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Abstract

A major challenge for Metabolomic analysis is to obtain an unambiguous identification of the 

metabolites detected in a sample. Among metabolomics techniques, NMR spectroscopy is a 

sophisticated, powerful and generally applicable spectroscopic tool that can be used to ascertain 

the correct structure of newly isolated biogenic molecules. However, accurate structure prediction 

using computational NMR techniques depends on how much of the relevant conformational space 

of a particular compound is considered. It is intrinsically challenging to calculate NMR chemical 

shifts using high level DFT when the conformational space of a metabolite is extensive. In this 

work, we developed NMR chemical shift calculation protocols using a machine learning model in 

conjunction with standard DFT methods. The pipeline encompasses the following steps: (1) 

conformation generation using a force field (FF) based method, (2) filtering the FF generated 

conformations using the ASE-ANI machine learning model, (3) clustering of the optimized 

conformations based on structural similarity to identify chemically unique conformations, (4) DFT 

structural optimization of the unique conformations and (5) DFT NMR chemical shift calculation. 

This protocol can calculate the NMR chemical shifts of a set of molecules using any available 

combination of DFT theory, solvent model, and NMR-active nuclei, using both user-selected 

reference compounds and/or linear regression methods. Our protocol reduces the overall 

computational time by 2 orders of magnitude (see Figure 1) over methods that optimize the 

conformations using fully ab initio methods, while still producing good agreement with 

experimental observations. The complete protocol is designed in such a manner that makes the 

computation of chemical shifts tractable for a large number of conformationally flexible 

metabolites.
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INTRODUCTION

Metabolites are the intermediate or end products of metabolic reactions that occur within 

cells, through interactions with the microbiome, or through exposures to the environment 

and are often dysregulated with diseases such as cancer.1–6 Metabolomics is an “omics” 

technology that investigates the structure and activity of biogenic small molecules or 

metabolites and attempts to relate their concentrations to specific phenotypes or disease.7–11 

It involves the measurement of endogenous and exogenous molecules, that are the substrates 

and products of a range of biological transformations. With the latest advances in high-

throughput technologies, the capabilities of the metabolomics field has been markedly 

enhanced.12–14 The measurement of metabolites provides fundamental insights into 

biochemical pathways. For example, metabolites associated with the human diet can serve as 

a diagnostic marker for a wide range of biological conditions.15,16

Metabolomics can involve non-targeted screening where thousands of unknowns are profiled 

and the relative difference between two conditions is measured.14,17–19 This non-targeted 

screening is useful in identifying new metabolites that can be present in a disease, specific 

genetic or environmental conditions, or in a newly engineered metabolic pathway. The 

primary drawback to non-targeted analysis is the challenge in confident identification of 

features and quantification of metabolites.

On the other hand, targeted analysis deals with a relatively small and specific number of 

known metabolites.20,21 These metabolites are chemically characterized and biochemically 

annotated and have an hypothesized biological importance even before data acquisition is 

performed. A targeted study can only be performed if an authentic chemical standard of the 

metabolite is available. Quantification of the metabolite is performed through the use of 

internal standards to construct calibration curves for each metabolite under investigation. 

Semi-targeted methods fall in between untargeted and targeted approaches. This approach 

aims to quantify hundreds of metabolites whose chemical class is known before data 

acquisition.8,22,23 In summary, targeted experiments provide deeper insights by examining a 
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particular hypothesis because the absolute concentrations of the molecules is measured but 

they may miss important factors that a non-targeted study would capture.20

Liquid chromatography-mass spectrometry (LC-MS) is very sensitive and the most common 

technology for metabolomics today, but challenges remain in compound identification.14,24 

Technology such as Fourier-transform-ion-cyclotron-resonance–mass-spectrometry 

(FTICR–MS)25 and Orbitrap mass analyzers26 can provide exceptionally high mass 

resolution to measure the empirical formula for thousands of metabolites in a sample. 

However, the empirical formula alone is not sufficient for the confident identification of a 

chemical structure, especially as the molecular weight increases. LC-MS/MS can be used to 

match reference databases for a more definitive match, but when a compound is not in a 

database, the identity of the unknown feature remains uncertain.

