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A standard approach to analysis of case-cohort data involves fitting log-linear models. In this paper, we describe how
standard statistical software can be used to fit a broad class of general relative rate models to case-cohort data and
derive confidence intervals.We focus on a case-cohort design in which a roster has been assembled and events ascer-
tained but additional information needs to be collected on explanatory variables. The additional information is ascer-
tained just for persons who experience the event of interest and for a sample of the cohort members enumerated at
study entry. One appeal of such a case-cohort design is that this sample of the cohort may be used to support analyses
of several outcomes. The ability to fit general relative rate models to case-cohort data may allow an investigator to
reduce model misspecification in exposure-response analyses, fit models in which some factors have effects that are
additive and others multiplicative, and facilitate estimation of relative excess risk due to interaction. We address model
fitting for simple random sampling study designs as well as stratified designs. Data on lung cancer among radon-
exposedmen (Colorado Plateau uraniumminers, 1950–1990) are used to illustrate thesemethods.

cohort studies; Coxmodel; dose-response function; models, statistical; radiation; software, statistical

Abbreviations: CI, confidence interval; WLM, working level month.

A case-cohort study design may be employed as an approach
to analysis of exposure-disease associations in epidemiologic
studies where a roster of cohort members has been assembled
and followed to ascertain events but additional information needs
to be collected on at least 1 explanatory variable (1). Ascertaining
information about explanatory variables in a large cohort may be
expensive or time-intensive. Rather than obtaining that additional
information for the full cohort, information can be ascertained
just for persons who experience the event of interest and for a
sample of persons drawn from the cohort roster at baseline (i.e.,
a subcohort). The case-cohort design has been used in a wide
range of epidemiologic studies (2–6), because it may facilitate
collection of information on an exposure or covariate of interest
(1, 7) and because it allows for the possibility that the same sub-
cohort may be used for analyses of several outcomes (8, 9). The
latter is a feature of the case-cohort design that distinguishes it
from a nested case-control study, in which the control series is
matched to an index disease.

Previous authors have described how standard statistical soft-
ware packages can be used to fit the Cox proportional hazards

regression model to case-cohort data (10–12). The procedures
available in most standard statistical packages, such as SAS (SAS
Institute, Inc., Cary, North Carolina) and Stata (StataCorp LLC,
College Station, Texas), for fitting Cox proportional hazards
regression models limit a data analyst to log-linear models of
the form β βφ( ) = ( )Z Z; exp , where Z is a vector of explana-
tory variables and φ is the hazard ratio. This implies exponential
exposure-response trends and multiplicative interactions. In a
review of the literature, Cologne et al. (13) noted that only 1 spe-
cialized software package is currently available to fit general rela-
tive rate models for case-cohort data that are not constrained to
the log-linear model form, and users are restricted to fitting such
models to data derived from a simple random sampling case-
cohort design. Here we describe how standard statistical software
packages may be used to fit this broader class of general relative
rate models. Model forms other than the log-linear model are
desirable when they provide a better representation of the expo-
sure response or when they address biological or public health
questions (14, 15). They also may facilitate exposure-response
analyses, sincemisspecification of model form can lead to loss of

444 Am J Epidemiol. 2019;188(2):444–450



statistical power for a model-based test of an exposure-response
association and to the possibility that estimates of effect for
extreme exposure levelswill be substantially distorted. For exam-
ple, a linear relative rate model, under which the rate of disease
increases or decreases in an additive fashion with exposure, may
be of interest in analyses of environmental or occupational expo-
sure (16, 17). In this paper, we illustrate how general relative rate
models may be readily fitted to case-cohort data using the SAS
statistical software package.

METHODS

Consider a cohort study in which n people are followed over
time to ascertain a binary outcome of interest. LetA and T denote
study entry and exit times, respectively, let Y denote the binary
outcome, and let vector Z denote explanatory variables of inter-
est, which can be time-dependent.

