Xie et al. Molecular Cancer (2021) 20:68

https://doi.org/10.1186/512943-021-01359-x M OIeCU | ar C ancer
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Abstract

Background: Circular RNAs (circRNAs) have been found to have significant impacts on bladder cancer (BC)
progression through various mechanisms. In this study, we aimed to identify novel circRNAs that regulate the
function of IGF2BP1, a key m®A reader, and explore the regulatory mechanisms and clinical significances in BC.

Methods: Firstly, the clinical role of IGF2BP1 in BC was studied. Then, RNA immunoprecipitation sequencing (RIP-
seq) analysis was performed to identify the circRNAs interacted with IGF2BP1 in BC cells. The overall biological roles
of IGF2BP1 and the candidate circPTPRA were investigated in both BC cell lines and animal xenograft studies.
Subsequently, we evaluated the regulation effects of circPTPRA on IGF2BP1 and screened out its target genes
through RNA sequencing. Finally, we explored the underlying molecular mechanisms that circPTPRA might act as a
blocker in recognition of m°A.

Results: We demonstrated that IGF2BP1 was predominantly binded with circPTPRA in the cytoplasm in BC cells.
Ectopic expression of circPTPRA abolished the promotion of cell proliferation, migration and invasion of BC cells
induced by IGF2BP1. Importantly, circPTPRA downregulated IGF2BP1-regulation of MYC and FSCN1 expression via
interacting with IGF2BP1. Moreover, the recognition of m°A-modified RNAs mediated by IGF2BP1 was partly
disturbed by circPTPRA through its interaction with KH domains of IGF2BP1.

Conclusions: This study identifies exonic circular circPTPRA as a new tumor suppressor that inhibits cancer
progression through endogenous blocking the recognition of IGF2BP1 to m®A-modified RNAs, indicating that
circPTPRA may serve as an exploitable therapeutic target for patients with BC.
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Background

Bladder cancer (BC) is the most common urinary system
malignancy with an estimated 81,400 new cases in 2019
in the United States [1]. For patients with advanced-
stage or chemotherapy-refractory BC, the prognosis re-
mains poor in despite of improvements in surgical tech-
niques and medical therapy [2, 3]. The development of
BC is a complex process and epigenetic abnormalities
have been demonstrated to play critical roles in BC
pathogenesis [4, 5], including DNA and histone modifi-
cations, chromatin remodeling, RNA methylation and so
on. In particular, N6—methyladenosine (m®A), the most
prevalent RNA methylation, is emerging as critical regu-
lator in multiple fundamental biological processes [6, 7].
However, our understanding of the regulatory roles and
the underlying mechanisms for m°A in BC is still
limited.

Circular RNAs (circRNAs) are a novel class of single-
stranded RNAs and characterized by covalently closed
continuous loops and resistance to RNase R digestion
[8]. Increasing RNA-sequencing analyses have revealed
evolutionary conservation and abundance of circular
RNAs, suggesting specific roles of circRNAs in cellular
physiology [9, 10]. Specifically, circRNAs have been veri-
fied as “microRNA (miRNA) sponges,” harboring mul-
tiple miRNAs and functioning as miRNA inhibitors [11].
For example, our previous research demonstrated that
BCRC-3 suppressed proliferation of BC cells through
miR-182-5p/p27 axis [12]. Nevertheless, genome-wide
studies have demonstrated that miRNA sponging activity
cannot be generally applied, and other mechanisms have
also been proposed, such as acting as platforms for pro-
tein interaction, translating into peptides or proteins [13,
14]. For example, overexpressed circSTAG1 captured
ALKBH5 and decreased the translocation of ALKBH5
into the nucleus, leading to increased m°A methylation
of fatty acid amide hydrolase (FAAH) messenger RNA
[15]. Accumulating evidences show that circRNAs are
frequently deregulated in various human cancers and
participate in multiple biological processes [16]. How-
ever, the roles and mechanisms of circRNAs in the
process of recognitions of m°A methylation remain
largely elusive.

The insulin-like growth factor-2 mRNA-binding pro-
tein 1 (IGF2BP1), also known as IMP1, CRD-BP, ZBP1,
or VICKZ1, belongs to a conserved family of RNA-
binding, oncofetal proteins (IGF2BP1-3). Recent studies
indicate that IGF2BP1 has the most conserved ‘onco-
genic’ role of the IGF2BP family in tumor-derived cells,
by affecting RNA stability, translatability, or localization
[17]. Crosslinking immunoprecipitation (CLIP) analyses
showed that IGF2BPs preferentially recognize m°A-
modified mRNAs and facilitate the stability and transla-
tion of potential mRNA targets in an m°®A-dependent
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manner, therefore having impacts on gene expression
output [18, 19]. Recently, non-coding RNAs (ncRNAs)
have been demonstrated to be involved in modulating
the expression and function of IGF2BP1. For example,
the post-transcriptional control of IGF2BP1 expression
by let-7 microRNAs is suggested to modulate tumor cell
fate [20]. A conserved direct interaction of the IncRNA
THOR with IGF2BP1 showed that THOR contributes to
the mRNA stabilization activities of IGF2BP1 [21]. How-
ever, it remains poorly understood the involvement of
IGF2BP1 in BC development and how it might be mod-
ulated by circular RNA.

