listed. g Motif enrichment analysis on the DARs
between TALT and TAL2. Background was set as the genomic regions that are accessible to at least 2.5% of the TAL cells. The top 6 motifs with the lowest
P values in each subpopulation are listed.
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Fig. 5 Identification of a subset of proximal tubular cells that express VCAM1. a Umap plot displaying VCAM1 gene expression in the snRNA-seq dataset
(left), and representative immunohistochemical images of VCAM1 (red) or LTL (Lotus tetragonolobus lectin, green) in the adult kidney (n =3 patients).
Arrowheads indicate the VCAM1+ proximal tubular cells. VCAM1 was expressed in PEC and a subpopulation of LTL+ proximal tubular cells. Scale bar indicates
100 um (upper right) or 20 um (lower right). b Immunofluorescence staining for VCAM1 (green), UMOD (red) and LTL (white) in the adult human kidney
sections (left, representative image) and quantitation of VCAMI1-positive cells on the LTL-positive cells or UMOD-positive cells (right). The quantification was
performed in five 200x images randomly taken from each patient (n = 3 patients). Arrowheads indicate VCAM1-positive cells in the LTL-positive PT. Scale bar
indicates 100 um. Box-and-whisker plots depict the median, quartiles and range. ***P <0.001 (P=5.47 x10~", two-sided Student's t test). ¢ Representative
immunohistochemical images of SLC34A1 or AQP1 (blue) and VCAM1 (brown) in the adult human kidneys. An arrowhead marks VCAMT1 expression in the
DTL and an arrow marks DTL without VCAMT expression. Scattered brown dots are seen with multiple different antibodies and considered non-specific
staining. Scale bar indicates 50 um. n = 3 samples were independently analyzed and similar results were obtained. d Representative immunostaining images of
CD24 or CD133 (red) and VCAM1 (green) in the adult human kidney. Arrowheads indicate VCAM1 co-expression with CD24 or CD133 in PT and arrows mark
VCAM1 expression without CD24 or CD133. Scale bar indicates 20 um. n =3 samples were independently analyzed and similar results were obtained.

also observed that CD24+ or CD133+ cells are rare in the We compared the transcriptional profile of PT_VCAMI to the
VCAMI- proximal tubular cells. These findings indicate that the remaining proximal tubule to identify 464 differentially expressed
PT_VCAMI cluster is heterogeneous and may represent an genes with an absolute log-fold-change of at least 0.25 (FDR <
injured or regenerative subpopulation of cells. 0.05, Supplementary Data 5). Gene-ontology enrichment analysis
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of the differentially expressed genes showed an enrichment for
pathways involved in metabolism, cell migration, angiogenesis,
proliferation, and apoptosis. In particular, there was enrichment
for genes that control branching morphogenesis of epithelial tubes
and the MAPK and Wnt signaling pathways (Supplementary
Data 6). These results suggest that the signaling pathways in this
subpopulation are distinct from the remaining proximal tubule.
We performed pseudotemporal ordering with Monocle*? to
determine which genes drive the transition from healthy proximal

10

tubule to the PT_VCAMI state (Fig. 6a). We identified VCAM]1
and TPMI1 as genes that show increased expression in
PT_VCAMI cells and SLC5A12 and SLC4A4 as genes that show
decreased expression (Fig. 6a). VCAMI is a key mediator of
angiogenesis and TPMI encodes tropomyosin 1, which is an
actin-binding protein involved in the cytoskeletal contraction. In
contrast, SLC5A12 and SLC4A4 encode a lactate and bicarbonate
transporter. SLC5A12 and SLC4A4 are abundantly-expressed in
the PT where VCAM1I and TPM1 can be detected in a subset of
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Fig. 6 Characterization of a subset of proximal tubular cells using a multi-omics approach. a Pseudotemporal trajectory from PT to PT_VCAM1 using
snRNA-seq was generated with Monocle3 (left), and gene expression dynamics along a pseudotemporal trajectory from PT to PT_VCAM 1 are shown
(right); VCAM1 (upper left), TPMT1 (upper right), SLC5A12 (lower left) and SLC4A4 (lower right). b Fragment coverage (frequency of Tn5 insertion) around
the representative DAR (DAR £ 5000 bp) in VCAMT locus. ¢ Pseudotemporal trajectory from PT to PT_VCAM]1 using snATAC-seq was generated with
Cicero (left). Chromatin accessibility dynamics along the pseudotemporal trajectory from PT to PT_VCAM1 are shown (right). chr1:100719411-100719996
(VCAMT promoter, upper left); chr15:63040511-63045764 (TPMT promoter, upper right), chr11:26714753-26720418 (SLC5A12 gene body, lower left) and
chr4:71338336-71340367 (SLC4A4 gene body, lower right). d Feature plot of single-cell chromVAR motif activity of RELA and HNF4A in the entire dataset
or PT/PT_VCAMI1 subset. The color scale for each plot represents a normalized log-fold-change (LFC). e Immunofluorescence staining for VCAM1 (green),
HNF4A (red) and LTL (white) in the adult human kidney sections (left, representative image) and quantitation of HNF4A-positive cells on the VCAM1-
positive or negative subset of LTL-positive PT cells (right). The quantification was performed in five 200x images randomly taken from each patient (n =
3). Arrowheads indicate VCAM1-positive cells without HNF4A expression. Scale bar indicates 50 um. Box-and-whisker plots depict the median, quartiles
and range. ***P < 0.001 (P =1.21x10~25, two-sided Student's t test). f ChIP followed by quantitative PCR (ChIP-gPCR) analysis of RELA binding within the
promoter or the open chromatin region that was predicted to interact with a VCAMT promoter via a CCAN in the VCAMT locus in RPTEC (n=3

independent samples). The background control was set on the region without RELA motif at the upstream of VCAMT promoter. See also Supplementary