Suppose that we sample mmembers from the full cohort to
form a subcohort by simple random sampling. Let S denote a
binary variable with probability S = 1 equal to m/n; if S takes
a value of 1, then the person is a member of the subcohort.
The case-cohort analysis will include members of the subcohort
(S = 1), for whom information on Z is collected. In addition, the
case-cohort analysis will include any personwho experiences the
outcome but is not in the subcohort (i.e., people for whom Y = 1
and S = 0), for whom information on Z is collected as well. A
data structure for this information may include 1 record per per-
son in the case-cohort study, indicating, for each study member,
A, T,Z, Y, and S.

Following the approach in prior work in which we focused
on fitting general relative rate models to cohort and nested
case-control data (18), we proceed by assuming that the under-
lying population model for the hazard rate of the outcome that
generates the observed data conforms to the form

βλ( ( )) = λ ( )φ( ( ) )Z Zt t t t, ; ,0

where λ( ( ))Zt t, denotes the (instantaneous) hazard rate at
time t among subjects with covariate vector Z(t), λ ( )t0 denotes
the time-dependent baseline hazard rate, and β denotes a vector
of population parameters for the relative hazard rate that we
wish to estimate. The functionφ(·) can encompass a wide range
of models other than the form β βφ( ( ) ) = ( ( ) )Z Zt t; exp ,
which is commonly used. The linear excess relative rate model,

β βφ( ( ) ) = + ( )Z Zt t; 1 , is one model form of interest, partic-
ularly in environmental and occupational epidemiology. More
generally, prior authors have described a class of relative risk
models that permit a data analyst to compare linear and log-linear
dose-response models or additive and multiplicative interac-
tion models by incorporating each as a special case of a
broader set of models under consideration, such as a model of
the form β β βφ( ( ) ) = [ ( ( ) )] [ + ( ) ]−θ θZ Z Zt t t; exp 11 , with
θ a parameter that equals 1 if the model is completely additive
and 0 if the model is multiplicative (16, 19, 20).

The standard Cox partial likelihood, which is used for the full
cohort design, must be adjusted for application to the case-cohort
design. Various weighting schemes have been proposed for this
adjustment (21). In this paper, we use the weighting scheme pro-
posed by Prentice (1), which applies a weight of 1 to all subjects

at all times except for nonsubcohort cases, who are assigned a
weight of 0 at all times prior to their failure.

Implementation

We follow the approach described by Langholz and Jiao
(11). Briefly, the weights proposed by Prentice (1) result in a
risk set formed at each failure time that includes the case and all
those subcohort members in the study and at risk at the failure
time, while the cases outside of the subcohort enter the risk sets
only at their event time. Rather than using a weighting scheme
to implement this adjustment to the risk sets, we use an equiva-
lent approach, which is to adjust the entry times for nonsubco-
hort cases (11).

First, we adjust the entry times for cases outside of the subco-
hort (i.e., nonsubcohort cases) so that these cases enter the study
just prior to their exit times. This ensures that a nonsubcohort
case (i.e., Y = 1 and S = 0) does not appear in the risk sets for
prior event failure times; consequently, the nonsubcohort case
does not contribute information to any risk set other than the
one enumerated for its own failure time. Second, risk sets are
enumerated on the basis of the adjusted entry times and observed
failure times. Third, a data structure is generated with 1 record per
risk set (i.e., 1 record for each case and its affiliated risk set
members). We previously described in detail how such a data
structure can be generated (18). The covariate information is rep-
resented by the variables z1, z2, …, zk, where z1 denotes the
case’s covariate information and z2 … zk denote the other
risk set members’ covariate information. Table 1 illustrates
the case-cohort data structure for a hypothetical case-cohort
study with 2 cases, one of which is a nonsubcohort case.
Table 2 illustrates the risk sets constructed on the basis of the
adjusted entry times and observed failure times, and Table 3
depicts the final analytical data structure generated with 1
record per risk set.

