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There are nowmany published applications of causal (structural) models for estimating effects of time-varying expo-
sures in the presence of confounding by earlier exposures and confounders affected by earlier exposures. Results from
these models can be highly sensitive to inclusion of lagged and baseline exposure terms for different visits. This sensi-
tivity is often overlooked in practice; moreover, results from these models are not directly comparable to results from
conventional time-dependent regression models, because the latter do not estimate the same causal parameter even
when no bias is present. We thus explore the implications of including lagged and baseline exposure terms in causal
and regression models, using a public data set (Caerphilly Heart Disease Study in the United Kingdom, 1979–1998)
relating smoking to cardiovascular outcomes.
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Abbreviations: CL, confidence limit; MSM, marginal structural model; SAFTM, structural accelerated failure time model; SIPTW,
stabilized inverse-probability-of-treatment weight.

The aim of many longitudinal studies is the estimation of the
causal effects of time-varying exposures such as treatment dura-
tion, adherence to screening programs, and smoking status. There
might also be time-varying confounders that should be adjusted
for in the analysis. Coefficients in conventional regression mod-
els for longitudinal data (such as time-dependent Cox regression
and generalized estimating equation (GEE) regression for corre-
lated outcomes) might fail to have a useful causal interpretation
even in the absence of uncontrolled confounding by covariates if
earlier exposures or outcomes confound later exposures or if
there are confounders affected by earlier exposures (1–7). Several
causal (structural) models are available for the estimation of the
effect of time-varying exposure that can appropriately adjust for
time-varying confounders (1–8), and there are now many pub-
lished applications of thesemodels (9–16).

All these models could include baseline and lagged exposure
terms from different visits to capture the target effect and to
adjust for early exposure. The results from these causal models
in longitudinal data can be highly sensitive to inclusion of these
terms, yet this sensitivity is often overlooked in practice. More-
over, the effect of switching to explicitly causal models is some-
times misstated in the specialized literature by comparing

causal and conventional regression methods that estimate differ-
ent effects when no bias is present. We explored the implications
of including baseline and lagged exposure terms in the causal and
regression models in the longitudinal data setting using a public
data set relating smoking to cardiovascular outcomes.

DATA, NOTATION, CAUSALDIAGRAM, ANDMODELS

We used the public Caerphilly Heart Disease Study (United
Kingdom) data set to estimate the total effect of smoking on the
occurrence of either a myocardial infarction or death from coro-
nary heart disease. Participants (all of whomweremen)were re-
cruited between 1979 and 1983 (visit 0), when they were aged
44–60 years (9). Further examinations took place during
1984–1988 (visit 1), 1989–1993 (visit 2), and 1993–1997 (visit
3). All subjects were followed until the end of 1998. To adjust
for lagged confounders, a total of 1,756 subjects who had com-
plete data at visits 0 and 1 were included in our analysis, so the
baseline visit in our analysis was visit 1. For simplicity, we will
ignore the slight censoring due to loss-to-follow-up and com-
peting risks.
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The causal diagram in Figure 1 represents the assumed causal
structure for the study population (17–20). In this graph, A(k) and
Y(k) denote smoking and outcome (i.e., myocardial infarction or
death from coronary heart disease) at visit k. L(k) corresponds to
a vector of measured time-varying potential confounders at visit
k including previous reported heart attack, gout, high blood
pressure, and diabetes, high fibrinogen (above the 75th percen-
tile), high cholesterol (above the 75th percentile), high systolic
blood pressure (≥140 mmHg), high diastolic blood pressure
(≥90mmHg), obesity (body mass index, calculated as weight
(kg)/height (m)2 of ≥30), and underweight (body mass index
<20) indicators. L(1) includes age at visit 1 as well.

To simplify descriptions we will assume there are no perfect
cancellations of effects or biases (“faithfulness”) (17). Then the
absence of arrows from U(k) to A(k) and A(k + 1) in Figure 1
represents the (untestable) assumption of no uncontrolled con-
founding for exposure histories, given data on L(k). To simplify
the graphs, we have omitted the arrows from L(0) to L(2),U(0)
to L(2),A(0) to L(2), L(0) toA(2), L(0) to Y(2), etc.We use over-
bars to indicate the history of time-varying variables through
visit k(e.g., ( ) = [ ( ) ( ) … ( )]L k L L L k0 , 1 , ).

