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Abstract

Cancer is a complex disease and cancer development takes 10–50 years involving epigenetics. 

Evidence suggests that ~80% of human cancers are linked to environmental factors impinging 

upon genetics/epigenetics. Since advanced metastasized cancers are resistant to radiation/

chemotherapeutic drugs, cancer prevention by relatively non-toxic chemopreventive “epigenetic 

modifiers” involving epigenetics/epigenomics is logical. Isothiocyanates are relatively non-toxic at 

low nutritional and even higher pharmacological doses, with good oral bioavailability, potent anti-

oxidative stress/anti-inflammatory activities, possess epigenetic modifying properties, great anti-

cancer efficacy in many in vitro cell culture and in vivo animal models. This review summarizes 

the latest advances on the role of epigenetics/epigenomics by isothiocyanates in prevention of skin, 

colon, lung, breast, and prostate cancers. The exact molecular mechanism how isothiocyanates 

modify the epigenetic/epigenomic machinery is unclear. We postulate “redox” processes would 

play important roles. Additionally, isothiocyanates sulforaphane and phenethyl-isothiocyanate, 

possess multifaceted molecular mechanisms would be considered as “general” cancer preventive 

agents not unlike chemotherapeutic agents like platinum-based or taxane-based drugs. Analogous 

to chemotherapeutic agents, the isothiocyanates would need to be used in combination with other 

non-toxic chemopreventive phytochemicals or drugs such as NSAIDs, 5-α-reductase/aromatase 

inhibitors targeting different signaling pathways would be logical for the prevention of progression 

of tumors to late advanced metastatic states.
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Introduction

Cancer is a complex chronic disease and cancer development is a multistep process (1, 2). In 

a simplified manner, it would involve initiation, promotion, to progression/metastasis (3, 4). 

Recent evidence suggests that many chronic illnesses including cancer are driven by 

epigenetics/epigenomics caused by environmental factors impinging upon the underlying 

genetic information (4–7). Since advanced metastasized cancer are resistant to radiation and 

chemotherapeutic drugs, prevention of early stages of cancer by relatively non-toxic dietary 

phytochemicals would be logical.

Role of epigenetics/epigenomics during the “long process” of cancer 

development

During the long process of cancer development particularly during the “promotion” stage, 

epigenetics has been postulated to play an important role in driving cellular transformation 

such as stem cells in forming benign microscopic tumor (8). Feinberg et al. has shown since 

the 1980s that most if not all tumors could be associated with widespread losses and some 

gains of DNA methylation throughout the genome (9, 10). This is reviewed recently in (6, 

11), and elaborated on the role of epigenetics during cancer development However it is still 

unclear how epigenetics would be integrated with the different hallmarks of cancer as 

discussed by Weinberg et al. (12).

Epigenetics or in a more global context epigenomics is a very complex process involving 

modulation of epigenetic modifiers including the ‘readers’, ‘writers’ and ‘erasers’ with 

involvement of multiple events including methylation, acetylation, ubiquitination. (13). 

Accumulating evidence also suggests that multiple genetic and epigenetic alterations would 

occur concurrently during tumor development (6, 14). In this context, the epigenetic marks 

(DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA) 

could be use as potential markers of different stages of cancer development including 

initiation, progression, and metastasis (15, 16).

From our recent UVB-induced skin carcinogenesis study, global CpG methylation changes 

more dramatically in early stages of 2 weeks as compared to 15 weeks and 25 weeks post 

UVB irradiation. The CpG methylome changes decreased as time progresses taken into 

account of the effect of aging (17). Imaging assisted evaluation of microscopic tumors may 

have suggested that during the early promotion stage of carcinogenesis, drastic epigenomic 

aberrations occurs particularly with the progenitor stem cells driving phenotypic gene 

expression, may occur before mutational events (6). These epigenomic alterations would 

involve stem cell dysregulation blocking differentiation, dysregulation of multiple pathways 

including DNA repair and cell cycle, apoptosis/autophagy, cellular defense, and 
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inflammatory pathways. However, the underlying mechanism of UVB-induced global 

epigenomic changes in the skin is unclear. Acutely, UVB triggers oxidative stress, 

inflammation and DNA damage (18, 19), would be postulated to be some of the major 

drivers of epigenetic alterations.

Analyzing primary cutaneous melanoma samples for their global DNA methylation, found 

more than 98% loss of methylation and about 2% gain of methylation (20). In vitro study 

using melanoma cells showed that histone hypoacetylation is associated with 

downregulation of certain pro-apoptotic proteins, including Bak, Bim, and Bax, which 

belong to the BCL-2 family (21). Epigenetic reprogramming appears to play an increasing 

role in drug resistant in melanoma (22). In skin transformation model using epidermal JB6 

cells, when JB6 cells were challenged with tumor promoter TPA (12-O-

Tetradecanoylphorbol-13-acetate), significant alterations of DNA methylome coupled with 

transcriptome (23). In a recent UVB-induced mouse carcinogenesis epigenomic study, about 

60% of the DNA-methylated-regions (DMRs) showed inversed relationship between DNA 

methylation and RNA expression, i.e., hypermethylation coupled with suppression of 

transcription or hypomethylation coupled with promotion of transcription, while the other 

40% of these DMRs did not show such relationship (23).