Table 1. ACase-Cohort Data Structure for a Hypothetical Case-
Cohort StudyWith 2 Casesa

ID
Variable

A T S Y Z

1 38.4 86.6 1 0 0.8

2 35.0 81.1 1 0 1.0

3 29.3 77.6 1 0 1.1

4 31.8 77.4 1 0 0.0

5 27.8 78.5 1 0 1.3

6 53.9 90.0 1 0 0.0

7 42.5 87.1 1 0 0.0

8 25.6 77.1 1 0 0.0

9 43.0 77.9 0 1 0.0

10 37.7 76.8 1 1 1.6

Abbreviation: ID, identifier.
a
“ID” is a unique identifier for each study participant; A and T denote

study entry and exit times, respectively;S is a binary variable that takes
the value 1 if the person is a member of the subcohort and 0 otherwise; Y
is the binary outcome variable; andZ is an explanatory variable of interest.
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The analytical data structure shown in Table 3 can be easily
generated from the case-cohort data. SAS code, provided inWeb
Appendix 1 (available at https://academic.oup.com/aje), creates
the necessary data structure illustrated in Table 3, including a
macrovariable “&maxsetsize” that indicates the maximum size of
any risk set in the study, a variable “ntot” that indicates the size of
each risk set (i.e., the total number of people in the risk set), and a
variable “y”which serves as the outcome variable for regressions.

Estimation of the parameters for the function φ(·) for case-
cohort data can be performed by identifying the value of β̂ that
maximizes the pseudolikelihood, where, assuming no tied fail-
ure times, the contribution to the risk set for case iwho fails at
time t, given our case-cohort study data, is

(β) = φ (β)
∑ φ (β)∈ ˜

L ,i

k R k
i

where
∼
Ri denotes the “sampled risk set” for case i at failure time

ti given a subcohort of sizem (i.e., restricting to people for whom
the baseline variable S = 1), andφ (β) = φ( ( ) β)Z t ;k k . The SAS
NLMIXEDprocedure is used to obtainmaximum likelihood esti-
mates. For example, a regression analysis of the data, once orga-
nized as in Table 3, employing the linear excess relative rate
model form could be fitted via SAS as follows:

Here, the “parms” statement sets an initial value for the parameter
“beta” to be estimated. The array “z{}” indexes the covariate val-
ues. In this example, “phi” conforms to a linear excess relative
rate model form. Other model forms can be fitted easily; for
example, the log-linearmodelwould befitted simply by replacing
the statement “Phi = 1 + z{i}*beta;”with the statement “Phi =
exp(z{i}*beta);”.

Variance estimation under the case-cohort design is an im-
portant consideration because the standard errors for the esti-
mated coefficients outputted by the SAS code shown above
fail to account for the outcome-dependent sampling in the case-
cohort data. A robust variance estimator for regression esti-
mates under the case-cohort setting was proposed by Barlow
et al. (10) of the form

∑β̂ β̂ β̂( ) = Δ ΔV ,
j

j j
T

where β̂Δ j denotes the estimated change in β̂ when the jth indi-
vidual is deleted. This quantity is often referred to as a dfbeta
residual. The variance estimator corresponds to a sum of squared
changes in the parameter estimate vector when observations are
removed from the analysis one at a time. Following the approach
of Langholz and Jiao (11), robust variance estimates can be ob-
tained as these sums of squares (and cross-products) of the dfbeta
residuals for subjects in the case-cohort study.

Web Appendix 2 provides SAS code with which to obtain
the robust variance estimator. We use the “predict” command
in PROC NLMIXED to predict “phi” and its derivative for each
person (i.e., using a separate predict statement for each person)
and output these to a file. To compute the robust variance estima-
tor, first dfbeta values for all subjects (based on study identifier
(id)) are calculated, and then the dfbeta values are summed using
the PROC SUMMARY procedure. The robust variance estimator

Table 2. A Long–Risk-Set Data Structure for a Hypothetical Case-
Cohort StudyWith 2 Casesa

SETNO
Variable

ID Y Z

1 10 1 1.6

1 8 0 0.0

1 4 0 0.0

1 3 0 1.1

1 5 0 1.3

1 2 0 1.0

1 1 0 0.8

1 7 0 0.0

1 6 0 0.0

2 9 1 0.0

2 5 0 1.3

2 2 0 1.0

2 1 0 0.8

2 7 0 0.0

2 6 0 0.0

Abbreviations: ID, identifier; SETNO, set number.
a
“SETNO” indexes the risk set formed at each failure time; “ID” is a

unique identifier for each study participant; Y is the binary outcome
variable; and Z is an explanatory variable of interest.