The arrows from L(k − 1) and L(k) to A(k) in Figure 1 sug-
gest that {L(k), L(k − 1)} are time-varying confounders and
should be adjusted for in the analysis. The standard method to
adjust for time-varying confounding due to L(k) or L(k − 1) is
to condition on them in a regression model. This method might
lead to biased estimates: Conditioning on L(k) in Figure 1 can
create biasing paths and block the targeted causal paths. For
example, although conditioning on L(2) blocks the backdoor
path A(2) ← L(2) → Y(2), it also introduces 2 sources of
bias. First, conditioning on L(2) produces a spurious association
between A(1) and Y(2), because L(2) is a collider on the path U
(1)→ L(2) ← A(1). This bias would occur whenever a compo-
nent of time-varying confounders L(k) is affected by the expo-
sure A(k − 1) (or shares common causes with A(k − 1)) as well
as a component of unmeasured causal risk factors U(k − 1),
even under the null hypothesis of no direct, indirect, or overall
effect of the exposure on the outcome. Second, conditioning
on L(2) creates overadjustment bias by blocking the causal
path A(1)→ L(2)→ Y(2). This bias would occur whenever a

component of time-varying confounders L(k) is affected by
prior exposure A(k− 1).

We assume that the value of A(k) is determined immedi-
ately upon measuring L(k), so the visit times are the only times
of potential exposure change, and A(k) represents smoking in
the interval from visit k up to (but excluding at) visit k + 1. To
obtain consistent effect estimates, we additionally require no
measurement error for all variables in Figure 1. While likely
not true in practice, we ignore measurement error to focus our
arguments on issues related to lagging/modeling.

Given that the follow-up starts from visit 1, the goal of our
analysis is estimating the effect of {A(1) = 1,A(2) = 1,A(3) = 1}
versus {A(1) = 0, A(2) = 0, A(3) = 0}. From Figure 1, the min-
imally sufficient adjustment set for this effect estimation is {A
(0), L(0), L(k), L(k − 1)} for k = 1, 2, 3. In particular, prebase-
line treatment A(0) acts as confounder for later treatments and
should be adjusted for in the analysis. Note that both A(0) and L
(0) have arrows into later treatments and outcomes, but as men-
tioned above for visual simplicity, some of these arrows are not
shown. Also Figure 1 assumes that only A(k − 1) and A(k) af-
fects Y(k) for k = 1, 2, 3, as we will use in our causal and con-
ventional models, but other specifications are possible.

In calculating time-specific hazard ratios as in the Coxmodel,
the outcome at each time is conditioned on those who survived
past earlier times. This can lead to bias in hazard ratios (includ-
ing crossing hazard ratios), because it makes the frailty vari-
able U in Figure 1 a confounder for the exposure effect (21).
Here we might ignore this issue, as well as noncollapsibility
issues for hazard ratios, as would be the case if, over the study
period,U had a negligible effect on exposure or outcome, and
exposure had a negligible effect on population size (22, 23).

We used 3 methods to estimate the causal effect of smoking on
the occurrence of either amyocardial infarction or death from cor-
onary heart disease: 1) stabilized inverse-probability-of-treatment
weighted (SIPTW) estimation of a marginal structural model
(MSM) (2, 4, 5), 2) g-estimation of a structural accelerated fail-
ure time model (SAFTM) (1), and 3) partial-likelihood estima-
tion of a time-dependent Cox model (24), as explained below.
We performed all of the statistical analyses with Stata, version 13
(StataCorp LLC, College Station, Texas), and R, version 3.5.1
(R Foundation for Statistical Computing, Vienna, Austria).