In this study, we revealed the oncogenic functions of
IGF2BP1 in BC progression and identified a number of
novel circular RNAs interacting with IGF2BP1 through
high-throughput sequencing. A circRNA derived from
PTPRA pre-mRNA (circPTPRA) was screened out. It
showed that circPTPRA could suppress the growth and
aggressiveness of BC cells by competitively binding with
KH domains of IGF2BP1 and blocking its interaction
with downstream target m®A-modified mRNA, MYC
and FSCNI1. The results of this study delineate novel
mechanisms of circRNA/IGF2BP1-mediated regulation
of tumor progression and provide opportunities for
therapeutic intervention in BC.

Methods

Human tissue specimens

A total of 64 pairs of BC tissues and corresponding adja-
cent noncancerous bladder epithelial tissues were ob-
tained from patients who underwent radical cystectomy
in Union Hospital of Tongji Medical College of Huaz-
hong University of Science and Technology (Wuhan,
China), from 2015 to 2018. All the specimens were con-
firmed by at least two experienced histopathologists in-
dependently according to the criteria of the sixth edition
TNM classification of the International Union Against
Cancer. All specimens were snap-frozen in liquid nitro-
gen upon collection and stored at — 80 °C until use. Clin-
ical information of the patients with BC was listed in
Table S1. The study was approved by the Tongji Medical
College of Huazhong University of Science and Technol-
ogy Research Ethics Committee, and each patient signed
informed consent before the research started.

Cell culture

BC cell line (EJ) was purchased from American Type
Culture Collection (ATCC, USA). The human metastatic
bladder cancer cell line T24T, a lineage-related lung
metastatic variant of invasive bladder cancer cell line
T24, was obtained from the Departments of Urology,
University of Virginia (Charlottesville, VA) as a gift in
2010 and was subjected to DNA tests and authenticated
in our previous studies. T24T was cultured in DMEM
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(Invitrogen, USA) supplemented with 10% FBS (Gibco,
USA) and 1% penicillin/streptomycin (Gibco, USA). EJ
was cultured in RPMI1640 (Gibco, USA) supplemented
with 10% FBS, 1% penicillin/streptomycin. All cell lines
were confirmed 3 months before the beginning of the
study based on a short tandem repeat method and were
tested negative for mycoplasma contamination.

RT-PCR and real-time quantitative RT-PCR

Total RNA was isolated from tissues and cell lines with
RNeasy Mini kit (QIAGEN, Germany) according to the
manufacturer’s instructions. RNA was reverse tran-
scribed using the PrimeScript RT Master Mix (Takara,
Japan). Real-time PCR was performed using SYBR Pre-
mix Ex TaqTM kit (Takara, Japan) and primers (Table
S2). The results were analyzed with the Step OnePlus
Real Time PCR System (Applied Biosystems, USA). The
27°““* method was used to quantify the transcript levels.

CRISPR/Cas9 KO

T24T and EJ cells were transiently transfected with the
lentiCRISPR v2 plasmid (Addgene Plasmid #52961) con-
taining IGF2BP1 single-guide RNA (sgRNA) using Lipo-
fectamine 2000 (Invitrogen) following the
manufacturer’s instructions. Single-cell colonies were se-
lected, and knockout efficiency was tested by Western
blot analysis and Sanger sequencing. For Sanger sequen-
cing, genomic DNA was extracted from sgCtrl and
sglGF2BP1#1 cells. PCR was performed to amplify the
region flanked by the target site. The sgRNA sequences
used are listed below: sgIGF2BP1#1, TATTCCACCC
CAGCTCCGAT; sglGF2BP1#2, GAGCGTGACCCCCG
CGGACT.

Western blot

Tissue or cellular protein was extracted with RIPA Lysis
Buffer (Thermo Scientific,c, USA) according to the in-
structions. The concentration of total protein was mea-
sured by bicinchoninic acid (BC) protein assay kit
(Beyotime, China). Western blot was conducted as previ-
ously described, with antibodies specific for IGF2BP1
(ab82968), MYC (ab32072), ESCN1 (ab126772), HSPA6
(ab69408), FLAG (ab1162), GAPDH (ab8245), and B-
actin (ab8226).

Immunohistochemistry

Immunohistochemistry was performed as previously de-
scribed, with antibodies specific for Ki-67 (Proteintech,
1:200) or CD31 (Proteintech, 1:200). Images were cap-
tured by an Olympus FSX100 microscope (Olympus,
Japan). Protein expression levels were analyzed by
image-pro Plus 6.0. software through calculating the in-
tegrated optical density per stained area (IOD/area).

Page 3 of 17

In vivo growth and metastasis assays

All animal experiments were carried out in accordance
with NIH Guidelines for the Care and Use of Laboratory
Animals and approved by the Animal Care Committee
of Tong ji Medical College (approval number:
20192290). For in vivo tumor growth studies, 1 x 10°
treated T24T cells were subcutaneously injected into the
right axilla of blindly randomized four-week-old female
BALB/c nude mice (n=5 per group). Four weeks after
injection, the mice were sacrificed. Tumor growth rates
were monitored every other day, and tumor volume was
calculated according to the formula (Tumor volume = 1/
6 x lengthxwidth?). For in vivo metastasis studies, 2 x
10° treated T24T cells were injected into each blindly
randomized 4-week-old BALB/c nude mice (n=5 per
group) through the tail vein. Ten weeks after injection,
the mice were sacrificed. The survival time of each
mouse was monitored and recorded. The In-Vivo FX
PRO small animal imaging system (BRUKER Corpor-
ation, USA) was used to obtain fluorescence images of
xenografts in nude mice.