Table 3. AWide Data StructureWith 1 Record per Risk Set for a
Hypothetical Case-Cohort StudyWith 2 Casesa

SETNO
Variable

z1 z2 z3 z4 z5 z6 z7 z8 z9 ntot y

1 1.6 0.0 0.0 1.1 1.3 1.0 0.8 0.0 0.0 9 1

2 0.0 1.3 1.0 0.8 0.0 0.0 6 1

Abbreviation: SETNO, set number.
a
“SETNO” indexes the risk set formed at each failure time, and z1 ... z9

denote covariate information, where z1 denotes the case’s covariate infor-
mation and z2 ... z9 denote the other risk set members’ covariate informa-
tion. The variable ntot indicates the size of each risk set (i.e., the total
number of people in the risk set), and y is set to 1 and serves as the
outcome variable associated with each record.
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is computed using PROC CORR, requesting that the sums of
squares and cross-products be outputted (sscp option). Given
a robust variance estimator, a Wald-type 95% confidence inter-
val can be computed in the usual way.

Prior authors have noted that the distribution of the maximum
likelihood estimators for non–log-linearmodels, such as the linear
excess relative rate model, may be far from normal unless
the sample size is large (17, 21). In such settings, a Wald-
type 95% confidence interval may not perform as desired.
For non–log-linear models, the Wald-type 95% confidence
interval may not have nominal coverage. Barlow (19) and
Prentice and Mason (17) suggested parameter transforma-
tions to improve asymptotic distributional approxima-
tions for the linear excess relative rate model.

Bootstrapping is another method that can be employed to
derive confidence intervals for the estimated parameters, with
percentile-based bootstrap confidence intervals obtained with-
out assumptions about the distributional form of the maximum
likelihood estimators (22, 23). We adapt the weighted boot-
strap, which assigns a nonnegative randomweight to each per-
son; following the method of Huang (22), and similar to the
Bayesian bootstrap approach of Rubin (24), we assignweights
by random sampling from the standard exponential distribu-
tion such that these weights are independent of the data with
unit mean and unit variance. This approach creates new data
sets through reweighting of the initial data. To fit the weighted
regression models, we use the following weighted likelihood:

(β) = [φ (β)]
[∑ φ (β) ]∈ ˜

L
w

,i
w

k R k k
w

i

i

i

where wi denotes weights that are assigned by random sam-
pling for study member i.

The weighted bootstrap proceeds by assigning B random
weights to each person. To obtain a bootstrap estimator, we
fit B weighted regression models on the new data sets generated
through reweighting of the initial data. Because these weights are
drawn from the exponential distribution, no person is assigned a
weight equal to, or less than, 0; therefore, all of the case failures
in the full cohort are still observed for each bootstrap sample, and
the number of risk sets does not change, nor do the observed fail-
ure times. Consequently, the case-cohort risk sets only need to be
enumerated once, after which a large number of weighted regres-
sions may be fitted. A Wald-type confidence interval may be
derived by taking an estimate of the variance of the bootstrap
estimates as an estimator of the variance of the estimated parame-
ter. Alternatively, a percentile-based bootstrap confidence interval
may be obtained from appropriate quantiles of the distribution of
the estimates for the parameter of interest; for example, we can
derive the 95% bootstrap confidence interval as the 2.5% and
97.5% quantiles of the distribution of the estimates of the param-
eter of interest. Web Appendix 3 provides SAS code for boot-
strapping confidence intervals.