Nuclear Magnetic Resonance (NMR) spectroscopy provides a good complement to MS-

based metabolomic methods.10,27–31 Because of its ability to record atom-specific 

interactions, NMR is capable of providing sufficient information for the elucidation of the 

molecular structure of an unknown substance.32,33 NMR technologies can be directly 

coupled through solid phase extraction to complement LC-MS data in unknown metabolites.
34,35 This is especially important in metabolomics research where experiments using ultra-

sensitive mass spectroscopy instruments can detect differential mass signals, but in many 

cases even tandem MS approaches are unable to provide enough information for a de-novo 
characterization of a newly isolated metabolite.14

Although NMR and MS are complementary, they are still difficult to merge to fully leverage 

the information content available in both techniques. Brüschweiler and co-workers has 

developed a very promising approach towards this end called SUMMIT MS/NMR (Structure 

of Unknown Metabolomic Mixture components by MS/NMR).36 The basic concept of 

SUMMIT is quite simple: First, NMR and high-resolution MS spectra are measured for the 

same metabolomic mixture. For a given unknown feature in the MS data, the empirical 

formula is determined through the isotopic fine structure. The ChemSpider37 database is 

then used to enumerate all known chemical structures consistent with that empirical formula. 

The ChemSpider-derived structures are used to compute the NMR chemical shifts, which are 

then compared with the experimental NMR spectra. The overall SUMMIT concept is simple 

and powerful, but there are some major obstacles to practical implementation. As the 

molecular weight of the unknown feature increases, the numbers of possible structures 

increase dramatically and can reach several hundred (or more) candidate structures. The 

large number of candidate structures necessitates using a level of theory in computing NMR 

chemical shifts that may compromise the ability to make accurate comparisons. If methods 

can be improved to more rapidly use high-level and accurate computational methods of 

NMR chemical shifts, the implementation of SUMMIT-like approaches would be easier and 

more accurate.

To supplement the impressive array of experimental technologies used in metabolomics 

research researchers have been turning towards the potential of computational approaches to 

build a bridge between spectroscopic insights and molecular structure. Because of this 

promise in silico techniques have begun to have a significant impact on metabolomics 
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studies.38–44 Grimme et al. have developed QM based protocol to compute spin-spin 

coupled 1H NMR spectra.45 The protocol is based on four steps, (1) generation of a 

conformer/rotamer ensemble (CRE) using the fast tight-binding method GFN-xTB and a 

newly developed search algorithm, (2) computation of the relative free energies and (3) 

NMR parameters, and (4) solving the spin Hamiltonian. They achieved good agreement 

between computed and experimental of NMR parameters. But this method is currently 

limited to 1H NMR spectra. The efficiency of a given in silico technique primarily depends 

on two factors: (a) a stream-lined computational workflow and (b) the available 

computational power to carry out the computational workflow. Of the available in silico 
techniques modern quantum mechanical (QM) methods have the ability to provide highly 

accurate results in terms of molecular structure and energetics, but it comes at a steep 

computational cost. Because of the steep costs involved it remains a challenge to develop an 

efficient method to accurately predict the structure of metabolites.46,47 Force field (FF) 

based methods are computationally inexpensive, but their accuracy can vary depending on 

the parametrization. Machine Learning methods (ML) can achieve a balance between 

computation cost and accuracy, and this remains an active area of research.48,49 Calculations 

of NMR chemical shifts have become quite accurate50,51 and, in principle, have reached a 

point where they can be useful in many metabolomics applications. In our NMR based 

approach we developed a protocol that takes the best aspects of FF, ML and QM based 

methods linked together in a workflow in order to obtain accurate structural predictions of 

metabolites. To test the efficiency and reliability of our NMR calculation protocol, we 

studied 10 metabolites with NMR data from the BMRB52 data bank, with atom counts 

ranging from 20 to 65. The calculated chemical shift values are in good agreement with 

experiment, supporting the reliability of our protocol. The newly developed high-throughput 

workflow (relative to extant workflows) has the potential to calculate the NMR chemical 

shifts of a large numbers of metabolites and can be used as a valuable tool for structure 

assignment of unknown compounds.