In breast cancer, many studies have shown strong association of aberrant DNA 

hypomethylation with cancer development (24). Histone modifications such as loss of 

H4K16 acetylation has been implicated as an early event in breast cancer development and is 

associated with altered level of NAD-dependent histone deacetylases (HDACs); SIRT1 (25, 

26).

In prostate cancer, up-regulation of EZH2 (Histone Methyltransferase, Enhancer of Zeste 

Homolog 2) appears common in both localized and metastatic prostate cancer, and 

associated with poor prognosis (27, 28). In early prostate carcinogenesis, during the 

transition from benign prostate epithelium to inflammatory lesions, DNA hypermethylation 

is observed in the promoter regions of key tumor suppresser genes such as GSTP1, 

RASSF1A, and APC (29, 30). In TRAMP mice and TRAMP-C1 cell line, hypermethylation 

of Nrf2’s CpGs occurred (31), and global alteration of epigenomic DNA methylation was 

found with profiling using MeDIP-seq in TRAMP prostate tumor (32). In a PTEN deletion 

mouse prostate carcinogenesis model, PTEN deletion drives aberrations of DNA methylome 

and transcriptome in different stages of prostate carcinogenesis (33). Prostate cancer 

exhibited global alterations of histone modifications, including histone acetylation (H3K9, 

H3K18, and H4K12) and methylation (H3K4me2) (34). Gerhauser et al. (35) investigated 

the molecular evolution of 292 early-onset prostate cancer patients using Illuminia 450K 

methylation array identified some unique DNA methylation patterns of 500 most 

discriminatory CpG sites between the different cell types (basal, stromal, normal luminal 

and tumor luminal) and found that the “purity-adjusted epigenetic prostate cancer index” 

(PEPCI) associated with increased Gleason score (36). By integrating the DNA methylation 

and RNA expression data from tumors diagnosed with early-onset, they were able to identify 

four robust subgroups which could stratify the patients into high- and low-risk groups(35).
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Epigenetics plays an increasing role in the pathophysiology of colorectal cancer (CRC) (37). 

In an AOM-DSS induced colitis-accelerated colon cancer mouse model, differential CpG 

methylome and transcriptome occurs as compared to control mice (38). CpG island 

methylator phenotype (CIMP), has been identified as one of the molecular features of CRC 

(39, 40). Based on CIMP profiles, primary CRC may be clustered into three distinct but 

relatively homogeneous subclasses: CIMP1, characterized by intense methylation of 

multiple genes including MSI and BRAF mutations; CIMP2, increased methylation with 

age‐related genes, and mutations in KRAS; and CIMP negative, characterized by rare 

methylation with p53 mutation (39). CIMP1 and CIMP2 phenotypes are more often 

expressed in the proximal colon; CIMP1 has a good prognosis, whereas CIMP2 has a poor 

prognosis (41). In general, CIMP appears to be associated with significantly worse prognosis 

in CRC patients (42).

Overview of epigenetic mechanisms and their role in cancer prevention

Epigenetic mechanism appears to provide a robust means for organisms to respond to 

environmental cues through changes in gene expression (43), working in concert with other 

more rapid responders including channels/receptors mediated signaling. These post-

translational modifications act in a coordinated fashion leading to chromatin conformational 

alterations that, in turn, regulate the genetic information accessed by transcription factors 

(44). The schematic representation of epigenetic pathways in stepwise carcinogenesis 

process and cancer prevention by isothiocyanates (ITCs) impinging upon and integrating 

with the different cellular processes are summarized in Figure 1. Epigenetic machinery 

would affect all the stages during carcinogenesis. Among the three epigenetic mechanisms, 

DNA CpG methylation is probably the most studied as reviewed by Feinberg (6). 

Specifically, DNA methylation entails the conjugation of methyl groups in cytosine (C) 

residues usually occur in CpG dinucleotide sequences, dispersed across the genome, leading 

to the formation of 5-methylcytosine (5mC) (45). DNA methylation is catalyzed by a class 

of enzymes known as DNA methyltransferases (DNMTs) the most predominate which 

include DNMT1, DNMT3A and DNMT3B. Unlike methylation, histone acetylation causes 

gene activation whereas histone methylation can result in either activation or repression of 

genes depending on the site of modifications (46). Histone deacetylases (HDACs), along 

with histone acetyltransferases (HAT), provide a significant mechanism of gene regulation 

involving removal and addition, of acetyl groups from an ε-N-acetyl lysine amino acid on 

histone proteins. The third epigenetic control would be regulated through non-coding-RNA-

based mechanisms including micro-RNA. In particular, micro-RNA transcription can be 

regulated by both histone modification and DNA methylation, and micro-RNA themselves 

can, in turn, regulate key enzymes that enforce epigenetic remodeling (47).

