
Abstract. Background: Pituitary adenoma (PA) is a benign
tumor of parenchymal cells in the adenohypophysis, and it’s
development is strongly associated with genetic factors.This
study aim was to find whether TBX15 rs98422, DNM3
rs1011731, RAD51B rs8017304, and rs2588809 single
nucleotide polymorphisms can be associated with pituitary
adenoma. While the TBX15 gene belongs to the T-box family
of genes and is a transcription factor involved in many
developmental processes, the DNM3 encodes a protein that
is a member of the dynamin family with mechanochemical
properties involved in actin-membrane processes,
predominantly in membrane budding, and the RAD51B gene
plays a significant role in homologous recombination in
DNA repair for genome stability. Materials and Methods:
The study enrolled 113 patients with pituitary adenoma and
283 healthy control subjects. DNA samples were extracted
and purified from peripheral blood leukocytes. Genotyping
was carried out using real-time polymerase chain reaction.
The results were assessed using binomial logistic regression.
Results: Our study revealed that RAD51B rs2588809 TT
genotype could be associated with PA development in the co-
dominant (OR=6.833; 95% CI=2.557-18.262; p<0.001) and
recessive (OR=7.066; 95% CI=2.667-18.722; p<0.001)
models. The same results were observed in females but not
in males and PA without recurrence, while in PA with
recurrence, no statistically significant results were obtained.

Conclusion: RAD51B rs2588809 TT genotype may increase
the odds of PA development in women; it may also be
associated with non-recurrent PA development.

Pituitary adenoma (PA) is an intracranial tumor localized in
the bone cavity (sella turcica) surrounded by multiple neural,
vascular, endocrine, and bone structures, which further may
contribute to an assortment of tumor types (1-7). PA accounts
for approximately 15 to 20 percent of primary brain tumors
with a prevalence of 77.6-97.6 PA cases per 100,000
individuals. Clinically significant PAs occur in one out of
1064 individuals (5-11). PA can occur insidiously – most
patients do not realize they have it until specifically
investigated. This tumor can manifest in two ways: an
endocrine imbalance or pressure on the surrounding
structures. The latter is the most common form of
macroadenoma manifestation (12). Six to ten percent of all
PAs expand into the cavernous sinus (13, 14). The optic
chiasm is directly above the pituitary gland, so a prolonged
compression of the chiasm can cause primary optic nerve
atrophy and result in visual function defects, such as
decreased visual acuity and visual field defects or impaired
color vision (15). The earlier the tumor is diagnosed, the
more likely it is to be removed and the visual function to be
preserved. Endocrine changes may be due to the
overexpression of tumor hormones or hypoexpression, when
the tumor compresses the pituitary gland (16). 

The etiology and pathogenesis of PA are complex and still
poorly understood. PA represents a heterogeneous disease
whose pathogenesis is a multifactorial process that involves
both environmental and genetic factors. Therefore, a better
understanding of the PA pathogenesis requires a
comprehensive research of this disease’s biological and
genetic markers. Plenty of possible molecular markers, as
well as intelrleukin 9 variant rs1859430, which might be
incorporated in the tumorogenesis of PAs, are currently
under investigation (17). Recent studies focus on genetic
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markers for cancer development, so we aimed to elucidate
the role of four TXB15, DNM3 and RAD51B single
nucleotide variants in PA development. The elevated genes
has been reported in a variety of cancers, including prostate,
ovarian cancers. However, the data regarding TBX15, DNM3
and RAD51B genes and PA is still lacking (18-20). 
TBX15, a T-box family member, is possibly involved in

cancer cell transformation because of its antiapoptotic function
(18). It also is known that T-box genes are involved in in
carcinogenesis (21-23). TBX15 is associated with prostate
(24), thyroid cancer (19, 25, 26), ovarian carcinoma (20). 

The other marker dynamin 3 (DNM3) is a candidate tumor
suppressor gene. This gene encodes a member of the dynamin
family, which possesses mechanochemical properties to
tabulate and sever membranes (27). However, few reports
describe the relationship between DNM3 and malignant
diseases (28, 29). DNM3 has been found mainly in the brain
(at a lower level than DNM1) and testicles, and less frequently
in the lungs and heart (30). The importance of the DNM3 gene
has been investigated in gliomas (31, 32), hepatocellular
carcinoma (33-35), colon cancer (36), and papillary thyroid
carcinoma (37). Few studies have investigated the association
between DNM3 and hepatocellular carcinoma, breast cancer,
T-cell lymphoma, colon cancer (28-30, 33-34, 38, 39).
Additionally, the importance of DNM3 was investigated in
brain tumors glioblastomas (31-32).

RAD51B plays a role in homologous DNA pairing and
strand exchange in DNA double-strand break repair (38, 40).
The importance of RAD51B has previously been investigated
in the breast, ovarian, lung cancer and uterine leiomyomas
(31, 41-43). Also, some studies have been carried out to look
for the possible association between the RAD51 gene variants
and pancreatic (44-47), prostate cancer (48, 49), malignant
melanoma (50), colorectal adenocarcinoma (51), endometrial
cancer (52), soft tissue sarcoma (53) and glioblastoma (54).

