Skip to main content
. 2021 Apr 14;28(33):44949–44972. doi: 10.1007/s11356-021-13639-6

Table 12.

Panel FMOLS, GMM, and quantile regression outputs following Eq. (2)

Dependent variable: CO2-PC Coefficient Std. error t-stat Prob.
Panel FMOLSa,b,c,d,e,f,g
GDP_PC 0.294130 0.035630 8.255118 0.0000
GDP_PCb − 1.22E-06 5.49E-07 − 2.225666 0.0263
Electricity_Fossil 24.88699 3.768459 6.604022 0.0000
Panel GMMa,b,h,i
GDP_PC 0.295856 0.000532 555.8879 0.0000
GDP_PCb − 1.25E-06 4.97E-09 − 250.9368 0.0000
Electricity_Fossil 26.70729 0.091923 290.5401 0.0000
Panel quantile regression (0.25)a,b,j,k
GDP_PC 0.481137 0.031865 15.09914 0.0000
GDP_PCb − 6.45E-06 7.60E-07 − 8.485483 0.0000
Electricity_Fossil 3.172770 1.153612 2.750291 0.0061
Panel quantile regression (0.50)a,b,j,k
GDP_PC 0.687465 0.035834 19.18451 0.0000
GDP_PCb − 1.01E-05 1.27E-06 − 7.942059 0.0000
Electricity_Fossil 5.410547 1.309292 4.132423 0.0000
Panel quantile regression (0.75)a,b,j,k
GDP_PC 0.623495 0.102264 6.096909 0.0000
GDP_PCb − 3.87E-06 1.54E-06 − 2.516744 0.0120
Electricity_Fossil 33.47263 4.375306 7.650354 0.0000

aCross-sections included: 36

bTotal panel (balanced) observations: 792

cPanel method: Pooled estimation

dCointegrating equation deterministic: C

eAdditional regressors deterministic: @TREND

fCoefficient covariance computed using the sandwich method (heterogeneous variance structure)

gLong-run covariance estimates (Bartlett kernel, Newey-West fixed

hInstrument specification: @DYN (CO2_PC,-2) GDP_PC

iConstant added to the instrument list

jHuber heterogeneous standard errors and covariance

kSparsity method: Kernel (Epanechnikov) using residuals