Fig. 17b (graphical method). Data are means + s.d. *P<0.05 (P = 0.0129 and 0.0264, two-sided one sample t test).

cells. We constructed a complementary pseudotemporal trajec-
tory with Cicero?? to examine changes in chromatin accessibility
during the transition from PT to PT_VCAMI. Increased
transcription of VCAM1I and TPM1I (Fig. 6a) was associated with
increased chromatin accessibility within the VCAMI gene body
and promoter region (Fig. 6b, c). Similarly, decreased transcrip-
tion of SLC5AI12 and SLC4A4 (Fig. 6¢c) was associated with
decreased chromatin accessibility (Fig. 6¢, Supplementary Fig. 15).
We identified transcription factors that likely regulate the
transition between proximal tubule and PT_VCAMI by assessing
chromVAR transcription factor activities. Interestingly, the
proximal tubule showed robust activity of HNF4A, which was
decreased in the PT_VCAMI cluster and coincided with
increased activity of REL and RELA (Fig. 6d). We validated
reduced HNF4A protein expression in PT_VCAMI nuclei
(Fig. 6e). NF-xB is a family of inducible transcription factors
that share homology in the Rel domain that has been implicated
in the inflammatory response in renal disease**. In particular,
ischemia-reperfusion injury-induced acute kidney injury activates
NF-xB and NF-«kB inhibition improves renal function®’.
Consistent with this finding, gene set enrichment analysis of
the differentially expressed genes in PT_VCAM1 compared to PT
implicated NF-kB signaling (Supplementary Fig. 16). Interest-
ingly, cultured RPTEC express VCAM1 (Supplementary Fig. 17a),
likely reflecting injury/dedifferentiation as a consequence of
in vitro culture. We asked whether cultured RPTEC could be used
to validate the predicted role of RELA (NF-kB) in VCAMI cis-
regulatory interactions. We identified an open chromatin region
~60 kb from the VCAM1 gene body that contained a RELA motif
predicted to interact with the VCAMI promoter (via a cis-
coaccessibility network). Indeed, this site was enriched for RELA
binding by ChIP-qPCR (Fig. 6f, Supplementary Fig. 17b),
providing experimental evidence for regulation of VCAMI
expression by RELA in this cell type.

The proportion of PT_VCAMI is elevated in acute kidney
injury and chronic kidney disease. We performed deconvolution
of bulk RNA-seq obtained from mouse ischemia-reperfusion
injury (IRI) experiments to determine if the proportion of
PT_VCAMI is related to acute kidney injury*. BisqueRNA
estimates cell-type abundance from bulk RNA-seq using a
scRNA-seq reference-based deconvolution?’. The estimated
proportion of PT_VCAMI1 significantly increased 24 h post-IRI
and persisted for at least 7 days; corresponding with a decrease in
the proportion of normal proximal tubular cells (Fig. 7a). Inter-
estingly, the estimated proportion of PT_VCAMI in the no
surgery control mouse kidneys increased in older mice (Fig. 7b)

and was accompanied by an increase in leukocytes. These results
suggest a role for aging-related chronic inflammation and tubular
injury in the appearance of PT_VCAMI. To further characterize
the role of PT_VCAMI in acute kidney injury, we used a snRNA-
seq mouse IRI#® dataset to predict the corresponding cell type for
PT_VCAMI in the injured mouse kidney. Label transfer of cell-
type annotations from mouse IRI to human indicates that the
majority of PT_VCAMI are related to the failed-repair proximal
tubule cell (FR-PTC) population that we recently identified in the
mouse (Fig. 7c)*8.

We retrieved bulk RNA-seq datasets of healthy and injured
human kidneys to estimate the proportion of PT_VCAMI%’. We
identified 72 non-tumor kidney samples in The Cancer Genome
Atlas (TCGA) using the GDC data portal. The TCGA patients
had a mean age of 62.5 years (s.d. = 11.9 years) and had
undergone nephrectomy for renal cell carcinoma. Deconvolution
of the non-tumor kidney samples with BisqueRNA*’ estimated
that the proportion of PT_VCAMI1 cells was 2.6% (Fig. 7d),
which is consistent with our snRNA-seq and snATAC-seq
estimates. Next, we analyzed bulk RNA-seq from kidney biopsies
of patients with type 2 diabetes?®. The patients with advanced
diabetic nephropathy had a significantly higher proportion of
PT_VCAMI compared to control or early diabetic nephropathy
patients (Fig. 7e), suggesting that PT_VCAMI1 and tubular injury
may be related to disease progression in diabetic nephropathy.

Discussion

We performed snRNA-seq and snATAC-seq sequencing in par-
allel to describe the transcriptional and chromatin accessibility
landscape of the adult human kidney. Our analysis demonstrates
that snRNA-seq and snATAC-seq are comparable methods for
determining cell identity and cell-type-specific chromatin acces-
sibility provides additional information that further elucidates
cellular heterogeneity. Multimodal single-cell profiling (“multi-
omics”) has greatly improved our ability to detect unique cell
types and states while introducing a host of bioinformatics
challenges and opportunities. In this study, we outline our inte-
gration approach to analyzing paired snRNA-seq and snATAC-
seq datasets to highlight functional heterogeneity in the proximal
tubule and thick ascending limb.