Our study aimed to determine associations between
TBX15 rs98422, DNM3 rs1011731, RAD51B rs8017304,
rs2588809 single nucleotide polymorphisms and pituitary
adenoma invasiveness, development, and recurrence.

These findings support the hypothesised role of TBX15 ,
DNM3 and RAD 51 as tumour promoters. Based on the
TBX15, DNM3 and RAD51B associations with cancerous

processes we selected four widely described SNPs located in
these genes. According to the dbSNP database (https://www.
ncbi.nlm.nih.gov/snp/) the minor allele frequencies of these
intronic variants (TBX15 rs984222, DNM3 rs1011731,
RAD51B rs8017304, rs2588809) are more than 0.1 in the
Europe population, and none of these variants have been
studied with PA development, invasiveness, PA activity and
recurrence. The aim of the present study was to determine
these associations.

Materials and Methods

Patients and selection. This study was carried out at the Department
of Ophthalmology, Hospital of Lithuanian University of Health
Sciences and Laboratory of Ophthalmology, Neuroscience Institute,
Lithuanian University of Health Sciences. The Ethics Committee
for Biomedical Research at Lithuanian University of Health
Sciences (LUHS) approved the study (number BE-2-47). All
subjects provided written informed consent under the Declaration
of Helsinki. Based on our inclusion and exclusion criteria (55), two
groups were formed in the study: the PA group (n=113) and the
control group (n=283).

Evaluation of PA hormonal activity, invasiveness, recurrence and
DNA extraction and genotyping. The analysis of all pituitary
adenomas was based on histopathological findings of PA and
hormone levels in the blood serum before surgery. All PA subjects
were categorized into two groups – active and inactive PA (56).

Since some of the subjects had already had surgery in recent
years, we categorized them by recurrence of pituitary adenoma into
two groups – PA with and without recurrence.

Pituitary adenoma recurrence was diagnosed when enlargement of
a residual tumor or a new growth was documented on follow-up
magnetic resonance imaging (MRI) after surgical resection during the
period of this study. The residual tumor was considered stable if there
no signs of tumor progression on follow-up MRI. Most prolactinomas
were surgically treated because of the remaining pressure effects of
surrounding structures or ineffective medical treatment.

PA invasiveness has been described previously (55). The
suprasellar extension and sphenoid sinus invasion by PA were
classified according to the Hardy classification modified by Wilson,
and the degree of suprasellar and parasellar extensions was graded
as stages A–E. The degree of sellar floor erosion was graded as
grades I-IV. Grade III shows localized sellar perforation, and grade
IV shows diffuse destruction of sellar floor, which are the signs of
invasive PA. The Knosp classification system was used to quantify
the invasion of the cavernous sinus. Grade 3 and 4 pituitary tumors
were considered to be invasive.

DNA was extracted from 200 μL venous blood (white blood
cells) using the silica-based membrane technology utilizing a
genomic DNA extraction kit (GeneJET Genomic DNA Purification
Kit, Thermo Scientific, MA, USA), according to the manufacturer’s
recommendations. The genotyping of TBX15 rs984222, DNM3
rs1011731, RAD51B rs8017304 and rs2588809 was carried out
using the real-time PCR. SNPs were genotyped on the Step One
Plus real-time PCR system (Applied Biosystems, Foster City, CA,
USA). The TaqMan® SNP genotyping assays (Thermo Scientific)
for all SNPs were performed according to the manufacturer’s
protocol. The Allelic Discrimination program was used during the
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Table I. Characteristics of study subjects.

Characteristics Subjects with PA  Control group p-Value
(group I) (group II)

n=113 n=283

Men, n (%) 45 (39.8) 100 (35.3) 0.438
Women, n (%) 68 (60.2) 183 (64.7)
Age, median (IQR) 54 (22.5) 55.5 (27) 0.426



real-time PCR. The program determined individual genotypes
according to the fluorescence intensity rate of different detectors
(VIC and FAM).

Statistical analysis. The age of study participants was presented as
the median and interquartile range (IQR). It was compared between
both study groups using the nonparametric Mann-Whitney U-test.
All categorical variables of TBX15 rs98422, DNM3 rs1011731,
RAD51B rs8017304 and rs2588809 genotypes and alleles were
expressed as absolute numbers with percentages in brackets and
compared using the Pearson’s χ2 and Fisher’s exact test (when
n<50) in both groups. Binomial logistic regression analysis was
performed to evaluate the genotype and allele impact on PA
development and reported as odds ratios (ORs) with 95%
confidence intervals (CIs). The lowest values of the Akaike

information criterion (AIC) showed the best genetic models.
Statistically significant differences were reported when p<0.05, but
for multiple comparisons, the Bonferroni correction was applied
with the p<0.05/4 (since we analyzed four different SNPs).