RNA fluorescence in situ hybridization

RNA Fluorescence in situ hybridization was performed
according to the manufacturer’s instructions. Cy3-
labeled circPTPRA probes were designed and synthe-
sized by RiboBio (Guangzhou, China). The signals of cir-
cPTPRA were detected by Fluorescent In Situ
Hybridization Kit (RiboBio, China). The images were
captured using Nikon A1Si Laser Scanning Confocal
Microscope (Nikon Instruments Inc., Japan).

Fluorescence immunocytochemical staining

BC cells were grown on coverslips, and treated with
antibodies specific for IGF2BP1 (8482S, CST; 1:100 dilu-
tion) at 4°C overnight. Then, coverslips were treated
with Alexa Fluor 488 goat anti-rabbit IgG (1:400 dilu-
tion) and DAPI (300 nmol/L) staining. The images were
photographed under a Nikon A1Si Laser Scanning Con-
focal Microscope (Nikon Instruments Inc., Japan).

Cell cycle assay

Cell cycle analysis was performed by flow cytometry.
Cells were harvested and fixed in 75% ice-cold ethanol
at 4 °C overnight. The fixed cells were washed with PBS
twice and then stained with propidium iodide (PI) buffer
(BD Pharmingen, USA). Then, cell cycle analysis was
performed by FACS scan flow cytometer. ModFit LT 2.0
was used to analyze the data.

In vitro cell migration and invasion assays

The abilities of cell migration and invasion were mea-
sured using transwell chambers (corning, USA) with
8um pore filters according to the manufacturer’s
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instructions. Cells were suspended in 200 pl serum-free
medium (5 x 10* cells per well for migration, and 1 x 10
per well for invasion) and were added to the upper
chambers coated with or without 50 pul of Matrigel (BD
Biosciences, USA). DMEM medium containing 20% FBS
was added to the bottom of chambers. After incubation
at 37°C for 24h (migration assay) or 48h (invasion
assay), cells on the upper surface were removed with a
cotton swab. Cells that migrated or invaded into the bot-
tom of the membrane were fixed with 4% paraformalde-
hyde, stained with crystal violet solution, and then
visualized under a microscope. The cell numbers were
counted in five random fields of view.

RNA pull-down assays

The biotinylated probe of circPTPRA was designed and
synthesized by RiboBio (Guangzhou, China). The se-
quence of circPTPRA probe was listed in Table S2. Pull-
down assay was performed as described in our previ-
ously studies. Briefly, M-280 streptavidin magnetic beads
(Invitrogen, USA) at 25°C for 2-4h, and then total cell
lysates with Protease/Phosphatase Inhibitor Cocktail and
RNase inhibitor added were incubated with circPTPRA
probe or oligo probe at 4°C overnight. After washing
thoroughly three times, the RNA complexes bound to
the beads were eluted and extracted with RNeasy Mini
Kit (QIAGEN) and were analyzed by qRT-PCR, and the
RNA-protein binding mixture was boiled in SDS buffer
and the eluted proteins were detected by western blot.

RNA stability assay for mRNA lifetime

T24T cells with stably overexpressed circPTPRA were
seeded into 6-well plates to get 50% confluency after 24 h.
Cells were treated with 5 pg/ml actinomycin D and col-
lected at indicated time points. The total RNA was ex-
tracted by miRNeasy Kit (Qiagen) and analyzed by RT-
PCR. The turnover rate and half-life of mRNA was esti-
mated according to previously published paper [18, 22].
The primers for MYC and FSCNI are listed in Table. S2.

RNA immunoprecipitation (RIP)

Cells seeded in a 15-cm dish at 70-80% confluency were
cross-linked by ultraviolet light at 254nm (200 J/cm?),
then harvested and lysated. RNA immunoprecipitation
(RIP) assay was performed according to the instructions
of the Magna RIP RNA Binding Protein Immunoprecipi-
tation Kit (Millipore, USA), using antibody specific for
IGF2BP1 (8482S, CST), FLAG (ab1162, abcam) or a cor-
responding control IgG (mouse IgG (CS200621, Milli-
pore) for FLAG, rabbit IgG (NIO1, Millipore) for
IGF2BP1. Input and co-immunoprecipitated RNAs were
extracted with a RNeasy Mini kit (QIAGEN, Germany)
according to the manufacturer’s instructions and ana-
lyzed by qRT-PCR or RNA-seq.
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RNA sequencing

Total RNA was isolated from circPTPRA-overexpressed
T24T and EJ cells and the corresponding control cells
using RNeasy Mini kit (Qiagen). Transcriptome sequen-
cing on an Illumina HiSeq X Ten platform was carried
out by SeqHealth Tech (Wuhan, China).

Dual-luciferase reporter assay

DNA fragments of wild-type and mutant CRD were syn-
thesized and cloned into the pMIR-REPORT vector
(Promega, USA) to constructed CRD firefly luciferase
reporters.

HEK293T cells were seeded in 24-well plates at 60—
80% confluency before transfection. The CRD firefly lu-
ciferase reporter plasmids (pMIR-CRD-WT and pMIR-
CRD-mut, respectively) and renilla luciferase reporter
control vectors (pRL-TK) were co-transfected with cir-
c¢PTPRA plasmid or vectors to examine the CRD lucifer-
ase activities. On the other hand, the pMIR-CRD-wide
type reporter plasmids were co-transfected with cir-
cPTPRA plasmids and IGF2BP1 expression plasmids
using Lipofactamine 2000 (Invitrogen). The firefly and
renilla luciferase activities were measured after 48 h with
Dual-Luciferase® Reporter Assay System (Promega, USA)
according to the manufacturer’s protocol.