Studies in mouse and human suggest that there are structural
and functional differences between thick ascending limb
cells driven by regional expression patterns of claudins and other
transport proteins®. Claudins are a family of tight junction pro-
teins that confer segment-specific cation permeability and reg-
ulate the reabsorption of Na*, K*, Cl-, Mg?* and Ca2t.
Claudin-10 (CLDN10) expression is enriched in the medullary
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Fig. 7 The estimated proportion of VCAM1+ proximal tubular cells increases in acute and chronic kidney disease. a, b Deconvolution analysis of bulk
RNA-seq mouse kidney IRI dataset (GSE98622) with BisqueRNA. Sham control and IRI (@), or no surgery control (b). ¢ Inter-species data integration was
performed between mouse IRl snRNA-seq (GSE139107) and human snRNA-seq with Seurat (left). PT and PT_VCAMT from human snRNA-seq (middle)
are label-transferred from mouse IRI snRNA-seq, and the frequencies of predicted cell types are shown on the heatmap (right). d Deconvolution analysis of
bulk RNA-seq TCGA non-tumor kidney data (e) Deconvolution analysis of bulk RNA-seq human diabetic nephropathy (DN) data (GSE142025) with

BisqueRNA. Box-and-whisker plots depict the median, quartiles and range. *P < 0.05; **P < 0.01; ***P < 0.005, one-way ANOVA with post hoc Dunnett's

multiple comparisons test. All P values are provided in the Data Source file.

thick ascending limb, whereas claudin-16 (CLDN16) is expressed
predominantly in the cortical thick ascending limb. Mice lacking
Cldni6 develop hypercalciuria and hypomagnesemia, which is
similar to the phenotype of patients with familial hypomagnese-
mia with hypercalciuria and nephrocalcinosis (FHHNC) that
carry pathogenic variants in CLDN16°0. In contrast, targeted
deletion of Cldn10 in the thick ascending limb results in impaired
paracellular sodium permeability and hypermagnesemia®!. These

12

data suggest that Cldnl0 and Cldnlé6 differentially affect cation
permeability in the thick ascending limb and are supported by the
observation that Cldn10 and Cldnl6 are expressed in a mosaic
pattern in mice®2. We observed two distinct subpopulations of
UMOD+ cells in the thick ascending limb (CLDN10+CLDNI16—
and CLDNIO—CLDNI16+) with enrichment of KCNJ10 and
PTHIR in CLDNI0-CLDN16+ cells. In line with these findings,
we found a mosaic expression pattern of KCNJ10 and PTHIR in
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the human TAL. In motif enrichment analysis, the CLDNIO0-
CLDNI6+ population had increased transcription factor activity
of HNF1B (Fig. 4e, f). Pathogenic germline variants in HNFIB are
causative of autosomal dominant tubulointerstitial kidney disease
with hypomagnesemia and hypercalciuria?!. Validation of these
findings are limited by the absence of TAL cell lines. Some rodent
medullary TAL cell lines have been established previously>3->4,
but they did not maintain characteristics of mature TAL cells.
Additionally, murine Hnflb regulates Cldnl0b, Cldnl9, and
Cldn3 differently in one of these cell models in vitro than it does
in vivo in mouse kidney>>. Future studies using kidney organoids
may help to investigate the roles of enriched transcription factors
including HNF1B in TAL function.

The proximal tubule is the most abundant cell type in the
kidney cortex and is divided into segments (S1, S2, S3) with
unique functions driven by segment-specific expression of various
transporters, including SGLT1 and SGLT2. SGLT2 is a ther-
apeutic target in diabetic nephropathy and the genes and sig-
naling pathways that regulate SGLT2 expression may be of
clinical interest. snRNA-seq detected SLC5A1 (SGLT1) and
SLC5A2 (SGLT2) in the proximal tubule, but could not clearly
distinguish between the S1/52 segments that express SGLT2 and
the S3 segment that expresses SGLT1. In contrast, snATAC-seq
was able to separate the S1/S2 and S3 segments based on chro-
matin accessibility within the gene body and promoter of SLC5A1
and SLC5A2. These data suggest that snATAC-seq may help to
further refine segment-specific cell types; particularly those that
are defined by genes transcribed at low levels or genes that are not
detected by snRNA-seq. Furthermore, snATAC-seq can predict
the transcription factors that drive cell-type-specificity, which
may improve our understanding of kidney development and
directed differentiation of kidney organoids. We used this
approach to implicate NF-kB signaling in a subpopulation of
proximal tubule epithelial cells.

We used snRNA-seq and snATAC-seq to identify a sub-
population of proximal tubule (PT_VCAMI1) that expressed
VCAMI, HAVCRI (KIM-1), VIM (vimentin), CD133, and CD24.
The PT_VCAMI population was also identified in bulk RNA-seq
datasets from non-tumor TCGA kidney and human diabetic
nephropathy?. The proportion of PT_VCAMI increased in
response to acute and chronic kidney injury in both mouse and
human. CD133+CD24+ progenitor-like cells have been pre-
viously described in the human kidney in a scattered
distribution>® and VCAM1 (CD106) expression is present in
CD1334+-CD24+ renal progenitors localized to Bowman’s
capsule. A separate population of CD133+CD24+VCAMI—
cells are localized to the proximal tubule and both CD133+4-CD24
+VCAM1+ and CD1334+CD24+VCAMI1— cells can engraft in
SCID mice to repopulate the tubular epithelium following acute
tubular injury®. VCAM1, VIM, CD133, and CD24 expression was
enriched in the PT_VCAMI cluster in our snRNA-seq dataset
(Supplementary Fig. 14), which differs from the previously
described CD133+CD24+VCAMI— renal progenitor population
localized to the proximal tubule. We used immunofluorescence
studies to demonstrate that VCAMI1+ cells are present in a
scattered distribution within the proximal tubule of human kid-
neys (Fig. 5a). Comparison of our human data to a mouse
snRNA-seq acute kidney injury dataset*® suggests that
PT_VCAMI is closely related to a population of “failed-repair”
PT, which has a proinflammatory gene expression signature
(Fig. 7¢)*8. HAVCRI expression in PT_VCAMI suggests that
PT_VCAMI likely represents a subpopulation of proximal tub-
ular cells that is undergoing injury in situ, and expands in aging
and chronic kidney disease (Fig. 7b, d). Pseudotemporal ordering
(Fig. 6) indicated that PT_VCAMI exists along a continuum with
PT (Fig. 6), further supporting the hypothesis that they represent