METHODS

The approach we use has a number of distinct steps. First, we perform a conformational 

search to generate candidate structures followed by a QM based ML model for energy 

minimization. The remaining structures are then clustered to identify minimum energy 

regions and examples are taken from each cluster and energy minimized using 

computationally expensive standard QM methods. This last step involves NMR shift 

computation, Boltzmann weighting and comparison with experiment. The details for each of 

these steps are individually discussed below.

Conformation generation.

We generated the conformations of our metabolites using Schrodinger’s MacroModel tool.53 

MacroModel is force field-based and is a widely used conformation generation tool for 

small organic molecules.54 The software allows the use of several molecular mechanics 

force fields and supports several methods of conformational searching. To generate the 

conformations, we used the Monte Carlo multiple minimum method, which is a stochastic 

approach that uses torsional sampling.55 We used the default setting presented by 
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MacroModel for the conformational search. An important setting in any conformational 

search is the energy window between a given conformation and the most stable conformer, 

which is set to 5.02 kcal mol−1 in MacroModel. We did not explore multiple settings for the 

conformational search step. Other commercial or open source conformational search tools 

can be used, but we have not explored all the options in detail given the performance of the 

MacroModel option (vide infra).

Filtering the conformation.

The MacroModel generated conformations were then geometry optimized using the 

ASE_ANI machine learning model.56,57 This model yields CCSD(T)/CBS accuracy for 

molecular properties but is literally billions of times faster than the standard CCSD(T)/CBS 

method. We further computed frequencies after a successful geometry optimization to 

confirm we obtained a local minimum with all nonimaginary frequencies.

Clustering.

From the ASE_ANI minimization step we did not obtain a greatly reduced set of unique 

energy minima (see Table 1), which we hypothesize has to do with errors in the gradients 

computed by this method which affects the energy minimization algorithm. However, from 

visual inspection of the resultant conformers we observed that ASE_ANI gave families of 

conformations which we could extract using clustering algorithms. Hence, we performed 

structural similarity based (RMSD) clustering using Schrodinger Maestro.53 All the 

ASE_ANI optimized conformations were clustered by requesting 2 or more clusters until 

visually we clearly discriminated the obtained clusters (see Table 1 and Figure 4). Finally, 

one representative conformation from each cluster was then subjected to standard DFT 

geometry optimization.

QM Optimization.

In order to perform the necessary DFT geometry optimizations, parallel processing on a high 

performance computing (HPC) cluster was employed. Geometry optimization was 

performed for all the structurally distinct conformations obtained from our clustering 

analysis. The M06–2X DFT functional and the 6–31+G (d, p) basis set were used for 

geometry optimization.58,59 We further checked for the absence of imaginary frequencies to 

confirm a local minima. All the calculations were performed using Gaussian 16.60 The effect 

of solvation was evaluated implicitly using the integrated equation formalism polarized 

continuum model (IEFPCM).61 D2O was chosen as the solvent since all the experimental 

NMR data we compared to were obtained in D2O as solvent. Substrate solvation cavities 

were modeled by united-atomic radii (i.e UA0)62 for the geometry optimization/frequency 

calculation and individual atomic radii (i.e, Bondi).63

NMR Chemical Shift and Boltzmann averaging.

Finally, we computed the 1H and 13C NMR chemical shifts of all nuclei using the B3LYP 

functional and the 6–311G+(2d, p) basis set.64 The NMR shielding tensor is calculated using 

the GIAO (gauge-independent (or including) atomic orbitals) method65 implemented in 
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Gaussian 16. The resultant shielding tensors were converted to referenced NMR chemical 

shifts using a linear regression scaling parameter as defined by equation 1

δ = σ −  intercept 
 slope  (1)

Where δ is the referenced chemical shift and σ is the computed NMR shielding tensor. The 

values of the scaling parameter (slope and intercept) were obtained from Tantilo et al.50 The 

Boltzmann averaging is performed with all the computed chemical shifts using eq. 2.

