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Abstract

N6-Methyladenosine (m6A) is an RNA modification that interacts with numerous coding and non-coding RNAs and
plays important roles in the development of cancers. Nonetheless, the clinical impacts of m6A interactive genes on
these cancers largely remain unclear since most studies focus only on a single cancer type. We comprehensively
evaluated m6A modification patterns, including 23 m6A regulators and 83 interactive coding and non-coding RNAs
among 9,804 pan-cancer samples. We used clustering analysis to identify m6A subtypes and constructed the m6A
signature based on an unsupervised approach. We used the signatures to identify potential m6A modification
targets across the genome. The prognostic value of one target was further validated in 3,444 samples from six
external datasets. We developed three distinct m6A modification subtypes with different tumor microenvironment
cell infiltration degrees: immunological, intermediate, and tumor proliferative. They were significantly associated
with overall survival in 24 of 27 cancer types. Our constructed individual-level m6A signature was associated with
survival, tumor mutation burden, and classical pathways. With the signature, we identified 114 novel genes as
potential m6A targets. The gene shared most commonly between cancer types, BCL9L, is an oncogene and
interacts with m6A patterns in the Wnt signaling pathway. In conclusion, m6A regulators and their interactive
genes impact the outcome of various cancers. Evaluating the m6A subtype and the signature of individual tumors
may inform the design of adjuvant treatments.
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Background
N6-Methyladenosine (m6A) is a eukaryotic mRNA modi-
fication that modulates gene expression [1, 2] and alters
the fate of modified RNA molecules by changing mRNA
stability, splicing, transport, localization, translation,

microRNA (miRNA) processing, and RNA-protein inter-
actions [3–5]. Emerging evidence suggests that m6A mod-
ifications are associated with tumor proliferation,
differentiation, tumorigenesis, invasion, and metastasis [6,
7] and play important roles in cancer development [8, 9].
What’s more, m6A modifications are also regulated by nu-
merous protein-coding genes [10–12] and non-coding
RNAs (e.g., miRNAs, lncRNAs) interact by controlling
cleavage, localization, transport, stability, and degradation
and by influencing biological processes such as prolifera-
tion, infiltration, and metastasis of tumor cells [13–15].
However, few studies have comprehensively evaluated
m6A interactive genes for both coding and non-coding
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RNAs, which contribute a lot to cancers. In this study, we
investigated m6A regulators along with their interactive
coding and non-coding RNAs in a pan-cancer setting.

Results and discussions
Landscape of m6A patterns in TCGA pan-cancer
To characterize m6A patterns and screen for potential
targets, we developed a four-step computational frame-
work among 9804 pan-cancer samples in The Cancer
Genome Atlas (TCGA) (Additional file: Methods, Figure
1A). A total of 23 m6A regulators, 56 m6A interactive
protein-coding genes, 10 lncRNAs, and 17 miRNAs were
included in this study after quality control (Table S1).
The 106 genes had close co-expression relations (Pear-
son r > 0.3) (Fig. 1b). In the co-expression regulation
network, most of the m6A regulators and some of the
protein-coding genes were hub genes that interacted
with other genes (Fig. 1c).
In the differential expression comparisons of tumor-

adjacent normal tissues across different cancer types,
many genes had higher expression levels in tumor tissues
while some protein-coding genes showed the opposite re-
lationship (Figure S1). These genes included ASB2,
P2RX6, AXL, ID2, and SOCS2. Four miRNAs including
miR-143, miR-29a, miR-125b-1, and miR-145 showed
lower expression in tumor tissues. All of the lncRNAs had
higher expression in tumor tissues. Using the first two
principal components (PCs) from tumor and normal tis-
sues, we found that the m6A patterns had good differen-
tial diagnostic value (Figure S2). The Area Under Curve
(AUC) passed 90% in most cancers (Fig. 1d, S3).
The somatic mutation status of these genes is shown

in Fig. 1e. The top genes with the highest average mu-
tated frequency were TP53 (31.4%), PTEN (5.7%),
NOTCH1 (3.6%), CTNNB1 (3.6%), XIST (3.4%), and
MALAT1 (3.4%). We also observed a relatively high mu-
tation frequency in uterine corpus endometrial carcin-
oma (UCEC) (7.6%).

Constructing m6A subtypes and signature in pan-cancer
We used the K-means algorithm to categorize pa-
tients into different m6A subtypes (clusters) within
each cancer type, separately. Three subtypes were
identified by the Elbow method (Figures S4-S5). The
log-rank test detected that the defined subtypes were
significantly associated with overall survival in 24 of

27 cancers after excluding cancers with death propor-
tion < 10% (Figure S6). Specifically, we defined the
clusters sorted by median survival time (MST). The
group with the longest MST was defined as cluster 1,
while the group with the shortest MST was defined
as cluster 3, and the middle group was cluster 2.
Compared with cluster 1, clusters 2 and 3 had signifi-
cantly worse survival in 22 of 27 cancers (Ptrend <
0.05 in Cox proportional-hazards model) (Fig. 2a). In
addition, the classifiers remained significant in most
cancer types when the clinical outcome was
progression-free interval (PFI) (16 of 26) (Fig. 2b) or
disease-specific survival (DSS) (18 of 26) (Fig. 2c). In
the Kaplan-Meier survival analysis of overall popula-
tion, m6A subtypes could stratify patients’ survival
significantly after adjusting for cancer types (P < 2 ×
10− 16) (Fig. 2d). Distributions of four somatic muta-
tions were significantly different among different m6A
subtypes (FDR-correct P values of Chi-square test <
0.05), including TP53, NOTCH1, CTNNB1, and PTEN
(Figure S7).
In the analysis of single sample gene set enrichment

analysis (ssGSEA) of tumor microenvironment (TME)
cell infiltration, the beta coefficients (95% CIs) of clus-
ters 2 and 3 were shown in Fig. 2e while cluster 1 was
used as the reference group. A total of 27 of 28 immune
categories showed significant differences between m6A
subtypes after FDR correction except the central mem-
ory CD8 T cell category. Cluster 3 had the lowest TME
infiltration degree while cluster 1 had the highest. Thus,
we defined cluster 1 as an immunological subtype, clus-
ter 2 as an intermediate subtype, and cluster 3 as tumor
proliferative subtype (Fig. 2f).
The PCA-generated m6A signature (Additional file:

Methods, Figure S8) was significantly different across
different m6A subtypes (trend in linear regression: β =
0.8, 95% CI: 0.68–0.91, P = 8.66 × 10− 44) (Fig. 2g).
Higher level of m6A signature was significantly associ-
ated with worse overall survival in the overall population
after adjusting for age, gender, stage, cancer types and
probable estimations of expression residual (PEER) fac-
tors (trend in Cox regression: P = 2.07 × 10− 86) (Add-
itional file: Methods, Figure 2I). In addition, the m6A
signature was significantly higher among patients with
late clinical stage disease (Ptrend = 6.37 × 10− 83) or high
tumor grade (P = 8.16 × 10− 23) (Figure 2h, S9). Higher

(See figure on previous page.)
Fig. 1 a Study workflow. b Circos plot of the selected genes on the chromosome. c Gene co-expression network of the m6A-related genes. The gene pairs
with Pearson r >0.3 are considered to have co-expression correlation. d Discrimination analyses of the tumor and adjacent normal tissues in pan-cancer (cancer
types with ≥5 tumor-normal pairs included) based on the m6A gene panel. In the principal components plot of the m6A gene panel in lung cancer tumor/
normal tissues, the area under the curve (AUC) of distinguishing between tumor and normal tissues is 0.96 (95% CI: 0.93–0.98). e Heatmap of the somatic
mutation frequency of the genes across pan-cancer
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m6A signature was significantly associated with shorter
MST across different cancer types (r = − 0.38, P = 0.030)
(Fig. 2j).
We checked the associations between the m6A signa-

ture and tumor mutation burden (TMB) score in the
overall pan-cancer population. Unsurprisingly, they had
a strong positive correlation with Pearson r = 0.53 in the
overall population (Figure S10A). The m6A signature
was positively correlated (PFDR < 0.05) with the TMB
scores in 16 cancer types (Figure S10B).
We applied the ssGSEA to compute the enrichment

score of 2236 canonical pathways across the genome. A
total of 949 pathways (42.4%) were significantly associ-
ated with the m6A signature after FDR corrections, indi-
cating that m6A modifications are linked to a broad
range of biological processes (Table S2), with consistent
results across most of cancer types (Figure S11). Also
identified were some classical pathways related to cancer
therapy, such as the FOXM1 pathway, cell cycle regula-
tion, polo-like kinase 1 (PLK1)-related pathways, and
Aurora A/B pathways.

Potential targets that interact with m6A modification
We identified 114 novel genes associated with the signa-
ture in at least 10 cancer subtypes with PFDR < 0.05 (Fig.
2k). Among the 105 genes with available OncoScores
(Additional file: Methods), 78 genes (74.3%) passed the
suggested threshold (OncoScore> 21.09), which was
much higher than the proportion of randomly selected
oncogenes (35%) in the OncoScore evaluation system
(χ2 = 67.3, P = 2.29 × 10− 16) (Table S3).
The gene with the highest frequency of significance

across cancers was a protein-coding gene, BCL9L (17/32
cancer types, OncoScore = 70.76). BCL9L was significantly
up-regulated in tumor tissues in 10 cancer types (Figure
S12). Its expression levels were positively associated with
the m6A signature (r = 0.35) and m6A subtypes (Ptrend =
2.81 × 10− 66) in the overall population (Figure S13A,
S13B). Higher expression of BCL9L was significantly asso-
ciated with worse overall survival in the meta-analysis of
pan-cancer (HR = 1.14, 95% CI: 1.07–1.24, P = 0.0002)
(Figure S13C). This finding was confirmed in six external
validation datasets, including gene expression datasets of

lung cancer (HR = 1.32, P = 9.00 × 10− 4), gastric cancer
(HR = 1.62, P = 1.32 × 10− 5), breast cancer (HR = 1.38,
P = 0.048), liver cancer (HR = 1.44, P = 0.037), and ovarian
cancer (HR = 1.45, P = 1.20 × 10− 4) and a protein dataset
of breast cancer (HR = 3.58, P = 7.00 × 10− 4) (Figure S13D
and S14). BCL9L is an important member of the Wnt sig-
naling pathway, and is significantly associated with the
ssGSEA enrichment score of the Wnt pathway (r = 0.39)
(Figure S13E). Among the five m6A interactive genes
(MYC, LEF1, WIF1, CTNNB1, and SOX2) that also partici-
pate in the Wnt signaling progress, BCL9L had strong cor-
relations with MYC (r = 0.34) and CTNNB1 (r = 0.36)
(Figure S15).
Further, we validated the 109 protein-coding genes

in the external datasets. Forty genes (37.7%) were as-
sociated with survival in the meta-analysis with PFDR <
0.05, indicating they played important roles in cancers
(Table S4).

Conclusions
In summary, this study demonstrates that m6A regula-
tors and interactive genes may play an important role in
cancer outcomes. Our systemic evaluation of m6A pat-
terns improves the understanding of the dysregulation of
RNA methylation in tumor microenvironments. The
predicted interactive target genes may provide additional
insight into clinical therapeutic targets.
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