an injured cell state. Motif enrichment analysis showed that
PT_VCAMI had increased RELA transcription factor activity
and ChIP-qPCR suggested that RELA may regulate VCAM]I
expression in an in vitro model of proximal tubule cells (Fig. 6f).
Our findings suggest that NF-kB plays a role in the maintenance
of PT_VCAMI, which may be of clinical interest in designing
therapies for acute kidney injury. However, whether proximal
tubule repair involves proliferation of a progenitor population or
dedifferentiation ~ of mature epithelium still remains
controversial®® and our own previous results do not support the
existence of a fixed intratubular progenitor population®’->°.

We employed allele-specific expression analysis to identify allelic
bias in a pseudo-bulk dataset consisting of all cell types and after
restricting our analysis to the proximal tubule. Overall, we estimate
that the proportion of genes with allele-specific variation in the
kidney ranges from 20.9 to 30.2% when we analyzed coding
transcript and pre-mRNA variants, respectively. This estimate is
significantly larger than the 4.6% reported by Fan et al, which
relied on bulk RNA-seq3”. Notably, sequencing depth significantly
affects the ability to detect ASE and our samples were sequenced to
a mean depth of 377 million reads; whereas the dataset described
in Fan et al. was sequenced to a median depth of 35 million.
Furthermore, our dataset was obtained from a nuclear dissociation,
used 5’ sequencing chemistry and had far fewer samples. Future
studies may benefit from exploring ASE in single-cell datasets to
identify allelic bias restricted to individual cell types.

An advantage of snATAC-seq is the ability to measure cov-
ariance between accessible chromatin sites to predict cis-
regulatory interactions?2, This approach can link putative reg-
ulatory regions with their target genes and has been applied to
human pancreatic islets®’, acute leukemia®!, and multiple mouse
tissues, including hippocampus®?, mammary gland®3, T-cells®4,
and kidney among others'®17. In particular, genome wide asso-
ciation study (GWAS) risk loci can be linked to their target genes,
which would complement the progress made using chromosome
conformation capture (Hi-C). We generated CCAN that had
significant overlap with a published database3. The remaining
interactions may represent the unique chromatin interaction
landscape of the kidney. We have made all of our data publicly-
available and invite readers to explore cell-type-specific differ-
entially accessible chromatin regions by uploading custom tracks
to the UCSC genome browser (Supplementary Fig. 12) or visiting
our interactive website (Supplementary Fig. 18).

The small sample size of this study does not adequately capture
the expected heterogeneity of the general population. Further-
more, our study focused on kidney cortex and did not include
samples from the medulla. Future studies would benefit from
studying diseased kidneys to determine how chromatin accessi-
bility changes with disease progression. Also, improvements in
peak calling algorithms for snATAC-seq data will help to narrow
the differentially accessible chromatin regions and identify addi-
tional peaks in less common cell types. Another consideration for
future studies includes the validation of snATAC-seq data by
epigenetic modulation approaches such as dCas9-DNMT1 or
dCas9-KRAB to alter the chromatin accessibility and verify cor-
responding changes in gene expression. Despite these limitations,
our single-cell multimodal atlas of human kidney redefines cellular
heterogeneity of the kidney driven by cell-type-specific tran-
scription factors. Our data enhances the understanding of human
kidney biology and provides a foundation for future studies.

Methods

Tissue procurement. Non-tumor kidney cortex samples were obtained from
patients undergoing partial or radical nephrectomy for renal mass at Brigham and
Women’s Hospital (Boston, MA) under an established Institutional Review Board
protocol approved by the Mass General Brigham Human Research Committee. All
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participants provided written informed consent in accordance with the Declaration
of Helsinki. Samples were frozen or retained in OCT for future studies. Histologic
sections were reviewed by a renal pathologist and laboratory data was abstracted
from the medical record. For immunohistochemical staining of tissue for light
microscopy, tissue was retrieved from nephrectomised kidneys due to renal car-
cinoma from parts of the kidney that not affected by tumor growth. Kidney tissue
was immersion fixed in 10% formalin for 3 h and placed in phosphate-buffered
saline (PBS) until embedded in paraffin. Informed written consent was obtained
from each patient and approved by the Biomedical Research Ethics Committee of
Southern Denmark in accordance with the Declaration of Helsinki.