Results

A total of 396 individuals were included in the study. Two
groups of subjects were formed during the study. The first
one included patients with pituitary adenoma, the second
included healthy subjects (control group). The characteristics
of the subjects are presented in Table I. The first group
consisted of 113 individuals, of whom 45 (39.8%) were men,
and 68 (60.2%) were women. The median age of this group
was 54 years. The control group consisted of 100 (35.3%)
men and 183 (64.7%) women. In total, the control group
consisted of 283 individuals with a median age of 55.5 years.

TBX15 rs984222, DNM3 rs1011731, RAD51B rs8017304, and
RAD51B rs2588809 genotype frequencies in the pituitary
adenoma and healthy population groups. Hardy Weinberg
analysis was performed to compare the observed and expected
frequencies of TBX15 rs984222, DNM3 rs1011731, RAD51B
rs8017304, and RAD51B rs2588809 using the χ2 test in the
control group. The genotype distribution of the
polymorphisms matched the Hardy-Weinberg equilibrium.
(p>0.001) (57). TBX15 rs984222, DNM3 rs1011731, RAD51B
rs8017304, and RAD51B rs2588809 genotypes and allele
frequencies did not significantly differ between the PA and
control groups. The results are shownin Table II.

Binomial logistic regression analysis was performed to
estimate the impact of genotypes and alleles on PA
development. Binomial logistic regression analysis of
RAD51 rs2588809 revealed that the TT genotype was
associated with about 7-fold increased odds of PA
development in the co-dominant (OR=6.833; 95% CI=2.557-
18.262; p<0.001) and recessive (OR=7.066; 95% CI=2.667-
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Table II. TBX15 rs984222, DNM3 rs1011731, RAD51B rs8017304 and
RAD51B rs2588809 genotype and allele frequencies in the PA patient
and control groups.

SNP Genotype/ Group p-Value 
allele

Control group PA group
n=283 n=113
n (%) n (%)

TBX15 Genotype
rs984222 G/G 141 (49.8) 65 (57.5)

G/C 120 (42.4) 42 (37.2) 0.341
C/C 22 (7.8) 6 (5.3)
In total 283 (100) 113 (100)
Allele

G 402 (71.02) 172 (76.11) 0.148
C 164 (28.98) 54 (23.89)

DNM3 Genotype
rs1011731 A/A 90 (31.8) 34 (30.1)

G/A 142 (50.2) 57 (50.4) 0.919
G/G 51 (18.0) 22 (19.5)
In total 283 (100) 113 (100)
Allele

G 322 (56.89) 125 (55.31) 0.685
A 244 (43.11) 101 (44.69)

RAD51B Genotype
rs8017304 AA 130 (45.94) 49 (43.36)

AG 116 (40.98) 52 (46.02) 0.609
GG 37 (13.08) 12 (10.62)
In total 283 (100) 113 (100)
Allele 

A 376 (66.43) 150 (66.37) 0.987
G 190 (33.57) 76 (33.63)

RAD51B Genotype
rs2588809 CC 198 (69.96) 74 (65.49)

CT 70 (24.74) 24 (21.24) 0.024
TT 15 (5.30) 15 (13.27)
In total 283 (100) 113 (100)
Allele 

C 466 (82.33) 172 (76.12) 0.045
T 100 (17.67) 54 (23.88)

PA: Pituitary adenoma; p-Value: Bonferroni corrected level of significance,
differences are considered statistically significant when p<0.05/4.

Table III. Binary logistic regression analysis of RAD51B rs2588809.

Model Genotype OR (95% CI) p-Value AIC

RAD51B rs2588809

Co-dominant C/T 0.873 (0.509; 1.497) 0.622 459.716
T/T 6.833 (2.557; 18.262) <0.001

Dominant C/T+T/T 1.332 (0.833; 2.129) 0.232 474.155
Recessive T/T 7.066 (2.667; 18.722) <0.001 457.963
Overdominant C/T 0.763 (0.449; 1.298) 0.318 474.546
Additive T 1.627 (1.135; 2.334) 0.008 468.686

OR: Odds ratio; AIC: Akaike information criterion; p-Value: Bonferroni
corrected level of significance, differences are considered statistically
significant when p<0.05/4. Significant p-Values are shown in bold.



18.722; p<0.001) models. Each copy of the T allele was
associated with increased odds of PA development
(OR=1.627; 95% CI=1.135-2.334; p=0.008) (Table III).
Analysis of TBX15 rs984222, DNM3 rs1011731, and
RAD51B rs8017304 did not show any statistically significant
results (Supplementary material).