Statistical analysis

All the data statistical analyses were performed using
GraphPad Prism 7.0 software (La Jolla, USA) to assess
the differences between groups. Data were shown as
mean = SEM. The chi-squared test was used to assess
the association of the expression of IGF2BP1 or cir-
cPTPRA with the patient’s clinicopathologic characteris-
tics. Kaplan—Meier survival curve was employed to
depict the OS distributions and Log-rank test was used
to assess survival difference. Independent sample t test
was employed to assess statistical significance of com-
parisons between groups. Pearson’s correlation coeffi-
cient assay was used to analyze the expression
correlation. One-way analysis of variance was performed
to evaluate the group difference. P < 0.05 was considered
statistically significant.

Results

IGF2BP1 was up-regulated in BC and could promote BC
cells invasion, metastasis and cell cycle progression

in vitro and in vivo

To investigate the clinical role of IGF2BP1 in BC, we first
determined IGF2BP1 expression in The Cancer Genome
Atlas (TCGA) RNA-seq dataset and revealed that
IGF2BP1 mRNA expression was significantly higher in
high grade tumor tissues (n=384), compared with low
grade tumor tissues (n =21) (**P<0.001) (Fig. 1a). More-
over, Kaplan—Meier survival curves demonstrated that
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Fig. 1 IGF2BP1 was up-regulated in BC and could promote BC cells progression in vitro and in vivo. a The mRNA expression levels of IGF2BP1 in
BC obtained from TCGA datasets. b The Kaplan-Meier curves with univariate analyses of overall survival (OS) in BC patients with low versus high
expression of IGF2BP1 from TCGA cohorts. ¢ The expression of IGF2BP1 in BC tissues (Tumor) compared to paired adjacent normal bladder tissues

(Normal) of 64 clinical patients. d Western blot indicating IGF2BP1 protein levels were significantly upregulated in BC tissues compared with
adjacent normal bladder epithelial tissues. e Kaplan-Meier's analyze of correlation between IGF2BP1 expression level and overall survival of 64
patients with BC (the patients were divided into high- and low-expression groups using the median value as the cut-off point, n =64, p=0.0011,
log-rank test). f and g Cell cycle analysis (f) and representative images (left) and quantification (right) of transwell assay (g) indicating the
proliferation and invasion of T24T cells with stable overexpression or knockout of IGF2BP1. h Representative images, in vivo growth curve
(bottom right, up), and weight at the end points (bottom right, down) of xenografts formed by subcutaneous injection of T24T cells transfected
with CRISPR-vector, or CRISPR Cas9-IGF2BP1 into the dorsa flanks of nude mice (n=5 for each group). i Representative images, and quantification
(bottom left) of lung metastatic colonization and Kaplan—-Meier curves (bottom right) of nude mice treated with tail-vein injection of T24T cells
stably transfected with sgCtrl or sgIGF2BP1#1 (n =5 for each group). *, P < 0.05; **, P < 0.01

high level of IGF2BP1 was significantly associated with
poor overall survival (OS) (Fig. 1b). Next, we compared
the expression of IGF2BP1 in tumor tissues compared to
that in matched normal tissues derived from 64 BC pa-
tients in our single-center. Consistent with those identified
in TCGA dataset, IGF2BP1 mRNAs were significantly up-
regulated in human BC tissues, compared with those in
adjacent noncancerous tissues (Fig. 1c). Consistently, the
elevated level of IGF2BP1 protein was noted in 12 pairs of
tumor tissues than those of adjacent non-cancerous tis-
sues (Fig. 1d). Furthermore, the relationship between
IGF2BP1 mRNA levels and the clinical pathological fea-
tures were analyzed in the 64BC and adjacent non-
cancerous tissues. The results showed that the expression
of IGF2BP1 was positively correlated with tumor size, the
metastasis of lymph nodes, and advanced clinical stages of
BC, respectively (Table. S1). Importantly, high expression
level of IGF2BP1 was remarkably associated with poor
prognosis of BC patients (Fig. 1e).

To further explore the oncogenic properties of
IGF2BP1 in BC, we established stable models of
IGF2BP1 overexpression or knockout in EJ and T24T
cell lines, respectively (Fig. S1A, B). The knockout effi-
ciency was tested by Western blot analysis and Sanger
sequencing (Fig. S1B, C). Stable overexpression or
knockout of IGF2BP1 strikingly facilitated or reduced
the cell cycle progression, proliferation, migration and
invasion of BC cells in vitro, respectively (Fig. 1f, g& Fig.
S1D, E, F). Consistently, knockout of IGF2BP1 in T24T
cells led to a significant decrease in growth and tumor
weight of subcutaneous xenograft tumors (Fig. 1h), and
less lung metastatic counts and more survival of nude
mice (Fig. 1i). Together, these findings firstly determined
the oncogenic roles of IGF2BP1 in BC growth and ag-
gressiveness in vivo and in vitro.

IGF2BP1 could interact with circPTPRA in the cytoplasm
in BC cells

To explore the molecular mechanism underlying regula-
tion of the oncogenic function of IGF2BP1 in BC, RNA
immunoprecipitates (RIP) assays were performed to

identify the circRNAs associated with IGF2BP1 in BC
cells. As previously reported [18], sequencing purified
RNA from RIP samples indicated that IGF2BP1-binding
sites were enriched in protein-coding transcripts region
(CDS) and the typical m°A modified sequences were
identified (Fig. 2a, b), which was consistently supported
by the previous report [18]. Meanwhile, the profile of
the RIP-seq experiments identified 16 candidates for
IGF2BP1-interacting circRNAs. Analysis of circRNA-seq
data from three paired BC tissues and matched nontu-
morous tissues [23] further indicated that circPTPRA
(hsa_circ_0006117) and circSMARCA5 (hsa_circ_
0001445) (Fig. 2c) were the differentially-expressed cir-
cRNAs that possess potential ability to bind with
IGF2BP1 in BC cells.