Nuclear dissociation and library preparation. For snATAC-seq, nuclei were
isolated with Nuclei EZ Lysis buffer (NUC-101; Sigma-Aldrich) supplemented with
protease inhibitor (5892791001; Roche). Samples were cut into < 2 mm pieces,
homogenized using a Dounce homogenizer (885302-0002; Kimble Chase) in 2 ml
of ice-cold Nuclei EZ Lysis buffer, and incubated on ice for 5 min with an addi-
tional 2 ml of lysis buffer. The homogenate was filtered through a 40-um cell
strainer (43-50040-51; pluriSelect) and centrifuged at 500g for 5min at 4 °C. The
pellet was resuspended, washed with 4 ml of buffer, and incubated on ice for 5 min.
Following centrifugation, the pellet was resuspended in Nuclei Buffer (10x
Genomics, PN-2000153), filtered through a 5-um cell strainer (43-50005-03,
pluriSelect), and counted. For snRNA-seq preparation, the RNase inhibitors
(Promega, N2615 and Life Technologies, AM2696) were added to the lysis buffer,
and the pellet was ultimately resuspended in nuclei suspension buffer (1x PBS, 1%
bovine serum albumin, 0.1% RNase inhibitor)®>. 10X Chromium libraries were
prepared according to manufacturer protocol.

Single nucleus RNA sequencing bioinformatics workflow. Five snRNA-seq
libraries were obtained using 10X Genomics Chromium Single Cell 5/ v2 chemistry
following nuclear dissociation®®. Three snRNA-seq libraries (patients 1-3) were
prepared for a prior study GSE13188213. A target of 10,000 nuclei were loaded onto
each lane. Libraries were sequenced on an Illumina Novaseq instrument and
counted with cellranger v3.1.0 using a custom pre-mRNA GTF built on GRCh38 to
include intronic reads. The read configuration for libraries 1-3 was 2 x 100 bp and
the configuration for libraries 4-5 was 2 x 150 bp paired-end. The cDNA for
snRNA libraries was amplified for 17 cycles. Datasets were aggregated with cell-
ranger v3.1.0 without depth normalization. A mean of 377,573,305 reads (s.d. =
76,365,483) were sequenced for each snRNA library corresponding to a mean of
70,886 reads per cell (s.d. = 8633, Supplementary Table 5). The mean sequencing
saturation was 81.4 +2.4%. The mean fraction of reads with a valid barcode
(fraction of reads in cells) was 88.2 +5.9% (Supplementary Table 6). Subsequently
datasets were preprocessed with Seurat v3.0.22! to remove low-quality nuclei
(Features > 500, Features < 4000, RNA count < 16000, %Mitochondrial genes < 0.8,
%Ribosomal protein large or small subunits < 0.4) and DoubletFinder v2.0.2° to
remove heterotypic doublets (assuming 5% of barcodes represent doublets). The
filtered library was normalized with SCTransform, and corrected for batch effects
with Harmony v1.07 using the “RunHarmony” function in Seurat. After filtering,
there was a mean of 3997 + 930 cells per snRNA-seq library and a mean of 1674 +
913 genes detected per nucleus. Number of genes per cell, number of UMIs per cell
and fraction of mitochondrial genes per cell for each patient were shown in Sup-
plementary Fig. 19. Clustering was performed by constructing a KNN graph and
applying the Louvain algorithm. Dimensional reduction was performed with
UMAP and individual clusters were annotated based on expression of lineage-
specific markers. The final snRNA-seq library contained 19,985 cells and repre-
sented all major cell types within the kidney cortex (Supplementary Table 1,
Supplementary Fig. 20). Differential expression between cell types was assessed
with the Seurat FindMarkers function for transcripts detected in at least 20% of
cells using a log-fold-change threshold of 0.25. Bonferroni-adjusted p-values were
used to determine significance at an FDR < 0.05.

Single nucleus ATAC sequencing bioinformatics workflow. Five snATAC-seq
libraries were obtained using 10X Genomics Chromium Single Cell ATAC v1
chemistry following nuclear dissociation. A target of 10,000 nuclei were loaded
onto each lane. Libraries were sequenced on an Illumina Novaseq instrument and
counted with cellranger-atac v1.2 (10X Genomics) using GRCh38. The read con-
figuration for libraries 1-3 was 2 x 50 bp paired-end and the configuration for
libraries 4-5 was 2 x 150 bp paired-end. Sample index PCR was performed at 12
cycles. Libraries were aggregated with cellranger-atac without depth normalization.
A mean of 318,097,692 reads were sequenced for each snATAC library (s.d. =
54,357,210) corresponding to a mean of 12,946 fragments per cell (s.d. = 2,960,
Supplementary Table 5). The mean sequencing saturation for snATAC libraries
was 37.3+2.2% and the mean fraction of reads with a valid barcode was 97.3 +
1.2% (Supplementary Table 7). Subsequently datasets were processed with Seurat
v3.0.2 and its companion package Signac v0.2.1 (https://github.com/timoast/
signac)?!. Low-quality cells were removed from the aggregated snATAC-seq library
(peak region fragments > 2500, peak region fragments < 25000, %reads in peaks >
15, blacklist ratio < 0.001, nucleosome signal < 4 & mitochondrial gene ratio <
0.25) before normalization with term-frequency inverse-document-frequency
(TFIDF). A fraction of reads in peaks, number of reads in peaks per cell and ratio