Several chemotherapeutic drugs targeting epigenetic signaling have been approved by the 

FDA (14), and a growing list of dietary phytochemicals found naturally in food and plants 

have been studied targeting epigenetic mechanism during the carcinogenesis process for 

cancer prevention including modifications of histones and DNA methylations (48, 49). For 

instance, curcumin, a powerful anti-inflammatory/antioxidant agent, regulating multiple 

signaling pathways, is also found to modulate epigenetics/epigenomics pathways such as 

histones modifications, and DNA methylation (50, 51). Many natural products have been 
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reported to inhibit the expression of HDACs, including curcumin (52, 53), ursolic acid (54), 

and SFN (55, 56). Triterpenoids such as cucurbitacin, ginsenoside Rh2, ginsenoside 

compound K and ursolic acid, have been shown to induce global hypomethylation, enhances 

hypermethylation/hypomethylation of the promoters of oncogenes and tumor suppressor 

genes, and modifying miRNA by targeting DNMT1 (48). SFN could regulates DNA 

demethylation by down-regulating the expression of DNMT1 and DNMT3B, thus inducing 

the demethylation of the cyclin D2 gene promoter and its expression in cancer cells (57). 

Question remains as to how all these chemopreventive phytochemicals modulate the 

epigenetic machinery. Since many of these compounds are redox active, therefore, we would 

like to postulate that redox signaling triggered by these compounds could play a role in 

modulating the epigenetic machinery, but further study would be needed.

Role of redox signaling in the modulation of epigenetic machinery

Cellular oxidative stress occurs when the cellular antioxidant/reductive capacity is 

overwhelmed by the oxidative challenges (58, 59), and could play a vital role in epigenetic 

reprogramming (60). Many epigenetic marks, including histone methylation, histone 

acetylation, ADP-ribosylation and DNA methylation, may be directly associated with central 

metabolism through redox intermediates (60). One mechanism by which reactive oxygen 

species (ROS) can affect DNA methylation is through its action on DNMTs activity or 

expression (61). In an oxidizing redox chromatin microenvironment and in the absence of S-

adenosyl methionine (SAM), DNMT3a and DNMT3b can catalyze the direct conversion of 

5mC or 5-hydroxymethylcytosine (5hmC) to an unmodified C, although the exact 

mechanisms are still unclear (62). Ye et al. have proposed an iron–redox–methylation 

hypothesis (63) in which excess amount of irons perturbs DNA methylation by at least two 

possible mechanisms: first, oxidative stress depletes GSH and drives SAM/SAH cycle to 

produce more SAH, which inhibits DNMT activity; and second, iron directly inhibits 

DNMT activity. The methylation process can be reversed by DNA demethylases such as ten-

eleven translocation enzymes (TETs) (64). ROS are also thought to regulate DNA 

methylation by targeting the expression and/or activity of the TETs. Knockdown of TET1 

significantly increase hydrogen peroxide-induced apoptosis of cerebellar granule cells, and 

cerebellar granule cells from Tet1 knockout mice are more sensitive to oxidative stress (65). 

In addition, mutagenic lesion of ROS-induced DNA damage of O6-methylguanine can 

inhibit binding of DNMT leading to hypomethylation with inhibition of methylation of 

adjacent cytosine nucleotides (66). Incorporation of 8-OHdG and the oxidation by-product 

of 5-mC in the Methyl-CpG binding protein (MBP) recognition sequence resulted in 

significant inhibition of the binding affinity of MBP (67).

In addition to epigenetic regulation of DNA methylation, redox also participates in histone 

acetylation and histone methylation. The histone deacetylation is mediated HDACs. A study 

has shown that the redox-regulating protein Thioredoxin 1 (Trx1) regulates the 

nucleocytoplasmic shuttling of class II HDACs through a redox-dependent mechanism (68). 

By forming a multiprotein complex with DnaJb5, a heat shock protein 40, and TBP-2, a 

Trx1-binding protein, Trx1 reduces HDAC4, a class II HDAC, at Cys-667 and Cys-669, 

which are easily oxidized to form a disulfide bond in response to hypertrophic stimuli(69). 

Hu, et al. showed that the catalytic activity of HDAC5 suppresses mitochondrial ROS 
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generation and subsequent induction of NRF2-dependent antioxidant gene expression in 

cardiomyocytes (70). Collectively, there is strong evidence that ROS are capable to modulate 

chromatin accessibility by affecting histone acetylation state in particular via multiple 

modifications of HDAC expression and activity (71, 72). Histone acetylation is reversible 

and is regulated by a group of histone acetyltransferases (HATs) (73). Histone methylation is 

maintained by two classes of enzymes: histone methyltransferases (HMTs) and histone 

demethylases (HDMs) (74). HMTs and HDMs can also be subjected to redox regulation 

such that post-translational modifications of histone proteins by oxidants and environmental 

stresses can trigger gene transcription involved in chronic inflammatory events (75). Since 

many dietary chemopreventive phytochemicals possess redox (76, 77) and epigenetic/

epigenomic properties (78), question remains the direct linkage of phytochemical’s redox 

signaling and epigenetics/epigenomics.