Moreover, knockout or overexpression of IGF2BP1 re-
spectively attenuated or increased the interaction be-
tween IGF2BP1 and circPTPRA, but not circSMARCAS5,
in EJ and T24T cells (Fig. 2d&Fig. S2A), which showed
the specific endogenous interaction between IGF2BP1
and circPTPRA. The small interference RNAs (siRNAs)
targeting the back-splicing region of circPTPRA were
established and transfected into T24T cells. It was
shown that knockdown of circPTPRA significantly de-
creased the expression of circPTPRA, but the linear of
PTPRA was not changed (Fig. S2B). Meanwhile, cir-
cPTPRA overexpression plasmid was stably transfected
into T24T cells with G418 antibiotic selection (Fig. 2e).
Next, RNA pull-down assay was performed with biotin-
labeled sense and antisense circPTPRA RNA probes
in vitro. The circular probe significantly pulled down
more circPTPRA than the reverse probe (Fig. 2f). In
addition, IGF2BP1 was specially pulled down by the cir-
cular probe, but not the reverse probe (Fig. 2g). Notably,
the amount of IGF2BP1 pulled down by circPTPRA was
significantly increased by overexpression of circPTPRA,
and was decreased upon konckdown of circPTPRA (Fig.
2h, i), while the expression level of IGF2BP1 was not af-
fected (Fig. 2h, i& Fig. S2C). Besides, the expression of
circPTPRA was not affected upon overexpression or
knockout of IGF2BP1 (Fig. S2D). Consistently, dual
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(green) in T24T cells (scale bar represents 10 um). **, P < 0.01

Fig. 2 IGF2BP1 could interact with circPTPRA in the cytoplasm in BC cells. a Heatmap of the RIP-seq experiments showing the IGF2BP1-binding
circRNAs in bladder cancer (BC). b Top consensus sequences of IGF2BP1-binding sites and the m°A motif detected by HOMER motif analysis. ¢
Overlap of IGF2BP1-binding circRNAs identified by RIP-seq and published GSE 97239 dataset in BC. d RIP and gRT-PCR assays using an antibody
specific for IGF2BP1 showing the interaction between circRNAs (circPTPRA, circSMARCAS5) and IGF2BP1 in T24T cells with stable overexpression or
knockout of IGF2BP1. e gRT-PCR analysis verified the efficiency of circPTPRA overexpression and pulled down by biotin-labeled reverse or circular
RNA probes from lysates of T24T cells. f Cell lysates prepared from T24T cells transfected with circPTPRA or the vector were hybridized with
circular probe or reverse probe for RNA pull-down assays. g Western blot assays showing the IGF2BP1 protein pulled down by biotin-labeled
reverse or circular RNA probes from lysates of T24T cells. h Cell lysates prepared from T24T cells transfected with circPTPRA or the vector were
subject to immunoprecipitation with IGF2BP1 and were also hybridized with reverse or circular RNA probes for IP assays with anti-IGF2BP1
antibody, followed by western blot. i Cell lysates prepared from T24T cells transfected with si-circPTPRA or the mock were subject to
immunoprecipitation with IGF2BP1 and were also hybridized with reverse or circular RNA probes for IP assays with anti-IGF2BP1 antibody,
followed by western blot. j Dual RNA-FISH and immunofluorescence staining assay indicating the colocalization of circPTPRA (red) and IGF2BP1

RNA-FISH and immunofluorescence assay revealed
abundant signals and enrichment of circPTPRA-
IGF2BP1 complex in the cytoplasm of BC cells (Fig. 2j).
Taken together, these results indicated that circPTPRA
was predominantly localized in the cytoplasm and could
interact with IGF2BP1.

Overexpression of circPTPRA impaired the oncogenic role
of IGF2BP1 in BC both in vitro and in vivo

Previously, according to the RNA-seq, we have found
that circPTPRA was down-regulated in BC tissues in
comparison to paired normal tissues. It has been re-
ported that circPTPRA inhibited BC cells proliferation
by sponging miR-636 and upregulated KLF9 [24]. We
confirmed that circPRPTA expression was remarkably
down-regulated in BC tissues and cell lines as deter-
mined by qRT-PCR (Fig. S3A, B). Although the expres-
sion of circPTPRA had no relationship with IGF2BP1
protein (Fig. S3C), Kaplan—Meier survival curves dem-
onstrated that low level of circPTPRA was significantly
associated with poor overall survival of 64 patients with
BC (Fig. S3D). Notably, in our study, we demonstrated
that ectopic expression of circPTPRA significantly de-
creased migration and invasion capabilities of BC cell
lines in vitro (Fig. 3a& Fig. S3E). In experimental metas-
tasis assay, athymic nude mice treated with tail-vein in-
jection of T24T cells stably transfected with circPTPRA
displayed less lung metastatic colonies and greater sur-
vival probability (Fig. 3b). These results indicated that
circPTPRA suppressed the invasion and metastasis of
BC cells both in vivo and in vitro.