reads in genomic blacklist region per cell for each patient were shown in Sup-
plementary Fig. 19. Dimensional reduction was performed via singular value
decomposition (SVD) of the TFIDF matrix and UMAP. A KNN graph was con-
structed to cluster cells with the Louvain algorithm. Batch effect was corrected with
Harmony®” using the “RunHarmony” function in Seurat. A gene activity matrix
was constructed by counting ATAC peaks within the gene body and 2 kb upstream
of the transcriptional start site using protein-coding genes annotated in the
Ensembl database. The gene activity matrix was log-normalized prior to label
transfer with the aggregated snRNA-seq Seurat object using canonical correlation
analysis. The aggregated snATAC-seq object was filtered using a 97% confidence
threshold for cell-type assignment following label transfer to remove heterotypic
doublets. The filtered snATAC-seq object was reprocessed with TFIDF, SVD, and
batch effect correction followed by clustering and annotation based on lineage-
specific gene activity. After filtering, there was a mean of 5408 + 1393 nuclei per
snATAC-seq library with a mean of 7538 + 2938 peaks detected per nucleus. The
final snATAC-seq library contained a total of 214,890 unique peak regions among
27,034 nuclei and represented all major cell types within the kidney cortex (Sup-
plementary Table 2, Supplementary Fig. 20). Differential chromatin accessibility
between cell types was assessed with the Signac FindMarkers function for peaks
detected in at least 20% of cells using a likelihood ratio test and a log-fold-change
threshold of 0.25. Bonferroni-adjusted p-values were used to determine significance
at an FDR < 0.05. Genomic regions containing snATAC-seq peaks were annotated
with ChIPSeeker® (v1.24.0) and clusterProfiler®® (v3.16.1) using the UCSC
database”? on hg38.

Comparison to previously published database of DNase hypersensitive sites.
Glomerulus and tubulointerstitial DNase hypersensitive sites (DHS) were down-

loaded in bed format from Sieber et al.2’ Glomerulus and tubulointerstitial DHS
master lists were composed by merging the tissue-specific bed files, converting to a
GRanges object with the GenomicRanges package’! (v1.40.0), and collapsing the
intervals with the reduce function. cellranger-atac peaks were filtered by the pro-
portion of nuclei containing the snATAC-seq peak and subsequently overlapped
with DHS sites.

Estimation of transcription factor activity from snATAC-seq data. Transcrip-
tion factor activity was estimated using the final snATAC-seq library and
chromVAR v1.6.023. The positional weight matrix was obtained from the JAS-
PAR2018 database’2. Cell-type-specific chromVAR activities were calculated using
the RunChromVAR wrapper in Signac v0.2.1 and differential activity was com-
puted with the FindMarkers function (FDR < 0.05). Motif enrichment analysis was
also performed on the differentially accessible regions with the FindMotif function.

Generation of cis-coaccessibility networks with Cicero. Cis-coaccessibility
networks were predicted using the final snATAC-seq library and Cicero v1.222. The
snATAC-seq library was partitioned into individual cell types and converted to cell
dataset (CDS) objects using the make_atac_cds function. The CDS objects were
individually processed using the detect_genes() and estimate_size_factors() func-
tions with default parameters prior to dimensional reduction and conversion to a
Cicero CDS object. Cell-type-specific Cicero connections were obtained using the
run_cicero function with default parameters.

Construction of pseudotemporal trajectories with Monocle or Cicero.
Monocle3*? was used to convert the snRNA-seq dataset into a cell dataset object
(CDS), preprocess, correct for batch effects’3, embed with dimensional reduction
and perform pseudotemporal ordering. Cicero?? was used to generate pseudo-
temporal trajectories for the snATAC-seq dataset. First, the CDS was constructed
from the peak count matrix in the Seurat object of aggregated snATAC-seq data
with “make_atac_cds” function with binarize = F. Next, the cds was preprocessed
(num_dim = 50), aligned to remove batch effect’ and reduced onto a lower
dimensional space with the “reduce_dimension” function (reduction_method

= ‘UMAP’, preprocess_method = “Aligned”). After filtering low-quality cells, the
cells were clustered (cluster_cells) and visualized. Subsequently, the dataset was
subsetted for the PCT, PST and PT_VCAMI clusters or distal nephron clusters to
perform cell ordering with the learn_graph function. We used the “order_cell”
function and indicated three of the most distant cells from PT_VCAMI1 in PCT
and PST as “start points” of the trajectories in PT analysis or the most distant point
in DCT in distal nephron analysis. The data were visualized with “plot_accessi-
bility_in_pseudotime” or “plot_cells” functions.

Comparison of Cicero coaccessibility connections to GeneHancer database.
Cell-type-specific differentially accessible chromatin regions (DAR) were identified
with the Signac?! FindMarkers function using a log-fold-change threshold of 0.25
for peaks present in at least 20% of cells (FDR < 0.05). Cell-type-specific DAR was
extended 50 kb up- and downstream to create bed files to query the UCSC table
browser’4 using the GeneHancer interactions tracks>>. GeneHancer interactions
were compared to cell-type-specific Cicero connections to determine the mean
proportion of overlap with increasing Cicero coaccess threshold.
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Genotyping and variant annotation with GATK pipeline. snATAC libraries were
genotyped using GATK (v4.1.8.1) best practices for germline short variant
discovery3®. Fastq files were aligned with cellranger-atac (v1.2) and duplicates were
marked with GATK MarkDuplicates. Base quality was recalibrated with Base-
Recalibrator using the hg38 GATK resource bundle files: dbsnp138, known_indels,
high-confidence SNPs from 1000 G, and Mills and 1000 G gold standard indels and
subsequently applied with ApplyBQSR. Variants were called with HaplotypeCaller,
genotyped with GenotypeGVCFs, scored with CNNScoreVariants, and filtered with
FilterVariantTranches using a —snp-tranche of 99.95. snRNA libraries were aligned
with cellranger (v3.1) and duplicates were marked with GATK MarkDuplicates.
RNA reads were processed with SplitNCigarReads followed by BaseRecalibrator,
ApplyBQSR, HaplotypeCaller, and GenotypeGVCFs as described in the snATAC
pipeline. snRNA variants were hard-filtered with GATK VariantFiltration using FS
> 30, QD < 2. snRNA and snATAC vcfs were annotated with GATK Funcotator
and merged into a joint genotype file using bcftools (v1.7).