Isothiocyanates and cancer prevention

Isothiocyanates (ITCs) are a family of compounds derived almost exclusively from plants, 

although marine sponges and fungi also have been reported to produce a few ITCs (79, 80). 

ITCs are synthesized and stored as glucosinolates (β-thioglucoside N-hydroxysulfates) as 

secondary metabolites in plants including the cruciferous. Glucosinolates are relatively 

stable in plant cell. However, when the plant tissue containing glucosinolates is damaged, as 

in the case of preparation (cutting, chopping, mixing) or chewing food, a β-thioglucosidase 

called myrosinase is released and hydrolyzed the glucosinolates to various metabolites, 

including the ITCs (81). When cruciferous are cooked before consumption, myrosinase is 

inactivated and glucosinolates transit to the colon where they are hydrolyzed by the 

intestinal microbiota to ITCs (81). By far the most studied ITC is sulforaphane (SFN), 

derived from broccoli (80), although other ITCs, including phenylethyl ITC (PEITC), benzyl 

ITC (BITC) and allyl ITC (AITC), also possess chemopreventive properties. Multiple 

molecular mechanisms are involved in the chemopreventive effect of ITCs. Below, we will 

focus on epigenetic mechanisms in in vitro and in vivo studies in skin, breast, lung, colon 

and prostate cancer, as well as some clinical chemoprevention studies with ITCs.

Skin cancer

The ITCs show chemopreventive effects against UV- and chemically-induced skin 

carcinogenesis (82) and the involvement of the epigenetics in epidermal carcinogenesis has 

been studied in melanoma (83). The activity of SFN on epigenetic regulation of skin cancer 

has been reported on PcG proteins’ (e.g. Bmi1 and EZH2) function by means of blocking 

tumor progression through their inhibition thus decreasing H3K27me3 level. (84). In 

squamous cell carcinoma (SCC), SFN treatment suppressed cancer progression and 

metastasis in vivo through reduction in arginine methylation at H3 (85). As discussed earlier, 

UVB would drive perturbation of CpG methylome at initiation, promotion and progression 

stages of skin carcinogenesis, but importantly, SFN would block carcinogenesis more 

effectively at early stages than late stages and would attenuate some of the perturbations of 

UVB-induced CpG methylome (86). In cell culture model, SFN was also found to 

demethylate CpGs of Nuclear factor erythroid 2-related factor 2 (NRF2) promoter, resulting 

in re-activation of NRF2-dependent expression of detoxification enzymes heme oxygenase 1 
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(HO-1), NAD(P)H quinone oxidoreductase 1 (NQO-1), and UDP-glucronosyltransferase 

1A1 (UGT1A1) potentially leading to inhibition of TPA-induced transformation in 

epidermal JB6 cells (87). Such induced NRF2 expression was attributed to promoter hypo-

methylation through down-regulation of DNMTs and inhibition of overall HDAC enzyme 

activity (87). Professor Paul Talalay who first isolated and identified SFN (88), and he also 

advanced the concept of redox/electrophile-mediated induction of phase 2 detoxifying genes 

(89). Oxidants and electrophiles including SFN could modify cysteine’s sulfhydryl groups of 

Kelch-like ECH-associated protein-1 (KEAP1), prevent proteasomal degradation, allow 

newly synthesized NRF2 to enter the nucleus, and enhance NRF2-target gene transcription 

(reviewed in (90–92)). Interestingly, however, electrophile such as SFN and oxidant such as 

H2O2 may also regulate NRF2 via redox sensitive cysteine on the Nuclear Export Signal 

(NES) (93) as well as post-transcriptional/translation control of NRF2’s Internal Ribosomal 

Entry Sites (IRESs) (94). Question remains, how these different redox signaling of NRF2 

would operate under different redox environments such as different redox agents, acute 

versus chronic redox agent’s stimulating conditions and pathological conditions.

Lung cancer

Several studies show an inverse relationship between consumption of dietary ITCs, and lung 

cancer risk (95). In vitro cell culture study shows the involvement of SFN and miR-616–5p 

in EMT and NSCLC metastasis (96). miR-616–5p directly targets GSK3β and decreased its 

expression, whereas SFN decreased miR-616–5p by histone modification, and followed by 

inactivation of the GSK3β/β-catenin signaling pathway and inhibition of EMT in NSCLC 

cells (96). SFN inhibits HDAC activity and increases acetylated histones H3 and H4 in A549 

and H1299 lung cancer cells (97). In lung cancer stem cells (CSCs) miR-19a and miR-19b 

expression are up-regulated and SFN suppresses miR-19 and Wnt/β-catenin pathway 

resulting in inhibition of lung CSCs (98). In human lung cancer A549 cells, SFN 

epigenetically demethylates the CpG sites of the miR-9–3 promoter and reactivates miR-9–3 

expression (99). Similarly, SFN was found to up-regulate miR-214 and mediate 

downregulation of c-MYC in non-small cell lung cancer, potentially results in inhibition of 

cancer stem-like cell properties and cisplatin resistance (100).