Case-cohort designs that are stratified on a covariate

Suppose that the subcohort has been sampled within defined
strata and that the investigator wishes to fit a stratified propor-
tional hazards regression model with separate stratum-specific

baseline hazards. Following the approach of Langholz and Jiao
(11), we will refer to this as a confounder-stratified case-cohort
design, noting that this stratified case-cohort design has also
been studied by Borgan et al. (25) and Samuelsen et al. (26).
A stratified random sample implies that the subcohort is selected
such that the sampling probability depends upon covariate
strata, c. To illustrate, suppose nc andmc denote the total num-
ber of subjects and the number of subjects sampled from co-
variate stratum c, respectively. Let Sc denote a binary variable
with probability Sc = 1 equal tomc /nc; if Sc takes a value of 1,
then the person is a member of the subcohort in stratum c.
Analysis proceeds with each stratum contributing independent
pseudolikelihood factors to the overall pseudolikelihood, with
each factor being computed on the case-cohort members from
the stratum. Thus, analysis may be conducted using the same
SAS code as that presented above; and robust (11) and boot-
strap variance estimates for a confounder-stratified case-cohort
designmay be derived using the same approach as that described
for a simple random sample case-cohort design. Web Appendix 4
provides SAS code for bootstrapping confidence intervals for a
stratified case-cohort design.

Empirical example

As an empirical example,we use data froma study of lung can-
cer among 2,704 men employed in underground uraniummining
operations on the Colorado Plateau between January 1, 1950, and
December 31, 1960 (27, 28). Vital status was ascertained through
December 31, 1990. The outcome of interest, lung cancer mortal-
ity, was defined by underlying cause of death. The primary expo-
sure of interest was defined as cumulative radon exposure, lagged
5 years, expressed in working level months (WLMs) and com-
puted for each worker as the product of the duration of employ-
ment in each job in a year and the estimated rate of radon
exposure for that job (29). Miners who began working prior
to 1950 were not included, since radon measurements were
not available for that period and therefore radon exposure
could not be reliably estimated during that time. The cohort
included 263 lung cancer cases; the cumulative radon ex-
posure accrued among lung cancer cases ranged from 2
WLMs to 20,870 WLMs, and the mean and median cumu-
lative exposure among cases were 1,292 WLMs and 791
WLMs, respectively. The mean andmedian cumulative expo-
sure among noncases were 586 WLMs and 309 WLMs,
respectively.

The example involves a case-cohort study drawn from this
cohort. The case-cohort sample included a subcohort of 500
miners randomly sampled from the full cohort. The subcohort
included 48 lung cancer cases and 452 noncases; the case-
cohort data included the subcohort plus the 215 lung cancer
cases that were not included in the subcohort. First, we fitted a
standard log-linear proportional hazards model for the associa-
tion between cumulative radon exposure (lagged 5 years) and
lung cancer of the form φ( ( ) β) = ( ( )β)Z t Z t; exp ; we ob-
tained a point estimate and associated robust 95% confidence
interval using SAS PROC PHREG with a robust variance esti-
mator (invoked by the “covsandwich” option) implemented
using the approach for case-cohort analysis described by
Langholz and Jiao (11). We also used the approach described
in this paper to obtain a point estimate for the parameter β
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and associated robust and bootstrap 95% confidence inter-
vals (based on 500 bootstrap samples).

Next, to illustrate a model form that cannot be fitted using
standard statistical programs for log-linear regression models,
we fitted a linear excess relative hazards model for the asso-
ciation between cumulative radon exposure and lung cancer
of the form φ( ( ) β) = + β ( )Z t Z t; 1 . The estimated value,
β̂, describes the excess relative rate of lung cancer per unit of
exposure; we use the approach described in this paper to
obtain associated robust and bootstrap 95% confidence inter-
vals for the estimated excess relative rate. In addition, Barlow
(19) and Prentice and Mason (17) suggested parameter transfor-
mations to improve asymptotic distributional approximations for
the linear excess relative rate model. Given a single regressor
variable, Z(t) = Z(t), with support [0, x0), where 0 < x0 <∞, the
possible range of values for β under a linear excess relative rate
model is (− ∞)−x ,0

1 . The transformation α = (β + β )log 0 , or
equivalently β = ( − β )αe 0 , removes this range restriction on β;
in the proposed transformation, β0 equals −x0

1, where the value
of x0 is known in a given study because it corresponds to the
maximum value of the regressor variable of interest. We fitted a
model of the form φ( ( ) β) = + ( − β ) ( )αZ t e Z t; 1 0 , which
we expected to bring about some improvement in asymptotic
distributional approximations allowing construction of the
Wald-type interval (17). The estimated value, − βα̂e 0, de-
scribes the excess relative rate of lung cancer per unit of

exposure, and we constructed Wald-type confidence intervals
using the standard error (SE) as − βα̂± (α̂)e 1.96SE

0.