Functional assays showed that overexpression of cir-
cPTPRA significantly rescued the IGF2BP1-mediated
promotion of BC cells proliferation and invasion (Fig.
3¢, d& Fig. S3F, G). Consistently, in vivo assay demon-
strated that overexpression of circPTPRA significantly
impaired IGF2BP1-mediated promotion of subcutaneous
xenograft tumor growth (Fig. 3e). Moreover, immuno-
histochemical staining revealed that the proliferation

index Ki-67 and CD31-positive  intratumoral

microvessels were greatly increased in IGF2BP1-
overexpressed xenograft tumors, which were attenuated
by ectopic expression of circPTPRA (Fig. S3H). Import-
antly, athymic nude mice treated with tail vein injection
of T24T cells stably transfected with IGF2BP1 displayed
a higher probability of metastasis and poorer overall sur-
vival, while these effects were partly reversed by overex-
pression of circPTPRA (Fig. 3f). Collectively, these data
indicated that circPTPRA suppressed BC progression via
interacting with IGF2BP1 in vitro and in vivo.

CircPTPRA downregulated MYC and FSCN1 expression via
interacting with IGF2BP1 in BC cells

To further investigate the target genes of circPTPRA,
RNA sequencing (RNA-seq) was performed in EJ and
T24T cells upon circPTPRA over-expression (Fig. 4a).
It revealed that 64 mRNAs were down-regulated in
T24T cells and 119 mRNAs (fold change >2, P<
0.05) were reduced in EJ cells (Fig. 4b&Fig. S4A, B).
Among these differentially expressed mRNAs, three
mRNAs were down-regulated in both T24T and EJ
cells, including MYC, FSCN1, and HSPA6 (Fig.
4b&Table. S3). Meanwhile, no protein-coding genes
were found up-regulated in both cell lines (Table. S3).
qRT-PCR and western blot further confirmed that the
expression levels of FSCN1 and MYC mRNA were
decreased in circPTPRA-overexpressed cells, whereas
the expression of HSPA6 showed no significant
change (Fig. 4c, d).

Notably, previous studies revealed that IGF2BP1, acted
as a m°A reader, played an oncogenic role in cancer
cells, through stabilizing methylated mRNAs of onco-
genic proteins, including FSCN1, TK1, MARCKSLI, and
MYC [18]. Thus, rescue experiments were performed to
further investigate the interplay between circPTPRA and
IGF2BP1 in regulating the expression of MYC and
FSCNI1. The results showed that circPTPRA significantly
rescued the IGF2BP1-mediated increased expression of
MYC and FSCN1 in T24T and EJ cells (Fig. 4e, f).
Altogether, these results demonstrated that circPTPRA
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Fig. 3 Overexpression of circPTPRA impaired the oncogenic role of IGF2BP1 in BC both in vitro and in vivo. a Representative image (left) and
quantification (right) of migration and matrigel invasion assays showing the invasion of T24T cells stably transfected with vector or circPTPRA. b
Representative images, and quantification (left) of lung metastatic colonization and Kaplan-Meier curves (right) of nude mice treated with tail-
vein injection of T24T cells stably transfected with empty vector or circPTPRA (n =5 for each group). ¢ Representative images (left) and
quantification (right) of migration and matrigel invasion assays showing the invasion of T24T cells upon ectopic expression of IGF2BP1 combined
with circPTPRA overexpression. d Cell cycle distributions in T24T cells stably transfected as indicated were presented by flow cytometry (The
results are mean + SEM of three experiments). @ Representative images, in vivo growth curve, and weight at the end points of subcutaneous
xenograft tumors formed by T24T cells stably transfected as indicated in nude mice (n =5 for each group). Student’s t-test, one-way ANOVA. f
Representative fluorescence images, quantification of lung metastatic colonization, and Kaplan-Meier curves of nude mice treated with tail vein

** P<001

injection of T24T cells stably transfected as indicated (n =5 for each group). Student’s t-test. Log-rank test for survival comparison. *, P < 0.05;

downregulated MYC and FSCN1 expression via interact-
ing with IGF2BP1 in BC cells.

CircPTPRA inhibits cell proliferation, migration and
invasion of BC through targeting IGF2BP1/ MYC and
IGF2BP1/ FSCN1 axis

Next, we investigated the functional interplay between
circPTPRA and IGF2BP1/MYC, FSCN1 axis on bio-
logical features of BC cells. In vitro migration and inva-
sion assays indicated that overexpression of MYC
significantly impaired the circPTPRA-induced decreased
migration and invasion abilities of BC cells (Fig. 5a&Fig.
S5A). Moreover, circPTPRA-induced cell cycle arrest
was partially reversed upon ectopic expression of MYC
(Fig. 5b&Fig. S5B). On the other hand, enforced expres-
sion of FSCN1 also partially recue the inhibition effects
of circPTPRA on cell migration and invasion, as well as
cell cycle progression of BC cells (Fig. 5¢, d&Fig. S5C,
D). Taken together, our findings demonstrated that both
MYC and FSCN1 were required for circPTPRA-
mediated suppression of BC cells proliferation and
invasion.