Comparison of TBX15 rs984222, DNM3 rs101173, RAD51B
rs8017304, and rs2588809 polymorphisms in pituitary
adenoma patients by gender. Statistical analysis was also
performed to compare the TBX15 rs984222, DNM3
rs101731, and RAD51 rs8017304 genotype and allele

frequencies between the patients with PA and control group
subjects by their gender (Table IV). The analysis of RAD51B
rs2588809 showed a statistically significant difference in the
CC, CT, and TT genotype distributions between females with
PA and control females (69.12%, 16.18%, and 14.7% vs.
67.21%, 27.87%, and 4.92%, respectively, p=0.011). The
results are presented in Table IV.

Binominal logistic regression was performed to evaluate
these polymorphisms’ impact on the PA development in men
and women, separately. Binominal logistic regression analysis
in the women’s group showed that the TT genotype was
associated with 6.7-fold higher odds of PA development in
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Table IV. TBX15 rs984222, DNM3 rs1011731, RAD51B rs8017304 and RAD51B rs2588809 genotype and allele frequencies in PA patients and
controls by gender.

Genotype/allele Males p-Value Females p-Value

PA group n=45 Control group n=100 PA group n=68 Control group n=183 
n (%) n (%) n (%) n (%)

TBX15 rs984222

GG 25 (55.6) 45 (45.0) 0.499 40 (58.8) 96 (52.5) 0.532
GC 17 (37.8) 47 (47.0) 25 (36.8) 73 (39.9)
CC 3 (6.7) 8 (8.0) 3 (4.4) 14 (7.7)
Allele

G 67 (74.4) 137 (68.5) 0.305 105 (77.20) 265 (72.40) 0.277
C 23 (25.6) 63 (31.5) 31 (22.80) 101 (27.60)

DNM3 rs10111731

AA 12 (26.7) 35 (35.0) 0.583 22 (32.4) 55 (30.1) 0.923
AG 25 (55.6) 51 (51.0) 32 (47.1) 91 (49.7)
GG 8 (17.7) 14 (14.0) 14 (20.6) 37 (20.2)
Allele

A 49 (54.4) 121 (60.5) 0.333 76 (55.88) 201 (54.91) 0.847
G 41 (45.6) 79 (39.5) 60 (44.12) 165 (45.09)

RAD51B rs8017304

AA 19 (42.22) 38 (38.0) 0.890 30 (44.12) 92 (50.27) 0.340
AG 19 (42.22) 45 (45.0) 33 (48.53) 71 (38.25)
GG 7 (15.56) 17 (17.0) 5 (7.35) 20 (11.48)
Allele

A 57 (63.33) 121 (60.5) 0.646 93 (68.38) 255 (69.67) 0.780
G 33 (36.67) 79 (39.5) 43 (31.62) 111 (30.33)

RAD51B rs2588809

CC 27 (60.0) 75 (75.0) 0.179 47 (69.12) 123 (67.21) 0.011
CT 13 (28.89) 19 (19.0) 11 (16.18) 51 (27.87)
TT 5 (11.11) 6 (6.0) 10 (14.7) 9 (4.92)
Allele

C 67 (74.44) 169 (84.5) 0.042 105 (77.21) 297 (81.15) 0.325
T 23 (25.56) 31 (15.5) 31 (22.79) 69 (18.85)

PA: Pituitary adenoma; p-Value: Bonferroni corrected level of significance, differences are considered statistically significant when p<0.05/4.
Significant p-Values are shown in bold.



the co-dominant model (OR=6.744; 95% CI=2.021-22.583;
p=0.002) and with 7.7-fold increased odds of PA development
in the recessive model (OR=7.716; 95% CI=2.332-25.533;
p=0.001). The results are shown in Table V. The TBX15
rs984222, DNM3 rs1011731, and RAD51B rs8017304 were
not associated with female PA development (Supplementary
material). Also, no statistically significant variables were
found in the men’s group (Supplementary material). 

Association of TBX15 rs984222, DNM3 rs1011731, RAD51B
rs8017304, and RAD51B rs2588809 polymorphisms with
clinical and morphological features of PA. One of our study’s
objectives was to determine if there is a relationship between
TBX15, DNM3, and RAD51B gene polymorphisms with PA’s
clinical and morphological features. Comparing the
distribution of genotypes and alleles of TBX15 rs984222,
DNM3 rs1011731, RAD51B rs8017304, and RAD51B
rs2588809 between the PA groups by recurrence and the
control group, we obtained statistically significant differences
in the rs2588809 CC, CT, and TT genotype distributions
between PA without-recurrence patients and healthy controls
(67.03%, 17.58% and 15.39% vs. 69.96%, 24.73%, and
5.31%, respectively; p=0.005). The results are shown in Table
VI. Regarding PA recurrence, we performed binominal logistic
regression to evaluate the impact of TBX15 rs984222, DNM3
rs1011731, RAD51B rs8017304, and RAD51B rs2588809
polymorphisms on the development of PAs with and without
recurrence. We found that the RAD15B rs2588809 TT
genotype was associated with approximately 8-fold increased
odds of development of PA without recurrence in the co-
dominant (OR=7.842; 95% CI=2.890-21.277; p<0.001) and
recessive model (OR=8.394; 95% CI=3.122-22.571; p<0.001).
Also, each T allele was associated with 1.7-fold increased
odds of development of PA without recurrence in the additive
model (OR=1.676; 95% CI=0.114-2.457; p=0.008). The data