Percentage (mole fraction) of the ithcomponent of n speciesin equilibrium 

= e −
ΔEi
RT

∑i = 1
n e −

ΔEi
RT

(2)

Where ΔEi is the energy difference between the ith conformer and the most stable conformer.

RESULTS AND DISCUSSION

Our computational workflow is illustrated in Figure 2. In this validation effort we examined 

10 metabolites whose structures are given in Figure 3. The number of atoms ranged between 

20–65 and the number of rotatable bonds ranged between 2 and 17 giving us a range of 

conformational flexibilities.

The total number of generated conformations for each metabolite are tabulated in Table 1. 

The number of conformers we obtained ranged from 2 for salicylate to 501 for O-succinyl-

L-homoserine, with the latter serving as the main example we will illustrate herein (full 

details for the remaining 9 metabolites are given in the SI). Not surprisingly the number of 

conformers is approximately related to the number of rotatable bonds.

The conformers generated by MacroModel were then subjected to energy minimization by 

ASE_ANI. When using standard QM methods the computational expense is very high but 

the minimization step proved to be effective at reducing the number of observed true 

minima.66,67 For example, in our work on ibuprofen seventy-four (74) conformers were 

generated, but after QM optimization only nine (9) true minima were observed.68 We have 

observed this behavior multiple times and were expecting ASE_ANI to perform similarly.69 

However, ASE_ANI, even when using very tight optimization criteria, was unable to hone in 

on just the unique subset of true minima. This may be a weakness in the gradients computed 

using ASE_ANI and warrants further analysis. This issue can be seen again in Table 1 and 

using O-succinyl-L-homoserine as an example 501 MacroModel conformations are only 

reduced to 485 structures with slightly different geometries and energies. As a side note, 

ASE_ANI simply discards conformations with imaginary frequencies during geometry 

optimization followed by frequency calculation. The number of structurally distinct 

conformations for each of the metabolites is shown in the last column of Table 1.

While the ASE_ANI step greatly accelerates QM calculations, it was less satisfactory in 

reducing the conformational space. However, we ran clustering calculations and found that 
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while ANI didn’t find all the unique minima cleanly it did strongly cluster structures into 

distinct regions as shown in Figure 4 for methyl-N-acetyl-alpha-D-glucosaminide. In this 

case we reduced ~100 conformers to a set of 10 unique conformers on which we could 

subsequently run full QM energy minimization calculations. This reduction in computational 

effort is very substantial making these calculations much more tractable. In each case we ran 

a number of clustering trials where we requested that 2–25 clusters be generated followed by 

a visual inspection to determine if we had generated clusters that satisfactorily binned 

unique conformers. While this step performed well, more automation is needed to reduce 

human inspection time and intrinsic bias.

From the ASE_ANI clustering we selected a representative conformer from each cluster and 

subjected it to full QM energy minimization and NMR chemical shift calculation. Again, 

using O-succinyl-L-homoserine as our example, the 485 ANI structures, yielded 25 unique 

clusters which gave 25 unique conformations for NMR shift calculations. The results for the 

remaining 9 systems can be found in Table 1.

The Boltzmann averaging computes the equilibrium mole fraction of each conformation in 

solution. We have computed 1H and 13C NMR chemical shifts using equation 1 for all nuclei 

and referenced it to TMS using a linear regression method. Values of scaling parameters 

(slope and intercept) were taken from Tantilo et. al (see Table S1).57 The Boltzmann 

averaging results for O-succinyl-L-homoserine are tabulated in Table 2, and for the 

remaining 9 the results are summarized in the SI (Table S2–S10). The computed 1H and 13C 

NMR chemical shifts and the experimental values for O-succinyl-L-homoserine are reported 

in Tables 3 and 4. The NMR chemical shift values of the other metabolites are shown in the 

SI (Table S11–S28). For the Boltzmann averaging of all the unique conformations and NMR 

chemical shift computation for 1H and 13C, we used the python-based script of Willoughby 

et al. which was published in 2014.36 Williams et al. in 2019 published an article revealing a 

