Skip to main content
. 2021 Apr 13;20:43. doi: 10.1186/s12940-021-00717-y

Table 4.

The top 50 differentially methylated CpGs in whole blood, ordered by q-value, when comparing the high and control burden groups

CpG CHR Gene Regression Coeff. pval qval
cg13442689 7 PTPRN2 0.037 2.1E-07 0.100
cg04344875 7 MEST,MESTIT1 0.019 8.3E-07 0.179
cg06353830 1 −0.024 1.3E-06 0.179
cg07064673 11 HCCA2 0.016 1.5E-06 0.179
cg02500300 4 STOX2 0.014 2.1E-06 0.204
cg19558802 15 GLDN 0.047 3.1E-06 0.248
cg23154021 12 −0.059 3.7E-06 0.259
cg14950515 4 −0.048 4.5E-06 0.273
cg24393602 6 GSTA4 0.018 6.3E-06 0.337
cg06713076 17 −0.020 7.4E-06 0.354
cg04507925 2 UNC80 −0.030 9.1E-06 0.354
cg20697519 1 SLAMF8 0.021 1.0E-05 0.354
cg03450733 X ARX −0.061 1.0E-05 0.354
cg12948543 14 PACS2 0.014 1.2E-05 0.354
cg08084655 17 BTBD17 −0.034 1.3E-05 0.354
cg00152946 10 −0.017 1.3E-05 0.354
cg18898267 8 −0.050 1.3E-05 0.354
cg20845970 8 −0.022 1.4E-05 0.354
cg21461300 13 RASA3 −0.038 1.5E-05 0.354
cg08721112 1 −0.086 1.5E-05 0.354
cg21355100 19 ZNF555 0.024 1.5E-05 0.354
cg10881110 1 SLC25A34 0.020 1.7E-05 0.360
cg06534800 5 DOK3 0.019 1.7E-05 0.360
cg24352317 X LOC729609 −0.032 2.1E-05 0.425
cg24757937 14 SIX1 −0.036 2.3E-05 0.425
cg22258713 8 0.048 2.3E-05 0.425
cg24851684 6 DHX16 0.017 2.4E-05 0.425
cg00893368 13 RASA3 −0.025 2.5E-05 0.436
cg11576274 1 −0.048 2.7E-05 0.449
cg27590787 X 0.089 2.9E-05 0.476
cg26708559 7 MEST,MESTIT1 0.017 3.1E-05 0.477
cg16204066 6 ITPR3 −0.024 3.2E-05 0.477
cg06439589 X SSR4 0.014 3.3E-05 0.477
cg12905592 12 FMNL3 0.020 3.8E-05 0.477
cg08772163 13 ARL11 0.013 4.1E-05 0.477
cg22741244 2 KLHL30 −0.027 4.1E-05 0.477
cg11646505 6 0.013 4.2E-05 0.477
cg03290530 3 0.045 4.2E-05 0.477
cg08132116 3 NICN1 0.015 4.2E-05 0.477
cg21032058 14 TMEM63C 0.012 4.3E-05 0.477
cg00329180 16 ANKRD11 0.020 4.4E-05 0.477
cg00044796 1 −0.105 4.7E-05 0.477
cg13036944 3 0.013 4.7E-05 0.477
cg02184697 16 KREMEN2 −0.050 4.8E-05 0.477
cg05825400 17 ABR 0.030 5.0E-05 0.477
cg26114595 17 EFCAB5 0.019 5.0E-05 0.477
cg01987515 2 COPS7B 0.010 5.2E-05 0.477
cg17733084 1 NEXN −0.014 5.3E-05 0.477
cg22671717 1 −0.103 5.4E-05 0.477
cg26289712 8 0.016 5.4E-05 0.477

Data generated from a linear model with empirical Bayes estimation, which we used for the whole blood DNA methylation beta value comparisons between the Ranch Hand veterans with high serum TCDD levels (n = 15) and the control group (n = 12). The q-value was calculated using the Benjamini-Hochberg method. The regression coefficient identifies the direction of methylation change between the burden groups and was determined via the model we constructed. Genes associated with each CpG are also given in the table