Colon cancer

In colon cancer model, SFN suppressed tumor development in Apc(min) mice, increased 

acetylated histones in the polyps, and inhibited HDAC in APC(min) mice (101). SFN 

treatment in human colon adenocarcinoma Caco-2 cells showed increased activation of 

NRF2 by demethylation of the NRF2 promoter region and reducing expression of DNMT1. 

(102). In polyposis in rat colon (Pirc) model, single oral administration of SFN and 

structurally related long-chain ITCs decreased HDAC3 expression and increased pH2AX 

levels in adenomatous colon polyps (103). HCT116 and SW480 colon cancer cells study 

showed that SFN or its analogs altered HAT/HDAC activities and histone acetylation status, 

lowered the expression of HDAC3, P300/CBP associated factor (PCAF) and lysine 

acetyltransferase 2A (KAT2A/GCN5), and attenuated homologous recombination (HR)/non-

homologous end joining (NHEJ) repair activities (103). A 0.12% PEITC-enriched mouse-

diet reduced mucosal and submucosal inflammation possibly via modulating regulating 

NFκB proteins and NFκB mRNA expression was inversely correlated with tri-methylation 
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of lysine 27 on histone 3 near its promoter region in a time-dependent manner (104). 

Interestingly, colon cancer cells treated with low-dose PEITC for >1 month exhibited stable 

alterations in expression profile of epigenetic writers/erasers and chromatin-binding of 

HDACs and Polycomb-group (PcG) proteins (105). Sustained PEITC exposure not only 

blocked HDAC protein binding to euchromatin but was also associated with 

hypomethylation of PcG target genes that are typically hypermethylated in cancer (105). In 

human colon cancer cells ITCs inhibit HDAC enzyme activity and increase HDAC protein 

turnover and ITCs enhanced the acetylation and subsequent degradation of critical repair 

proteins, such as CtIP (106).

Breast cancer

Studies show that SFN modulates breast cancer risk at multiple stages of carcinogenesis 

through different biologic mechanisms including epigenetic modulations (107). SFN 

inhibited in dose- and time-dependent of hTERT in both MCF-7 and MDA-MB-231 human 

breast cancer cells. DNMT1 and DNMT3a, were decreased in SFN-treated breast cancer 

cells suggesting that SFN may repress hTERT by impacting epigenetic pathways (108). In 

combination studies, SFN and EGCG activated ERα MDA-MB-231 cells which was 

associated with significant reduction of DNMTs expression and activity, as well as of HDAC 

activity (109). Synergistic effect on MDA-MB-231 xenograft tumor growth, with 

combination of SFN and LSD1 inhibitor (110). In transplacental breast cancer 

chemoprevention study, SFN containing broccoli sprout diet upregulates tumor suppressor 

genes p53 and p16INK4a and downregulates tumor-promoting genes TERT and c-Myc 

potentially as a result of inhibition of HDAC1 expression (111). SFN in combination with 

genistein downregulates HDAC2, HDAC3 and KLF4 protein expression and reduced tumor 

volumes/sizes (112).

Prostate cancer

In prostate cancer, SFN reactivated and induced its downstream antioxidant stress pathway 

in TRAMP-C1 cells through epigenetic modification of NRF2 promoter, and could play a 

role in chemoprevention (113). The expression of long noncoding RNAs (lncRNAs) in 

prostate cancer cells was altered and SFN restored the altered expression of lncRNAs (114). 

Increased SFN consumption in mice with prostate cancer cell xenografts showed reduced 

HDAC enzyme activity in prostates, and peripheral blood mononuclear cells (115). SFN 

inhibited the expression and activity of human telomerase reverse transcriptase (hTERT). 

SFN treatment selectively decreased HDAC activity, and Class I and II HDAC protein’s 

expression increased acetylated histone H3 at the promoter for P21, induced p21 expression 

and increased tubulin acetylation in prostate cancer cells (116).