are presented in Table VII. No associations were found in the
recurrent PA group (Supplementary material). The TBX15
rs984222, DNM3 rs1011731, and RAD51B rs8017304 were
not associated with PA recurrence (Supplementary material).
TBX15 rs984222, DNM3 rs1011731, RAD51B rs8017304,

and RAD51B rs2588809 genotypes and allele frequencies
were compared between the active and inactive PA and
healthy control groups. We found that the RAD51B
rs8017304 G allele was detected significantly more
frequently in the inactive PA group vs. the control group
(48.13% vs. 33.57%; p=0.004) (Table VIII).

Binominal logistic regression revealed that the RAD51B
rs2588809 TT genotype was associated with increased odds
of active PA development in the codominant (OR=6.058;
95% CI=2.146-19.734; p=0.001) and recessive (OR=7.103;
95% CI=2.366-21.320; p<0.001) models (Table IX). Also,
the RAD51B rs2588809 TT genotype was associated with
increased odds of inactive PA development in the
codominant (OR=7.247; 95% CI=2.29-22.906; p=0.001) and
recessive (OR=7.260; 95% CI=2.260-21.840; p=0.001)
models. Each T allele at rs2588809 was associated with 1.9-
fold increased odds of inactive PA development in the
additive model (OR=1.865; 95% CI=1.154-3.014; p=0.011).
These data are presented in Table IX. The TBX15 rs984222,
DNM3 rs1011731 and RAD51 rs8017304 were not associated
with PA hormonal activity (Supplementary material). 

We then compared the distribution of TBX15 rs984222,
DNM3 rs1011731, RAD51 rs8017304, and rs2588809
genotypes and alleles in patients with invasive and non-
invasive PAs vs. healthy controls. The RAD51B rs2588809
genotypes (CC, CT, and TT) were distributed significantly
differently in patients with non-invasive PA and healthy
subjects (59.09%, 22.72% and 18.19% vs. 69.96%, 24.73%,
and 5.31%, respectively, p=0.008) (Table X). Also, the T
allele occurred more frequently in patients with non-invasive
PA than in control subjects (29.55% vs. 17.67%, p=0.008).
The results are presented in Table X.

Binominal logistic regression was performed in patients
with PA by its invasiveness. It was revealed that the RAD51B
rs2588809 TT genotype was associated with about 5-fold
increased odds of invasive PA in the codominant (OR=4.881;
95% CI=1.570-15.172; p=0.006) and recessive (OR=5.212;
95% CI=1.693-16.050; p=0.004) models (Table XI). Also,
the RAD51B rs2588809 TT genotype was associated with
increased odds of non-invasive PA development in the
codominant (OR=10.513; 95% CI=3.381-32.688; p<0.001)
and recessive (OR=10.259; 95% CI=3.368-31.255; p<0.001)
models. Each T allele was associated with 2.2-fold increased
odds of non-invasive PA development in the additive model
(OR=2.222; 95% CI=1.352-3.652; p=0.002). The results are
shown in Table XI. The TBX15 rs984222, DNM3 rs1011731,
and RAD51 rs8017304 were not associated with PA
invasiveness (Supplementary material).
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Table V. Binary logistic regression analysis of RAD51B rs2588809 in
females.

Model Genotype OR (95% CI) p-Value AIC

TBX15 rs984222

RAD51B rs2588809

Co-dominant C/T 0.572 (0.275; 1.188) 0.134 282.117
T/T 6.744 (2.021; 22.583) 0.002

Dominant C/T+T/T 1.013 (0.554; 1.852) 0.966 295.251
Recessive T/T 7.716 (2.331; 25.533) 0.001 282.517
Overdominant C/T 0.486 (0.236; 1.000) 0.050 291.045
Additive T 1.425 (0.905; 2.245) 0.126 292.969

OR: Odds ratio; AIC: Akaike information criterion; p-Value: Bonferroni
corrected level of significance, differences are considered statistically
significant when p<0.05/4. Significant p-Values are shown in bold.



Discussion

Our study analyzed the TBX15 rs984222, DNM3 rs1011731,
RAD51B rs8017304 and RAD51B rs2588809 gene
polymorphisms in PA patients (n=113) and healthy control
subjects (n=283). The results were compared by gender, age,
and the clinical course of the disease. Studies of these
polymorphisms analyzing PA association with rs984222,
rs1011731, rs8017304, and rs2588809 have not been
performed yet, to the best of our knowledge.