“bug” in the Willoughby Scripts when calculating NMR chemical shifts.70 The authors 

showed that some newer personal computer operating systems may randomly sort the 

Gaussian optimization/frequency and NMR output files of the original protocol. Such mis-

sorting would lead to inaccurate determination of the conformationally averaged (i.e., 

Boltzmann-weighted) shielding tensors. Following this article, in 2020, Willoughby et al. 
published an Addendum to ensure that the original protocol is (and remains) compatible 

with all operating systems and they provided an updated script.71 Before using the original 

Willoughby script (2014), we validated the script using cis- and trans-3-methylcyclo-hexanol 

by the author and confirmed that the scripts work in our hands. We subsequently validated 

using the new script and obtained identical results with the 2014 script. It is important to 

realize that scaling parameters obtained from the linear regression method are structure 

independent and method dependent. These values are unique to this specific functional and 

basis set combination, but they are independent of the structure under study. In other words, 

scaling parameters can be used for any of unknown metabolite to calculate NMR chemical 

shifts using the B3LYP/6311G+(2d, p) //M06–2X/6–31G+ (d, p) method. However, this 

protocol is not restricted to only using this particular DFT model. Users can calculate NMR 

chemical shifts using any QM method provided the reference scaling data (e.g., TMS) are 

obtained from the same QM method.72
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To evaluate quantitively the goodness of fit of the NMR chemical shifts computed with our 

protocol, we have calculated mean absolute error (MAE), which is tabulated in Tables 5 and 

6. MAE is the comparison of the computed and experimental data sets using equation 3.

MAE = Δδavg = 1
N ∑

i = 1

N
δi

comp − δi
exp

(3)

Where δi
comp is the computed NMR chemical shift of the ith nucleus and δi

exp is the 

experimental NMR chemical shift of the same nucleus. Table 6 focusses on the 1H and 13C 

shifts of O-succinyl-L-homo serine. This metabolite has 25 structurally distinct 

conformations. To identify the structure ensemble that gives the best accounting of the 

experimental values, we performed three sets of calculations: (1) MAE with all 25 

conformers, (2) MAE with the best 5 (i.e., higher concentration in solution) conformations 

and (3) MAE with the one conformation with the highest mole faction (53.84%) in solution. 

The MAE values of the 1H NMR chemical shifts for sets 1, 2 and 3 are 0.195, 0.209, and 

0.250, respectively. Similarly, the MAE values for the 13C NMR chemical shift of sets 1, 2 

and 3 are 2.422, 4.009 and 3.502 respectively. Set 1, including all structurally distinct 

conformations yields the best fit (lowest MAE) with experiment. Hence, from the MAE 

data, we conclude that the high energy conformations has a subtle impact on the computed 

NMR chemical shifts and in order to obtain high-resolution predictions the entire ensemble 

is essential.

Importantly, the MAE values (1H and 13C) have errors within ±1 and ± 5 ppm, respectively 

confirming the good agreement between theory and experiment using our protocol.

Hence, one can readily calculate the NMR chemical shifts using this protocol and utilize it 

to assign the structure of an unknown metabolite.

We have also plotted the differences between the experimental and computed 1H and 13C 

chemical shifts for O-succinyl-L-homoserine in Figure 5 and the remaining 9 systems in the 

SI (Figures S1–S9). The Δδ (ppm) values for each nucleus of a candidate metabolite 

indicates the agreement between theory and experiment. Overall, the agreement is excellent 

with no obvious trends in terms of which nuclear environments yield larger errors in our 

calculations.

pH effect on NMR chemical shift.