Cancer chemoprevention by isothiocyanates (ITCs) via non-epigenetic 

signaling pathways

Numerous studies have shown that many non-epigenetic mechanisms by which ITCs exert 

their biological anti-carcinogenic activities have been being well investigated including 

induction of carcinogen detoxication (117), enhanced DNA damage repair (118, 119), anti-

inflammatory pathway through NF-κB regulation (120), elimination of cancer stem cells 
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(121) and other cells (122), inhibition of cell cycle progression (123), induction of caspase/

apoptosis (124), induction of autophagy (125), and MAPK signaling pathway (126), among 

others. As discussed above, the most studied and most relevant signaling pathway in the 

context of cancer prevention elicited by ITCs would be the NRF2 mediated signaling 

pathway. As reviewed by many scientists, and discussed above, ITCs react with sulfhydryl 

groups of C residues of Keap1, releasing NRF2 from Keap1 binding and then NRF2 

translocating to the nucleus, partnering with sMafs and binding to the ARE found in many 

antioxidant/detoxifying enzymes including glutathione S-transferases (GSTs), thioredoxin, 

NQO-1, HO-1, among others (127–131).

Many studies have also shown that the ITCs are potent anti-inflammatory agents. SFN 

significantly reduced the nuclear translocation of the pro-inflammatory transcription factor 

nuclear factor (NF)-κB in pancreatic acinar cells, downregulating the expression of NF-κB 

target genes that code for pro-inflammatory mediators, such as tumor necrosis factor-α 
(TNF-α), interleukin-1 (IL-1β), IL-6 and inflammatory enzymes cyclooxygenase-2 

(COX-2), prostaglandin E (PGE) synthase, and inducible nitric oxide synthase (iNOS) (120, 

132). ITCs can also modulate the activity of phase I metabolizing enzymes (133–135), such 

as downregulating CYP3A2 mRNA expression, as well as the activity of 

benzyloxyquinoline debenzylase, a marker of CYP3As and upregulating CYP1A1 and 

CYP1A2 mRNA expression and the activity of ethoxyresorufin-O-deethylase (EROD), a 

marker of CYP1A1/2 activities (136). Some procarcinogens require activation by phase I 

enzymes in order to become active carcinogens capable of binding DNA and forming 

cancer-causing DNA adducts (137). Inhibition of specific CYP enzymes involved in 

carcinogen activation has been found to prevent the development of cancer in animal models 

(138). In additional, ITCs have been shown to modulate the expression of cell cycle 

regulators, cyclins and cyclin-dependent kinases (CDK), and trigger apoptosis in cancer cell 

lines (139). For example, in a mouse model of CRC, PEITC administration reduced both the 

number and size of polyps and these alternations were associated with activation of the CDK 

inhibitor, p21, inhibition of various cyclins (A, D1, and E), and induction of apoptosis (140). 

ITCs also have been shown to suppress the formation of capillary-like structures from 

human umbilical endothelial cells and likely inhibit the expression of hypoxia inducible 

factors (HIFs) that control angiogenesis in endothelial cells and malignant cell lines 

inhibition of angiogenesis (141). As discussed above for BITC (142), SFN has been shown 

to induce autophagy in both in vitro cell culture models and in vivo models associated with 

decreased cell proliferation, alterations in protein levels of autophagy regulators Atg5 and 

phospho-mTOR (125, 143). Some other anticancer pathways such as inhibition of cell 

migration and invasion (144–146), have also been reported. Question remains how these 

non-epigenetic signaling pathways would be linked and integrated with epigenetic 

mechanisms elicited by ITCs in the context of cancer prevention necessitates further study.

Pharmacokinetics and Pharmacodynamics of dietary ITCs

Pharmacokinetics (PK) and pharmacodynamics (PD), a quantitative science, integrate and 

evaluate the dose/concentration-response relationships in the body following the 

administration of drugs (147, 148). Despite many reports studying the PK/PD of ITCs, there 

are not many showing the “direct quantitative relationship” between the dose/concentration 
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of ITCs and the biological/pharmacological response(s) in in vivo animal models or in 

humans. In absorption, after oral administration of SFN in the rats the peak concentration 

(Cmax) were reported to be attained in 1 h, indicating rapid absorption (149). However, 

increasing the dose of SFN from 0.5–5 mg/kg, the oral absorption rate constant (kab) 

decreased and Cmax did not increase proportionally to the dose, suggesting non-linear 

absorption kinetics (149). In human, SFN was absorbed rapidly and achieved Cmax in 1 h 

after the consumption of broccoli sprout products (150, 151). Comparison of the area under 

the blood/plasma concentration time curve (AUC) AUC0–24 values between the intravenous 

(IV) and oral treatment groups, at low dose (2.8 μmol/kg) shows an absolute bioavailability 

of 82%, which decreased to 20% at the higher dose (28 μmol/kg) (149).

In drug distribution, a rapid decrease was observed in the plasma concentration of SFN after 

both oral and IV dosing indicating rapid and extensive cellular uptake into various tissues 

(149). This is consistent with studies showing ITCs achieve very high intracellular 

concentrations as a result of their interaction with glutathione (GSH) (152–154). Such 

extensive intracellular localization explains the very large apparent volume of distribution 

(Vd) of 102 L/kg after IV injection in rat. Additionally, the Vd of SFN decreased 

dramatically from 102 to 42 L/kg with increasing doses from 0.5 to 5.0 mg/kg (149), 

showing non-linear Vd. In another study of SFN PK, the volume of distribution at steady 

state (Vss) was around 3.7 L or 14.8 L/Kg after an IV dose of 25 mg/kg of SFN (155) and 

this result is consistent with Hanlon et al.’s findings (149).