The role of TBX family genes (TBX2 and TBX3) in
oncogenic processes was associated with an increase of their
expression level, as they have been found to be
overexpressed in different types of cancer, including breast,
cervical, ovarian, pancreatic, liver, and bladder cancer (58,
59). TBX15 hypermethylation has been evaluated in prostate
and ovarian carcinomas (19, 20). No studies have been
performed in association with any brain tumors, including
PA. Our study was the first to find that the C allele of TBX15
rs984222 polymorphism reduced PA’s recurrence (p=0.037). 

DNM3 has been shown to be involved in various
malignancies (28-37). Marino et al. have reported DNM3
expression in the brain and testicles and less often in the
lungs and heart (29). Inokawa et al. and Shen et al. have
found that DNM3 is hypermethylated in hepatocellular
cancer (HCC) (33-34). Zhang et al. have also studied the
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Table VI. TBX15 rs984222, DNM3 rs1011731, RAD51B rs8017304 and RAD51B rs2588809 genotype and allele frequencies in patients grouped
by PA recurrence and healthy subjects.

SNP Genotype/ Frequency
Allele

PA without Control group p-Value PA with Control group p-Value
recurrence n (%) n (%) recurrence n (%)

n=91 n=283 n=22 n (%) n=283

TBX15 GG 49 (53.85) 141 (49.82) 0.786 15 (68.18) 141 (49.82) 0.252
rs984222 GC 36 (39.56) 120 (42.40) 6 (27.27) 120 (42.40)

CC 6 (6.59) 22 (7.78) 1 (4.55) 22 (7.78)
Allele

G 134 (73.63) 402 (71.02) 0.498 36 (81.82) 402 (71.02) 0.125
C 48 (26.37) 164 (28.98) 8 (18.18) 164 28.98)

DNM3 AA 28 (30.77) 90 (31.80) 0.929 6 (27.27) 90 (31.80) 0.900
rs1011731 AG 45 (49.45) 142 (50.18) 12 (54.55) 142 (50.18)

GG 18 (19.78) 51 (18.02) 4 (18.18) 51 (18.02)
Allele

A 101 (55.49) 322 (56.89) 0.741 24 (54.55) 322 (56.89) 0.762
G 81 (44.51) 244 (43.11) 20 (45.45) 244 (43.11)

RAD51 AA 41 (45.05) 130 (45.94) 0.941 8 (36.36) 130 (45.94) 0.203
rs8017304 AG 39 (42.86) 116 (40.99) 13 (59.09) 116 (40.99)

GG 11 (12.09) 37 (13.07) 1 (4.55) 37 (13.07)
Allele

A 121 (66.48) 376 (66.43) 0.989 29 (65.90) 376 (66.43) 0.943
G 61 (33.52) 190 (33.57) 15 (34.09) 190 (33.57)

RAD51B CC 61 (67.03) 198 (69.96) 0.005 13 (59.09) 198 (69.96) 0.484
rs2588809 CT 16 (17.58) 70 (24.73) 8 (36.36) 70 (24.73)

TT 14 (15.39) 15 (5.31) 1 (4.55) 15 (5.31)
Allele

C 138 (75.82) 466 (82.33) 0.052 34 (77.27) 466 (82.33) 0.401
T 44 (25.18) 100  (17.67) 10 (22.73) 100  (17.67)

PA: Pituitary adenoma; p-Value: Bonferroni corrected level of significance, differences are considered statistically significant when p<0.05/4.
Significant p-Values are shown in bold.

Table VII. RAD51B rs2588809 association with PA without recurrence.

Model Genotype OR (95% CI) p-Value AIC

Co-dominant C/T 0.747 (0.405; 1.378) 0.350 398.342
T/T 7.842 (2.890; 21.277) <0.001

Dominant C/T+T/T 1.293 (0.777; 2.150) 0.323 418.081
Recessive T/T 8.394 (3.122; 22.571) <0.001 397.245
Overdominant C/T 0.637 (0.349; 1.164) 0.143 414.772
Additive T 1.676 (0.114; 2.457) 0.008 410.252

OR: Odds ratio; AIC: Akaike information criterion; p-Value: Bonferroni
corrected level of significance, differences are considered statistically
significant when p<0.05/4. Significant p-Values are shown in bold.



mechanism of DNM3 in HCC (60). Teicher et al. have
reported liposarcoma 1q24.3 amplifications involving DNM3
(29) while low DNM2 expression has been associated with
tumor invasion and metastasis in cervix carcinoma and up-

regulation of matrix metalloproteinase 2 (MMP-2)
expression (61). The DNM3 gene has also been investigated
as a possible molecular marker for diagnosis and gene
therapy of malignant diseases (38). Yang et al. have
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Table VIII. TBX15 rs984222, DNM3 rs1011731, RAD51B rs8017304 and RAD51B rs2588809 genotype and allele frequencies in patients grouped
by PA hormonal activity and healthy subjects.