CircPTPRA interacted with KH domains of IGF2BP1 and
blocked its recognition of downstream m®A-modified
mRNA

Subsequently, we further elucidate the mechanisms
underlying circPTPRA regulation of IGF2BP1 function.
In vitro binding assay showed that deletion of RNA-
binding K homology (KH) domains KH3 and KH4 (405-
553 amino acids) of FLAG-tagged IGF2BP1 protein, but
not other domains, significantly abolished the interaction
between IGF2BP1 and circPTPRA, indicating that KH3
and KH4 domains of IGF2BP1 was crucial for its inter-
action with circPTPRA (Fig. 6a). Since KH domains of
IGF2BP1 play important roles in regulation of mRNA
stability, mRNA decay assay of MYC and FSCN1 was
applied upon overexpression of circPTPRA, and acceler-
ated mRNA decay rates were found in T24T cells (Fig.
6b). Sequencing of RNA immunoprecipitates (RIPs) of
endogenous IGF2BP1 revealed that IGF2BP1 binding in
MYC and FSCNI1 transcripts in T24T cells were

significantly decreased by ectopic expression of cir-
cPTPRA (Fig. 6c&Table. S4). Similar results were ob-
served in RIP assays with FLAG-tagged IGF2BP1 (Fig.
6d).

The coding region instability determinant (CRD)-con-
taining region in the 3’-terminus of the MYC mRNA
coding region has a high abundance of m°A modifica-
tions and has been proved critical for IGF2BP1 binding
[18]. Further analysis of the RIP-sequencing results re-
vealed that ectopic expression of circPTPRA significantly
reduced the cellular IGF2BP1 binding in MYC CRD re-
gion (Fig. 6e). We next inserted the 249-nt wild-type or
mutant CRD sequence of MYC into a firefly luciferase
(Fluc) reporter. Luciferase reporter assays showed that
the relative luciferase activity of reporters with wild-type
CRD, but not those with mutant CRD, was decreased by
circPTPRA  overexpression (Fig. 6f). Furthermore,
IGF2BP1-mediated increase of luciferase activity of
MYC CRD region could be blocked by enforced expres-
sion of circPTPRA (Fig. 6g).

Taken together, our data indicated that circPTPRA
could directly bind to the KH3 and KH4 domains of
IGF2BP1 and block its recognition of downstream m°A-
modified mRNAs, thereby decrease the stability of the
target mRNAs (Fig. 7).

Discussion

Recent studies have identified IGF2BPs as novel carcino-
genesis factors in a number of solid tumors, including
ovarian, breast, melanoma and hepatocellular tumors,
and its high expression is associated with metastasis and
poor prognosis [25]. Whereas the oncogenic role
IGF2BP1 and its paralogs in BC remains unknown. In
this study, our results indicated that high expression of
IGF2BP1 was associated with poor prognosis in BC. As a
RNA-binding protein, IGF2BP1 apparently ‘cages’ their
target mRNAs in cytoplasmic protein—-RNA complexes,
preventing the premature decay of specific target tran-
scripts in an RNA-dependent manner [26]. The stable
‘caging’ of transported mRNAs allows for their ‘long-dis-
tance’ transport during cellular stress as well as transient
storage [27]. In this study, our RIP-Seq data revealed
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that IGF2BP1-binding sites were enrichment in protein-
coding transcripts region (CDS) and m°A-dependent
binding mode was on top of the primary sequence. Our
gain- and loss-of-function studies indicated that

IGF2BP1 facilitated the proliferation, migration and in-
vasion of cancer cells, suggesting the oncogenic roles of
IGF2BP1 in BC. These findings indicate that IGF2BP1
could be served as therapeutic target, as well as possibly
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Fig. 6 CircPTPRA affects the IGF2BP1-mediated gene regulation in an m°A-dependent manner. a In vitro binding assay showing the enriched
CircPTPRA levels in T24T cells detected by RT-PCR (up panel) after incubation with full-length or truncations of Flag-tagged recombinant IGF2BP1
protein validated by western blot (lower panel). RIP analysis for circPTPRA enrichment in T24T cells transiently transfected with plasmids
containing the indicated FLAG-tagged full-length or truncated constructs. b Reducing MYC and FSCNT mRNA half-life by overexpressing
CircPTPRA in T24T cells. (Values are the mean + SD of three independent experiments) ¢ RIP-seq of endogenous IGF2BP1 revealed that IGF2BP1
binding in MYC and FSCNT transcripts in T24T cells was significantly decreased by ectopic expression of circPTPRA. d RIP-gPCR showed
endogenous IGF2BP1 or recombinant IGF2BP1 binding in MYC and FSCN1 transcripts in T24T cells stably transfected with vector or circPTPRA. e
RIP-seq showing the association of MYC CRD with IGF2BP1 in T24T cells stably transfected with vector or circPTPRA. f Relative luciferase activity of
wild-type (CRD-WT) or mutated (CRD-mut) CRD reporters in 293 T cells with or without ectopic expression of circPTPRA. g Relative luciferase
activity of CRD-WT in IGF2BP1 overexpression or control 293 T cells with or without ectopic expression of circPTPRA. Values are the mean + SD of
three independent experiments, and two-tailed Student’s t-tests were used in f-g. **, P < 0.01

be used for potential clinical diagnosis and prognosis
evaluation of BC.