To investigate the effect of pH, we have performed NMR chemical shift calculations on the 

ionic states of the molecule in the solvent, D2O. Among the 10 chosen metabolites, two 

metabolites (L-citrulline and O-succinyl-L-homoserine) exists in zwitterionic forms and 

another two metabolites (N-acetylneuraminic-acid and Salicylate) exists in anionic forms. To 

compute NMR chemical shifts of the ionic form of the metabolites, we have followed the 

same protocols as neutral metabolites. First, we use MacroMolecule to generate 

representative conformations followed by ASE_ANI geometry optimization and the 

clustering of ASE_ANI geometries (see Table S29). In the case of ionic systems, the total 

number of generated conformations are less than those found for the neutral systems. The 
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reason for the reduction in the number of conformations has to do with strong intramolecular 

ionic interactions.73 Finally, each representative geometry of the resulting clusters undergoes 

DFT geometry optimization followed by NMR chemical shift calculations. The results for 

O-succinyl-L-homoserine, L-citrulline, N-acetylneuraminic-acid and Salicylate are given in 

Tables S30 – S40. We have also plotted the differences between the experimental and 

computed 1H and 13C chemical shifts (Δδ) for O-succinyl-L-homoserine ion, L-citrulline 

ion, N-acetylneuraminic-acid (anion) and Salicylate (anion) in Figures S10–S13, 

respectively.

We have further computed MAE values using eq. 3 and the results are given in Table S41. 
1H and 13C MAE value of O-succinyl-L-homoserine (zwitterionic form) is 0.185 and 1.997 

respectively, which is lower by 0.01 and 0.425 respectively relative to its neutral state. A 

similar observation for L-citrulline was observed (see Tables 5 and S41). The MAE values 

for L-citrulline ion is lower by 0.051 and 0.265 for 1H and 13C respectively. In the case of 

the anion of N-acetylneuraminic-acid the MAE for the 1H chemical shift is lower by 0.014 

but 13C values increased by 1.040 relative to the neutral state. We observed larger MAE 

(0.111 and 0.241 of 1H and 13C respectively) values for the Salicylate ion relative to its 

neutral state. Overall, we can perform similar calculations on charged and neutral states of 

molecules, but for the molecules studied herein the effect on the computed results relative to 

experiment is relatively small.

CONCLUSIONS

In this work, we have developed a protocol to accurately predict NMR chemical shifts (both 
1H and 13C) which can then be used to assign the structure of an unknown metabolite. The 

pipeline of our workflow utilizes force field, machine learning QM and QM methods to 

achieve the best results. Including the ML QM model and the clustering method in this 

proposed protocol minimize the computational cost significantly and maximizes the 

performance. Ultimately, quantitative prediction of NMR chemical shift for any arbitrary 

metabolites requires high accuracy in all aspects of the underlying physics. Our effort is a 

step in this direction and the obtained NMR chemical shifts are very accurate with respect to 

experiment. Moreover, our protocol strikes an excellent balance between accuracy and 

computational cost. We are continuing to further explore, refine and validate our workflow 

to further establish its use as a structure assignment tool for unknown metabolites. Because 

of the computational efficiency, accuracy and reliability, we anticipate that this protocol has 

the potential to be applied to a large set of unknown metabolites facilitating the structural 

assignment of metabolites.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The overall computational time to get NMR chemical shift data without using ML tools 

(Red) and using our protocol (Green). The bottleneck previous protocols of NMR 

calculation is the DFT geometry optimization of all conformations, which is significantly 

reduced applying the ANI QM ML model and clustering method in our protocols. O-

succinyl-L-homoserine is considered as example. * No ML indicates a methodology that 

does not use ML approaches to accelerate the slow QM geometry optimization step.
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Figure 2. 
NMR Chemical shift calculation workflow.
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Figure 3. 
Ten metabolites explored herein. Atom counts between 20 to 65. The number of rotatable 

bonds (R.B) are given for each metabolite.
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Figure 4. 
Clusters of O-succinyl-L-homoserine as example. A total of 485 ANI optimized conformers 

are clustered into 25 distinct regions.
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Figure 5. 
Plots of the differences between the calculated and experimental 1H and 13C NMR chemical 

shifts of O-succinyl-L-homoserine. Shielding constants were computed at the B3LYP/6311G

+(2d, p) level of theory and converted to linear scaled reference chemical shifts. Values of 

chemical shift differences are given in ppm.
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