SNP Genotype/ Frequency
Allele

Inactive PA group Control group p-Value Active PA group Control group p-Value
n=53 n=283 n=60 n=283

n (%) n (%) n (%) n (%) 

TBX15 GG 30 (56.60) 141 (49.82) 0.636 35 (58.33) 141 (49.82) 0.252
rs984222 GC 20 (37.74) 120 (42.40) 22 (36.67) 120 (42.40)

CC 3 (5.6) 22 (7.78) 3 (5) 22 (7.78)
Allele

G 80 (75.47) 402 (71.02) 0.351 92 (76.67) 402 (71.02) 0.125
C 26 (24.53) 164 (28.98) 28 (23.33) 164 (28.98)

DNM3 AA 16 (30.19) 90 (31.81) 0.804 18 (30) 90 (31.81) 0.900
rs1011731 AG 29 (54.72) 142 (50.17) 28  (46.67) 142 (50.17)

GG 8 (15.09) 51 (18.02) 14 (23.33) 51 (18.02)
Allele 

A 61 (57.55) 322 (56.89) 64 (53.33) 322 (56.89) 0.762
G 45 (42.45) 244 (43.11) 0.900 56 (46.67) 244 (43.11)

RAD51B AA 24 (45.28) 130 (45.94) 0.996 25 (41.67) 130 (45.94) 0.358
rs8017304 AG 22 (41.51) 116 (40.99) 30 (50.0) 116 (40.99)

GG 7 (13.21) 37 (13.07) 5 (8.33) 37 (13.07)
Allele

A 55 (51.87) 376 (66.43) 0.004 80 (66.67) 376 (66.43) 0.960
G 51 (48.13) 190 (33.57) 40 (33.33) 190 (33.57)

RAD51B CC 33 (62.26) 198 (69.96) 0.098 41 (68.33) 198 (69.96) 0.060
rs2588809 CT 13 (24.53) 70 (24.73) 11 (18.33) 70 (24.73)

TT 7 (13.21) 15 (5.31) 8 (13.34) 15 (5.31)
Allele

C 79 (74.53) 466 (82.33) 0.059 93 (77.5) 466 (82.33) 0.215
T 27 (25.47) 100  (17.67) 27 (22.5) 100  (17.67)

p-Value: Bonferroni corrected level of significance, differences are considered statistically significant when p<0.05/4. Significant p-Values are shown
in bold.

Table IX. RAD51B rs2588809 associations with PA hormonal activity.

Model Genotype OR (95% CI) p-Value AIC

RAD51B rs2588809

Active PA

Co-dominant C/T 0.678 (0.323; 1.421) 0.303 309.171
T/T 6.508 (2.146; 19.734) 0.001

Dominant C/T+T/T 1.126 (0.612; 2.074) 0.702 319.894
Recessive T/T 7.103 (2.366; 21.320) <0.001 308.292
Overdominant C/T 0.597 (0.288; 1.239) 0.166 317.966
Additive T 1.513 (0.949; 2.414) 0.082 317.159

Model Genotype OR (95% CI) p-Value AIC

RAD51B rs2588809

Inactive PA

Co-dominant C/T 1.122 (0.559; 2.249) 0.746 286.264
T/T 7.247 (2.293; 22.906) 0.001

Dominant C/T+T/T 1.593 (0.862; 2.942) 0.137 292.775
Recessive T/T 7.260 (2.260; 21.840) 0.001 284.368
Overdominant C/T 0.970 (0.491; 1.917) 0.931 294.917
Additive T 1.865 (1.154; 3.014) 0.011 288.799

OR: Odds ratio; AIC: Akaike information criterion; p-Value: Bonferroni corrected level of significance, differences are considered statistically
significant when p<0.05/4. Significant p-Values are shown in bold.



discussed the importance of the DNM3 gene in gliomas. As
the DNM3 gene is the target of miR-221, the overexpression
of DNM3 could reverse its tumor-promoting effect (31-32).
Based on these findings, we sought to examine whether a

polymorphism in the DNM3 promoter could impact PA
development risk. Unfortunately, in our study, we did not
find any statistically significant differences analyzing DNM3
rs1011731 gene polymorphism in relation to PA.
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Table X. TBX15 rs984222, DNM3 rs1011731, RAD51B rs8017304 and RAD51B rs2588809 genotype and allele frequencies in patients grouped by
PA invasiveness and healthy subjects.