The most prevalent RNA methylation, N°-methyla-
denosine (m°A), occurs in approximately 25% of tran-
scripts at the genome-wide level and is enriched in
5'- and 3’ -untranslated regions. m®A is installed by

mPA methyltransferases  (METTL3/14, WTAP),
reverted by m®A demethylases (FTO, ALKBH5) and
recognized by reader proteins (YTHDF1/2/3,

IGF2BPs) [28-30]. Accumulating evidences show that,
m°A RNA methylation has an outsize effect on RNA
production/metabolism and participates in the patho-
genesis of multiple diseases including cancers [31]. As
a key mP°A reader, the transcription of IGF2BP1 is
modulated by negative as well as positive feed-back
regulation of proteins, including b-catenin (CTNNBI)
and MYC [32, 33]. The up-regulated three IncRNAs

level, potentially via forming the surprisingly long
half-life of IGF2BP-RNA complexes [21, 34, 35]. Be-
sides, LncRNA LIN28B-AS1 could alter the LIN28B
mRNA  stability by physical combination with
IGF2BP1 [36]. In this study, the oncogenic function
of IGF2BP1 in BC growth and aggressiveness was re-
versed by ectopic expression of circPTPRA in vivo
and in vitro through reducing its interaction with
downstream target m°A-modified mRNA, while the
expression level of IGF2BP1 was not affected. These
results extend our knowledge about the regulation
mode of IGF2BP1 function in cancer cells, which is
mediated by the direct binding of circRNA with
IGF2BP1. Enhancing the effect of tumor suppressive
circRNAs, such as circPTPRA, may act as efficient
therapeutic strategies for future cancer therapy. Ex-
ogenous circRNAs could be achieved by gene therapy

(HCG11, GHET1, and THOR) can elevate IGF2BP1 = where DNA cassettes designed for circRNAs
Cytoplasm
A - mRNA decay
. ~
6 ~
circPTPRA ma »
mRNA Target genes

’I

o -
Nuclear O |
£ / circPTPRA

—-_——
backsplicing\ \
\ - e

PTPRA Pre-mRNA

Fig. 7 Schematic diagram of the circPTPRA-regulated pathway in bladder cancer cells

mRNA 7arget genes




Xie et al. Molecular Cancer (2021) 20:68

expression are delivered, or by transfection of puri-
fied, in vitro-generated circRNAs [37]. These stably
transfected circRNAs produce more quantity of pro-
teins than modified linear mRNA or unmodified
counterparts.

IGF2BP1 consists of six canonical RNA-binding do-
mains, including two RNA-recognition motifs (RRMs) in
the N-terminal part and four hnRNP-K homology (KH)
domains in the C-terminal region [38]. In vitro studies
revealed that the stabilization of IGF2BP1-RNA com-
plexes is mainly facilitated via the KH3/4 domain, which
could potentially contribute to the binding of IGF2BP1
to the MYC-CRD (coding region stability determinant)
RNA [18, 39]. In this study, we found that KH3/4 do-
main of IGF2BP1 was also necessary for its interaction
with circPTPRA, and circPTPRA  promoted the
endonuclease-directed decay of downstream mRNAs via
forming a circRNA/IGF2BP1 complex to sequester the
transcripts. This mode of regulation is presumably relied
on the affinity of the association between circRNA and
IGF2BP1, resulting in the competitive interaction of cir-
cRNA and target mRNAs with IGF2BP1. It has been
previously reported that circNSUN2 could enhance the
stability of HMGA2 mRNA to promote colorectal car-
cinoma metastasis progression by forming a circNSUN2/
IGF2BP2/HMGA?2 RNA-protein ternary complex in the
cytoplasm [40]. Here, we revealed a different role of cir-
cRNA in regulation of IGF2BP1 function, which acts as
an effective endogenous blocker.

Silencing of IGF2BP1 globally down-regulates target
gene expression in mRNA level, including FSCN1, TK1,
MARCKSL1, and MYC [18]. Recent studies have shown
an association between the up-regulated expression of
FSCN1 and increased invasiveness of carcinomas in the
urinary bladder, which suggests that FSCN1 may be a
marker of aggressive bladder cancer [41, 42]. The ex-
pression of FSCN1 could be indirectly regulated by
IncRNA through “miRNA sponge” effect at the tran-
scriptional level, including IncRNA-UCA1, LINC00152
and ZEB1-AS1 [43-45]. Oncogene MYC is known to be
aberrantly expressed in BC and acts as a master regula-
tor of genes involved in cell cycle progression, cell
growth, differentiation, metabolism, and apoptosis [46].
Mechanisms of MYC deregulation in BC include signal
transduction transcriptional regulation [47], miRNA me-
diated post-transcriptional regulation [48] and DNA mu-
tation [49]. Besides, alteration of mC®A levels also
participates in cancer pathogenesis via regulating expres-
sion of MYC. For example, depletion of METTL3 in BC
cells decreased the stability of MYC transcripts through
affecting m®A abundance mainly around the stop codon
and 3'-UTR regions [50]. N6-methyladenosine modifica-
tion in the CRD of the MYC mRNA enhances the asso-
ciation of IGF2BPs and interferes with the
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endonuclease-directed decay of the MYC mRNA [51]. In
the current study, we found that FSCN1 and MYC, but
not other targets, were involved in circPTPRA/IGF2BP1
regulation of m®A recognition and mRNA stability. Our
observations indicate that the downstream effectors of
IGF2BPs recognition of m°A have cell- and tissue- speci-
ficities, and the targets of each circRNA and IGF2BPs
complex need to be individually identified.

Conclusions

In summary, our data demonstrate that circPTPRA is an
important tumor suppressor for BC. Functionally, cir-
cPTPRA suppressed the proliferation, migration and in-
vasion of BC cells in vivo and in vitro. Mechanistically,
circPTPRA could interact with IGF2BP1 and block the
recognition of IGF2BP1 to m®A-modified RNAs, result-
ing in downregulation of FSCN1 and MYC mRNA sta-
bility. Our study clarified that circPTPRA acted as a
potential endogenous blocker and broadened the options
for curative management of BC.
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