RESULTS

First we estimated the association between radon exposure
and lung cancer using a log-linear proportional hazards regres-
sion model with a robust variance estimator. We obtained an
estimate of the change in the log hazard rate ratio per 100
WLMs (log[hazard rate ratio per 100 WLMs] = 0.04) and its
associated robust 95% confidence interval (95% confidence
interval (CI): 0.03, 0.05). We also used the approach described
in this paper to fit a log-linear proportional hazards model,
which yielded an estimate of the change in the log hazard rate
ratio per 100 WLMs (log[hazard rate ratio per 100 WLMs] =
0.04), a robust 95% confidence interval (95% CI: 0.03, 0.05), a
bootstrap 95% confidence interval using the bootstrap variance
to derive a Wald-type interval (95% CI: 0.03, 0.05), and a boot-
strap 95% confidence interval based on percentiles of the
bootstrap estimates (95%CI: 0.03, 0.05). For the log-linearmodel,
the estimated coefficients and confidence intervals from a stan-
dardmethod and the proposedmethodwere identical (Table 4).

Next we fitted a linear excess relative rate regression model
using our proposed approach (Table 5). This yielded an estimated
excess relative rate of 0.33 per 100 WLMs; the robust 95%

Table 4. Estimated Association BetweenRadon Exposure and Lung Cancer Mortality Obtained From Fitting a Log-
Linear RegressionModel to Data on Colorado Plateau UraniumMiners, 1950–1990a

Model β̂
95%CI Estimate

Robust 95%CIb Robust 95%CIc Bootstrap 95%CId Bootstrap 95%CIe

φ β βZ Z( ; ) = exp( ) 0.04 0.03, 0.05 0.03, 0.05 0.03, 0.05 0.03, 0.05

Abbreviation: CI, confidence interval.
a We used data from a study of lung cancer among 2,704men employed in underground uraniummining operations

on the Colorado Plateau between January 1, 1950, and December 31, 1960 (27, 28).
b Robust 95%CI obtained using SASPHREGwith the “covsandwich” option as in the article by Langholz and Jiao (11).
c Robust 95%CI obtained using the approach described in this paper.
d Bootstrapped 95%CI based on the bootstrap variance andWald-type interval.
e Bootstrapped 95%CI based on percentiles of the bootstrap estimates.

Table 5. Estimated Association BetweenRadon Exposure and Lung Cancer Mortality Obtained From Fitting
Excess Relative Rate RegressionModels to Data on Colorado Plateau UraniumMiners, 1950–1990a

Model ERR/100WLMs
95%CI Estimate

Robust 95%CIb Bootstrap 95%CIc Bootstrap 95%CId

φ β βZ t Z t( ( ); ) = 1 + ( ) 0.33 0.06, 0.59 0.04, 0.77 0.15, 0.82

φ β − βαZ t e Z t( ( ); ) = 1 + ( ) ( )0 0.33 0.15, 0.73 0.15, 0.81 0.15, 0.82

Abbreviations: CI, confidence interval; ERR, excess relative rate;WLM, working level month.
aWe used data from a study of lung cancer among 2,704men employed in underground uraniummining operations

on the Colorado Plateau between January 1, 1950, and December 31, 1960 (27, 28).
b Robust 95%CI obtained using the approach described in this paper.
c Bootstrapped 95%CI based on the bootstrap variance andWald-type interval.
d Bootstrapped 95%CI based on percentiles of the bootstrap estimates.
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confidence interval (95%CI: 0.06, 0.59) differed somewhat from
the bootstrap confidence interval obtained using the bootstrap
variance to derive a Wald-type interval (95% CI: 0.04, 0.77)
and differed more markedly from a bootstrap confidence inter-
val based on percentiles of the distribution of the bootstrap esti-
mates (95%CI: 0.15, 0.82).