Freeze-dried aqueous extract of broccoli sprouts inhibited bladder cancer development 

induced by N-butyl-N-(4-hydroxybutyl) nitrosamine significantly and dose-dependently, 

with over 70% of the ITCs present in the extract were excreted in the urine as ITC 

equivalents (ITCs + dithiocarbamates) within 12 h after a single oral dose, indicating 

substantial urinary excretion (156). Urinary concentrations of ITC equivalents were 2 to 3 

orders of magnitude higher than those in plasma (156). In a cross-over human study of 

glucoraphanin-rich (GRR) versus SFN-rich (SFR), urinary excretion of SFN and its 

metabolites (in approximately 12-hour collections after dosing), was substantially greater 

with the SFN-rich (mean = 70%) than with GRR rich (mean = 5%) beverages (157). These 

studies again suggest that substantial renal excretion of ITC or its metabolites occur.

In terms of PD, several studies have reported the increased levels of Nrf2-targeted enzymes 

GSTs and NQO1in plasma (158) and saliva (159) in humans volunteers after consuming 

cruciferous vegetables. Similarly administration of SFN-rich preparations to healthy subjects 

led to increased mRNA or protein levels of NQO1 and GSTs in skin punch biopsies, blood 

cells, and buccal scrapings (160–162). As a proof of concept study, after IV administration 

of 25 mg/kg of SFN, moderate increase in mRNA (2–5 folds) of HO-1, NRF2, and NQO1, 

while significant increase (> 5 folds) for GSTT1, GPx1, and Maf in rat lymphocytes (155). 

These PK/PD effects of SFN could be modeled with indirect response (IDR) model directly 

linking plasma SFN concentrations with NRF2-mediated gene expression response in 

lymphocytes (155). Future studies involving integrating acute PK/PD and long-term cancer 

preventive effects of ITCs in human would be needed.
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Ongoing clinical studies/trials of isothiocyanates and chemoprevention

Pre-clinical carcinogenesis studies of dietary ITCs have demonstrated extraordinary 

chemopreventive efficacy. Several clinical trials have illustrated that ITCs, administered 

orally as glucosinolate precursors or directly in its bioactive compound such as SFN, PEITC 

have preventive effects against cancers (163) (164). Specifically, SFN and PEITC have been 

studied in some clinical studies and briefly summarized in Table 1 (165–171). More ongoing 

ITCs clinical trials are listed in clinicaltrials.gov. In one particular clinical study involving 

male patient with recurrent prostate cancer, none of the patients experienced PSA doubling, 

a marker for disease severity, after serving SFN daily for 20 weeks (172). HDAC expression 

and activity inhibition has been used as a biomarker in some trials (173, 174) and one 

clinical study with healthy subjects showed that HDAC activity was significantly inhibited in 

PBMCs as early as 3 hours after consumption of 68 g of broccoli sprouts (115). Study using 

SFN in breast cancer patients showed an average decrease of 80.39 pmol/min/mg protein in 

blood HDAC activity from pre- to post-intervention (169). A clinical study of PEITC as an 

inhibitor of metabolic activation of a tobacco-specific lung carcinogen 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) for cancer prevention, the NNK 

metabolic activation ratio was significant reduced by 7.7% (171). ITCs have shown 

promising efficacy in various clinical cancer chemoprevention trials, however, future clinical 

trials involving epigenetic endpoints are warranted.

Conclusion and future prospective

ITCs found abundantly in the human diet and are derived from cruciferous vegetables, are 

highly promising cancer preventive agents. Multiple and multi-targeted mechanisms, 

including epigenetic reprograming, could be involved in the preventive and therapeutic 

effects of ITCs in cancer. Gene silencing through hypermethylation of CpG of tumor onco/

proto-oncogenes, gene activation through hypomethylation of CpG of tumor suppressor 

genes, and other modifications including phosphorylation, acetylation, ubiquitination are 

potential cellular targets of epigenetic regulation by ITCs. Genome-wide DNA methylation 

analysis might help to better understand the targeted tissue specificity and global events in 

the regulation by ITCs. Extensive research on the extrapolation of preclinical to clinical 

dosages of ITCs for prevention studies needs to be further refined. Understanding of the 

PK/PD of parent/metabolites of the ITCs, its tissue levels and modulation of signaling 

mechanisms including epigenetic mechanisms is warranted in human studies.

Cancer is a complex chronic disease and cancer development is a multistep process (1, 2, 12, 

175, 176). The ITCs as discussed above belongs to a very powerful class of biologically 

active food components, they are relatively non-toxic at low physiological and even higher 

pharmacological doses, with good oral bioavailability (149, 157), powerful anti-oxidative 

stress/anti-inflammatory (80) and possess epigenetic modifying properties as well as with 

great anti-cancer efficacy in many in vitro cell culture models and in vivo animal models. 