Allele-specific expression analysis. snRNA libraries were aligned with cellranger
(v3.1) and processed with the WASP (v0.3.4) pipeline’” using the joint genotype
vcf composed of variants that overlap gene bodies. We used the find_intersec-
ting_snps.py script to identify snRNA cellranger-aligned reads that overlap with
SNV identified by GATK. We remapped overlapping reads with STAR (v.2.7.5)7%
and filtered the remapped reads with the WASP script prior to merging into a
processed bam file. GATK ASEReadCounter was used to perform allele-specific
counting at heterozygous positions that overlapped coding transcripts (mnRNA) or
pre-mRNA regions. Allele-specific counts that overlapped coding transcripts were
filtered for positions that contained a total depth > 20, a read depth > 5 for both
alleles, and a minor allelic fraction > 0.05. ASE was analyzed with ASEP (v0.1.0)3%
using default settings for unphased haplotypes. Benjamini-Hochberg adjusted p-
values were used to assess significance (padj < 0.05).

Gene-ontology enrichment analysis. Differentially expressed genes in the
PT_VCAMI cluster (compared to PT) were identified with the FindMarkers
function using a log-fold-change threshold of 0.25 for the genes expressed in at
least 20% of cells (FDR < 0.05). Gene-ontology enrichment was performed with
PANTHER (http://geneontology.org/).

Gene set enrichment analysis. Differential expressed genes in PT_VCAM1

cluster (compared to PT) were identified with the FindMarkers function using a
log-fold-change threshold of 0.05 for peaks present in at least 5% of cells (FDR <
0.05). The pre-ranked gene list was analyzed with GSEA v4.0.3 (Broad Institute).

Deconvolution of bulk RNA-seq data. For the TCGA (The Cancer Genome
Atlas) dataset, HTseq counts and metadata were downloaded from the GDC data
portal (portal.gdc.cancer.gov) by selecting “kidney”, “TCGA”, “RNA-seq”, and
“solid tissue normal”. Bulk RNA-seq counts were normalized with DESeq27¢
(v1.30.1) and count matrices were deconvoluted with BisqueRNA*7 (v1.0.4) using
snRNA-seq annotations. For the mouse ischemia-reperfusion dataset from Liu

et al.*%, a normalized count matrix was downloaded from GSE98622 and converted
to human annotations using biomaRt and ensembl prior to deconvolution with
BisqueRNA with default parameters. For the diabetic nephropathy dataset®’, fastq
files were downloaded from GSE142025, transcript abundance was quantified with
Salmon using GRCh38, count matrices were imported to DESeq2 with tximport
(v1.16.1), and data was normalized prior to deconvolution with BisqueRNA.

Inter-species snRNA-seq data comparison. The snRNA-seq dataset for human
adult kidneys was converted to mouse annotations using biomaRt and ensembl,
and integrated with a mouse IRI snRNA-seq dataset (GSE139107)%8 using the
FindTransferAnchors function in Seurat. Mouse cell-type annotations were
transferred to the human dataset.

Cell culture. RPTEC (Lonza) was cultured with Renal Epithelium Cell Growth
Medium 2 (PromoCell). Cells were maintained in a humidified 5% CO, atmo-
sphere at 37 °C. Experiments were performed on early passages (passage 2-3).

ChIP-gPCR. Chromatin was prepared from cultured RPTECs using the Magna
ChIP A/G Chromatin Immunoprecipitation Kit (Sigma-Aldrich, 17-10085).
Briefly, cells were fixed with 1% fresh formaldehyde for 10 min at room tem-
perature, then quenched with glycine. After cell lysis and subsequent nuclei lysis,
chromatin was sonicated (Covaris ME220; 390 s with peak power 70 W, duty factor
of 5%, and 1000 cycles per burst). Inmunoprecipitation was performed on sheared
chromatin with anti-RELA (Sigma-Aldrich, 17-10060) and anti-HNF4A (abcam,
ab181604) antibodies overnight at 4 °C. Antibody-chromatin conjugates were
captured on magnetic beads and washed. Following reversal of crosslinks with
added Proteinase K, DNA purification was performed with the kit’s provided Spin
Columns. iTaq Univeral SYBR Green (BioRad, 1725125) was used to perform
qPCRs using the primers listed on Supplementary Data 7. Technical replicates were
averaged and Ct values for each target were normalized to 1% input signal. The %
input value for each sample was then normalized to a background control locus in

SLC34A1 for the HNF4A ChIP and VCAMI for the RELA ChIP. A two-tailed one-
sample ¢ test was performed to determine the statistical significance of the calcu-
lated fold enrichment of putative TF-binding loci relative to the negative control.