SNP Genotype/ Frequency
Allele

Non-invasive PA Control group p-Value Invasive PA Control group p-Value
group n=44 n=283 group n=69 n=283

n (%) n (%) n (%) n (%) 

TBX15 GG 26 (59.09) 141 (49.82) 0.300 39 (56.52) 141 (49.82) 0.600
rs984222 GC 17 (38.64) 120 (42.40) 25 (36.23) 120 (42.40)

CC 1 (2.27) 22 (7.78) 5 (7.25) 22 (7.78)
Allele

G 69 (78.41) 402 (71.02) 0.151 103 (74.64) 402 (71.02) 0.398
C 19 (21.59) 164 (28.98) 35 (25.36) 164 (28.98)

DNM3 AA 14 (31.82) 90 (31.81) 0.732 20 (28.99) 90 (31.81) 0.868
rs1011731 AG 20 (45.45) 142 (50.17) 37 (53.62) 142 (50.17)

GG 10 (27.73) 51 (18.02) 12 (17.39) 51 (18.02)
Allele

A 48 (54.55) 322 (56.89) 0.679 77 (55.79) 322 (56.89) 0.816
G 40 (45.45) 244 (43.11) 61 (44.21) 244 (43.11)

RAD51B AA 15 (34.09) 130 (45.94) 0.232 34 (49.28) 130 (45.94) 0.773
rs8017304 AG 24 (54.55) 116 (40.99) 28 (40.58) 116 (40.99)

GG 5 (11.36) 37 (13.07) 7 (10.14) 37 (13.07)
Allele

A 54 (61.36) 376 (66.43) 0.351 96 (69.57) 376 (66.43) 0.482
G 34 (38.64) 190 (33.57) 42 (30.43) 190 (33.57)

RAD51B CC 26 (59.09) 198 (69.96) 0.008 48 (69.47) 198 (69.96) 0.280
rs2588809 CT 10 (22.72) 70 (24.73) 14 (20.29) 70 (24.73)

TT 8 (18.19) 15 (5.31) 7 (10.14) 15 (5.31)
Allele

C 62 (70.45) 466 (82.33) 0.008 110 (79.71) 466 (82.33) 0.473
T 26 (29.55) 100  (17.67) 28 (20.29) 100  (17.67)

p-Value: Bonferroni corrected level of significance, differences are considered statistically significant when p<0.05/4. Significant p-Values are shown
in bold.

Table XI. RAD51B gene rs2588809 association with PA invasiveness.

Model Genotype OR (95% CI) p-Value AIC

RAD51B rs2588809

Inactive PA

Co-dominant C/T 0.755 (0.387; 1.473) 0.410 343.800
T/T 4.881 (1.570; 15.172) 0.006

Dominant C/T+T/T 1.073 (0.600; 1.919) 0.813 350.311
Recessive T/T 5.212 (1.693; 16.050) 0.004 342.503
Overdominant C/T 0.693 (0.358; 1.342) 0.277 349.125
Additive T 1.357 (0.857; 2.148) 0.193 348.735

Model Genotype OR (95% CI) p-Value AIC

RAD51B rs2588809

Non-invasive PA

Co-dominant C/T 1.095 (0.503; 2.382) 0.819 248.474
T/T 10.513 (3.381; 32.688) <0.001

Dominant C/T+T/T 1.820 (0.945; 3.503) 0.073 257.197
Recessive T/T 10.259 (3.368; 31.255) <0.001 244.526
Overdominant C/T 0.878 (0.413; 1.868) 0.736 260.187
Additive T 2.222 (1.352; 3.652) 0.002 250.945

OR: Odds ratio; AIC: Akaike information criterion; p-Value: Bonferroni corrected level of significance, differences are considered statistically
significant when p<0.05/4. Significant p-Values are shown in bold.



Concerning theother two gene polymorphisms, we found
that the RAD51B rs2588809 CC genotype and the
rs8017304 AG genotype might increase the probability of
PA recurrence and invasiveness. Also, we proved that the
RAD51B rs2588809 TT genotype might increase the odds of
PA development in women and may be associated with PA
development without recurrence. The RAD51B gene has
previously been studied in other tumor types (breast,
ovarian, and lung cancers (32, 41) but not in brain tumors,
so we could not compare our results with the results of other
authors. 
RAD51B has been previously evaluated as a candidate gene

for breast cancer predisposition, but no mutation was detected
in a study of 188 multiple-case breast cancer families (62).
Previous studies have identified chromosomal rearrangements
disrupting RAD51B in benign tumors, particularly uterine
leiomyomas (42, 43). In addition, the findings by Golmard and
colleagues must be interpreted in the context of two genome-
wide association studies (GWAS), which identified the minor
allele of single nucleotide polymorphisms in RAD51B acting
as a low-risk factor for breast cancer: the rs999737 (63) and
rs1314913 (64), located in RAD51B introns 10 and 7,
respectively. Results by Mengyin et al. also suggest that
RAD51B could be a candidate prognostic factor for non-small
cell lung cancer patients (41).

Overall, the present study of the TBX15 rs984222, DNM3
rs1011731, RAD51B rs8017304, and RAD51B rs2588809
gene polymorphisms requires future replication in studies
with higher sample sizes to confirm the association of
RAD51B rs2588809 with PA.

Conclusion

The RAD51B rs2588809 TT genotype was more common in
women with PA than in healthy women, and the T allele was
less frequent in men with PA than in healthy men. The
RAD51B rs2588809 T allele increased the potential for PA
invasiveness and PA activity. The likelihood of PA recurrence
was reduced by the TT genotype and each T allele.
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