Finally, we estimated the excess relative rate per 100 WLMs
by fitting amodel with a transformation of the parameter of inter-
est, as suggested by Prentice andMason (17) (Table 5). This also
yielded an estimated excess relative rate of 0.33 per 100WLMs;
the robust 95% confidence interval was 0.15, 0.73, and the
bootstrap confidence interval obtained using the bootstrap var-
iance to derive a Wald-type interval (95% CI: 0.15, 0.81) was
very similar to the bootstrap confidence interval based on per-
centiles of the distribution of the bootstrap estimates (95% CI:
0.15, 0.82).

DISCUSSION

A standard approach to analysis of case-cohort data under the
proportional hazards model is to fit a log-linear regression model
and obtain robust confidence intervals for the estimated param-
eters. Prior authors have described how analysis can proceed
using standard statistical packages to fit log-linear models and
obtain robust confidence intervals (10–12). Theremay be interest
in approaches tofitting alternatives to log-linear proportional haz-
ards models to case-cohort data. For example, in epidemiologic
studies of exposures to asbestos, benzene, radon progeny, and
external ionizing radiation, investigators have found support for
modeling the excess relative rate per unit of exposure as a linear
function of exposure rather than an exponential function of expo-
sure (2–5). One obstacle to fitting general relative hazardsmodels
to case-cohort data has been implementation using standard sta-
tistical packages (13). Analysts have tended to use specialized
software that was written specifically for fitting models of this
form to epidemiologic data. This paper describes an approach for
fitting a broader class of models to case-cohort data that have
been described as general relative rate models (16, 19, 20). We
have used SAS software to illustrate the methods, but we hope
that they will be implemented using other software packages as
well.

For maximum pseudolikelihood estimation of parameters for
general relative rate models using case-cohort data, we have
described how robust and bootstrap confidence intervals may be
obtained. As prior authors have pointed out, when the relative
risk is not multiplicative, the distribution of the maximum likeli-
hood estimators may be far from normal unless the sample size
is large (21). Prior work has shown that the bootstrap is asymp-
toticallymore accurate than the standard intervals obtained using
sample variance and assumptions of normality (30) and that
parameter transformations can somewhat improve asymptotic
distributional approximations for the linear excess relative rate
model (21).

In our example, for the log-linear models, Wald-type confi-
dence intervals based on robust variance estimators were essen-
tially identical to bootstrap confidence intervals obtained using
the bootstrap variance to derive aWald-type interval and to the
bootstrap confidence interval based on percentiles of the distri-
bution of the estimates (Table 4). For the linear excess relative

model, which is a non–log-linear model form, Wald-type con-
fidence intervals based on robust variance estimators and
Wald-type intervals obtained using the bootstrap variance dif-
fered somewhat from a percentile-based bootstrap confidence
interval. This was anticipated because for non–log-linear models
the distribution of the maximum likelihood estimators may be
far from normal unless the sample size is large. When we used a
parameter transformation suggested by Prentice andMason (17)
to improve asymptotic distributional approximations for the esti-
mates obtained under the linear excess relative rate model,
Wald-type confidence intervals based on robust variance estima-
tors were similar to bootstrap confidence intervals obtained
using the bootstrap variance to derive a Wald-type interval and
were very similar to the bootstrap confidence interval based on
percentiles of the distribution of the estimates (Table 5).
Given the relative ease of implementing the bootstrap approach
described here, a percentile-based bootstrap confidence interval
may be desirable when fitting non–log-linear regression models
to case-cohort data.

This paper facilitates fitting of general relative rate models to
case-cohort data. We have described how such models may be
fitted using a standard statistical package, addressed confounder-
stratified case-cohort designs, and described how to obtain confi-
dence intervals for estimated parameters.
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