The exact molecular mechanism of how the ITCs as well as many other dietary 

chemopreventive phytochemicals modifying the epigenetic machinery is currently unclear. 

However it is highly likely through redox biological process playing an important role (60) 

analogous to the kinases/caspases activation as we have discussed back in the 1990s (177–
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179). Additionally, it would be tempting to speculate that the ITCs particularly SFN and 

PEITC, although differ in some aspects of signaling pathways (at same micromolar 

concentrations, SFN is a more potent NRF2 activator than PEITC, and SFN activates ERK 

more strongly compared to JNK, whereas PEITC would be reversed (126, 180, 181), they 

would be considered as “general” cancer preventive agents not unlike the chemotherapeutic 

agents such as platinum-based or the taxane-based drugs. Analogous to chemotherapeutic 

agents, for maximal efficacy, the ITCs would need to be used in combination with other 

cancer preventive agents including other less toxic dietary phytochemicals, natural products 

or drugs such as NSAIDs, SERMs, aromatase inhibitors, and 5‑α‑reductase inhibitors (182) 

targeting different signaling pathways. Together with other considerations and initiatives 

such as immunoprevention (183, 184) (185), the long-term control and prevention of 

progression of tumors to advanced and metastatic states may soon to be realized.
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Figure 1. 
Schematic representation of epigenetic pathways in stepwise carcinogenesis process and 

chemopreventive effects of isothiocyanates (ITCs) impinging upon and integrating with the 

cellular processes during cancer development. Major epigenetic mechanism involved (A) 

Histone modification, (B) DNA modifications, and (C) miRNA regulation. The role of ITCs 

in modifying/reversing of these epigenetic mechanisms and signaling pathways including 

reactive oxygen/nitrogen species (RO/NS), xenobiotic metabolizing enzymes (XMEs), DNA 

damage/repair, cellular kinases, onco/proto-oncogenes, inflammatory, matrix 

metalloproteinases (MMPs), epithelial-mesenchymal transition (EMT) biomarkers, and 

immune suppression, among others, in the process of carcinogenesis viz. initiation, 

promotion and progression. (↑ activation, ↓ inhibition, ⊥ blocking)
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Table 1:

Summary of completed and ongoing clinical trials using SFN and PEITC

Agent Cancer 
type

Experiment detail Outcome/Ongoing targets

SFN/Broccoli Sprout 
Extract

Lung

291 healthy subjects; broccoli sprout beverages; GR 
(600 μmol) and SFN (40 μmol); 84 days

Increases urinary excretion of benzene (61%) 
and acrolein (23%) (165)

50 healthy subjects; SFN-rich broccoli sprout 
beverage; 7 days

20–50% ↑ in excretion levels of glutathione 
conjugates of acrolein, crotonaldehyde and 
benzene after SFN treatment (166)

30 healthy subjects, young smokers; broccoli diet; 
250 g/ day; 10 days

DNA repair activity ↑ in PBMC (167)

72 former smokers with lung cancer; SFN; 120 
μmol/time, 2 times/day; 12 months

Targets: lung cancer chemoprevention with 
SFN in former smokers

Prostate

90 men with prostate cancer recurrence; 60 mg of 
SFN daily; 6 months

log PSA slope ↓ significantly (168)

98 men with prostate biopsy; 200 µmol of SFN, 2 
capsules daily; 4 weeks

Targets: HDAC inhibition effects by SFN in 
human prostate cancer tissue/cells

40 prostate cancer patients; 64 mg SFN daily, 2 
times daily; 4 weeks

Epigenetic biomarkers measurement after SFN 
treatment

Breast

54 breast biopsy subjects; 224 mg GR; Broccoli 
seed extract;

Ki67 ↓, HDAC3 ↓ in benign tissue, HDAC ↓ in 
PBMC (169)

34 DCIS breast cancer subjects; 100 µmols of SFN 
for 14 days

Change in Mean Proliferative Rate Measured 
by Ki67%

PEITC/Watercress

Lung

11 healthy smokers; watercress; 56.8 g / meal for 3 
meals/day; 3 days

↑ Urinary NNAL plus NNAL-Gluc (33.5%) 
(170)

82 healthy smokers; PEITC 10 mg 4 times/day for 5 
weeks

↓ NNK metabolic activation ratio (7.7%) (171)

SFN, sulforaphane; PEITC, phenethyl isothiocyanate; GR, glucoraphanin; PBMC, Peripheral blood mononuclear cells; PSA, prostate-specific 
antigen; HDAC, Histone Deacetylase; NNAL-glu, 4-(methyInitrosamino)-l-(3-pyridyI)-l-butyl /3-D-glucopyranosiduronic acid; NNK, Nicotine-
derived nitrosamine ketone; DCIS, Ductal carcinoma in situ; ↑, increase/activation; ↓, decrease/inhibition.
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