Immunofluorescence studies. Formalin-fixed paraffin-embedded tissue sections
were deparaffinized and underwent antigen retrieval. Sections were blocked with
1% bovine serum albumin, permeabilized with 0.1% Triton-X100 in PBS and
incubated overnight with primary antibodies for VCAM1 (EPR5047; abcam;
ab134047; 1/200), biotinylated Lotus Tetragonolobus Lectin (Vector Laboratories;
B-1325; 1/200), UMOD (Bio-Rad; 8595-0054; 1/200) or HNF4A (H-1; Santa Cruz
Biotechnology; sc-374229; 1/200). Alternatively, fresh frozen sections were fixed in
cold acetone for 5 min. Sections were blocked with 1% bovine serum albumin and
incubated 1 h with primary antibodies for CD24 (SN-3; Santa Cruz Biotechnology;
sc-19585; 1/20), CD133 (AC133; Miltenyi Biotec; 130-090-422; 1/10). These sec-
tions were subsequently stained with secondary antibodies; Alexa Fluor 488 donkey
anti-rabbit antibody (Jackson ImmunoResearch; 711-545-152; 1/200); Cy3 donkey
anti-sheep antibody (Jackson ImmunoResearch; 713-165-147; 1/200); Cy3 goat
anti-mouse antibody (Jackson ImmunoResearch; 115-165-003; 1/200); Alexa Fluor
647 strepavidin (Jackson ImmunoResearch; 016-600-084; 1/200). Sections were
stained with DAPI (4,6~ diamidino-2-phenylindole) and mounted in Prolong
Gold (Life Technologies). Images were obtained by confocal microscopy (Nikon
C2 + Eclipse; Nikon, Melville, NY). The quantification was performed in five 200 x
images randomly taken from each patient (n = 3).

Immunohistochemical staining of tissue for light microscopy. Paraffin-
embedded sections were processed and stained as published in detail previously’”.
Following tissue rehydration and subsequent antigen retrieval by boiling in Tris-
EGTA buffer (TEG, 10 mM Tris, 0.5 mM EGTA, pH = 9.0), 0.6% H,O, and 50
mM NH,CI in PBS were added to block endogenous peroxidases and free aldehyde
groups. Sections were incubated overnight at 4 °C with primary antibody (0.1%
Triton X-100 in PBS) for SLC12A1 (Sigma-Aldrich; HPA014967; 1/100), VCAM1
(EPR5047; abcam; ab134047; 1/200), Aquaporin 1 (abcam; ab15080; 1/100),
SLC34A1 antibody (Clone 16; not commercially available; undiluted culture
supernatant’8, PTHIR (R&D systems; AF5709; 1/100), UMOD (Biotrend; BT85-
9500-54; 1/1000) or KCNJ10 (Alamone; APC-035; 1/1000). These sections were
then washed and incubated with horseradish peroxidase (HRP) conjugated sec-
ondary antibodies; Rabbit Anti-Goat Immunoglobulins HRP conjugated (Dako,
P0449; 1/200); Goat Anti-Mouse Immunoglobulins HRP conjugated (Dako, P0447;
1/200); Goat Anti-Rabbit Immunoglobulins HRP conjugated (Dako, P0448; 1/200).
HRP activity was visualized using the DAB + Substrate Chromogen System
(K3467, DakoCytomation). For double labeling of tissue, sections were reboiled in
TEG followed by a new incubation round with primary antibodies and secondary
HRP anibodies. The Vector SG chromagen substrate (Vector Laboratories, Bur-
lingame, USA) was utilized for the detection of the second antigen. Sections were
counterstained with hematoxylin and mounted using Aqua-Mount® (Thermo
Scientific). Light microscopy was carried out using an Olympus BX51 microscope
(Olympus, Denmark).

Statistical analysis. No statistical methods were used to predetermine sample size.
Experiments were not randomized and investigators were not blinded to allocation
during library preparation, experiments, or analysis. ChIP-qPCR data (Fig. 6f,
Supplementary Fig. 8a) are presented as mean+s.d. and were compared between
groups with two-tailed one-sample Student’s ¢ test. Quantitative data for immu-
nofluorescence analysis are presented as box-and-whisker plots depicting the
median, quartiles and range, and were compared between groups with two-tailed
Student’s ¢ test. Estimated proportion by deconvolution of RNA-seq data (Fig. 7a,
b, e) were analyzed with one-way ANOVA with post hoc Dunnett’s multiple
comparisons test. A P value of <0.05 was considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All relevant data are available from the corresponding authors on reasonable request.
Sequencing data are deposited in GEO under accession number GSE151302. Previously
published snRNA-seq data for three adult kidneys are available in GEO (GSE131882).
Data tracks for cis-coaccessibility networks and cell-specific differentially accessible
chromatin are available for download and viewing with the UCSC genome browser at
(https://genome.ucsc.edu/s/parkercwilson/control_celltype_cr)7# (Supplementary

Fig. 12). Gene expression, ATAC peaks, gene activities and motif activities for each cell
type are also available via our interactive website; Kidney Interactive Transcriptomics
(http://humphreyslab.com/SingleCell/) (Supplementary Fig. 18). Additional interactive
visualization and annotation of the snRNA-seq and snATAC-seq datasets are available
through the cellxgene portal located at https://cellxgene.cziscience.com/collections/
9b02383a-9358-4f0f-9795-a891ec523bcc. Source data are provided with this paper.
Public data repositories used for our analyses include Ensembl http://useast.ensembl.org/
index.html, GeneHancer https://www.genecards.org/, and JASPAR http://jaspar.genereg.
net/. Gene-ontology enrichment was performed with PANTHER (http://geneontology.
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org/). For the TCGA (The Cancer Genome Atlas) dataset, counts and metadata were
downloaded from the GDC data portal (portal.gdc.cancer.gov) by selecting “kidney”,
“TCGA”, “RNA-seq”, and “solid tissue normal”. Source data are provided with

this paper.

Code availability

All analysis code is available on GitHub at https://github.com/p4rkerw/
Muto_Wilson_NComm_2020 and has been deposited in Zenodo at https://doi.org/
10.5281/zenodo.4555693.
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