We fitted the following marginal structural Cox proportional
hazardsmodel (CoxMSM):

λ ( ) = λ ( ) (β ( ) + β ( − ) + β
+ β ( ) + β′ ( ))

¯ ¯t t a k a k age

a L

exp 1

0 0 ,
Ta T 0 1 2 3

4 5

where λ ( )¯ tTa denotes the hazard at time t among subjects with
baseline covariates a(0) andL(0) and age in the source population
had, possibly contrary to the fact, they followed the smoking his-
tory ¯ = ( … )a a a, ,k k1 and k is the latest visit before time t. Our
MSM assumes that current and lagged exposure terms a(k) and a
(k − 1) are sufficient to capture the total effect of exposure. The
MSM adjusts for confounding by early exposure by including
baseline exposure a(0). Note that for the first visit (k = 1), lagged
and baseline exposures coincide so there would be no adjustment
for early confounding by the exposure in that visit.

Assuming that our MSM is correct, exp(β1 + β2) has a causal
interpretation as the ratio of the outcome hazard rate at any time t

A(0) A(1) A(2) A(3)

Y(1)

L(0) L(1) L(2) L(3)

U(0) U(1) U(2) U(3)

Y(2) Y(3)

Figure 1. Causal diagram representing the assumed causal struc-
ture for a study population: A is the exposure, L is the set of measured
confounders, U is the set of unmeasured risk factors, and Y is the out-
come. The numbers represent visits over time.
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had all subjects smoked continuously during the study follow-up
compared with the hazard rate at that time had all subjects never
smoked. To see the effect of confounding by baseline exposure
as well as exposure lagging in defining the target effect, we also
fitted 3 simpler MSMs that omit lagged exposure A(k− 1) or the
baseline exposureA(0) or both from theMSMmentioned above.

To estimate the parameters of our MSM, we fit the following
pooled logisticmodel treating each person-visit as an observation:

( ( ( ) = )) = γ + γ ( ) + γ ( − )
+ γ + γ ( ) + γ′ ( )

Y k t A k A k

age A L

logit Pr 1 1

0 0
0 1 2

3 4 5

This model was fitted using an ordinary maximum-likelihood
logistic regression program with the following SIPTWs for effi-
ciency reasons (4, 5, 13, 25):
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Odds ratios from this weighted pooled logistic model approx-
imate rate ratios from the Cox model within 5% or so when the
risk of events is less than 10% per person-visit interval (26).

The exposure probabilities in the denominator of SWi(k)
were estimated using the following pooled logistic regression:

( ( ( ) = )) = ω + ω ( − ) + ω′ ( )
+ ω′ ( − ) + ω
+ ω ( ) + ω′ ( )

A k t A k L k

L k age

A L

logit Pr 1 1
1

0 0

0 1 2

3 4

5 6

The exposure probabilities in the numerator of SWi(k)
were estimated by fitting the same model after dropping the
time-varying covariates L(k) and L(k− 1).

Assuming a well-defined intervention, no uncontrolled con-
founding (as in Figure 1), positivity (27), and correct specification
of the pooled logistic regression models for the denominator of
SWi(k) and for the outcome, the weighted pseudolikelihood esti-
mates of γ1 and γ2 generated by using a maximum-likelihood pro-
gram to fit the logistic MSM will be consistent for the causal
parameters of interest β1 and β2 of our Cox MSM (apart from
the aforementioned difference between odds and hazard ratios).
Because the use of weights induces within-subject correlation,
we used a sandwich variance estimator with clustering by sub-
ject to obtain conservative confidence intervals for our SIPTW
estimator.

We fitted a SAFTM in which the (possibly counterfactual)
survival time under no smoking during the follow-up, Ti, equals
theweighted sum of time spent in a given smoking status:

∑= [ψ ( ) + ψ ( − )]Δ ( )
=

⁎ ⁎T A k A k t kexp 1 ,i

k

i

1

3

1 2

where Δt(k) is the time between visit k and the earliest of the
next visit, an outcome event, or the end of 1998. This sum is
just the observed survival time if ψ1* = ψ2* = 0 or all the
Ai(k) are 0. Furthermore, the model says that always smoking

changes survival time by a factor of exp(−ψ1*–ψ2*) com-
pared with never smoking.

The asterisk on ψ denotes that this is the true but unknown
value of the effect parameter. While we do not know the true
value of ψ, we do know that, in the absence of confounding,
selection, and measurement bias, if we set both ψ1 and ψ2 to
their true values, the exposure at each time will be independent
of the potential outcomes. This forms the basis for g-estimation.
To implement g-estimation, we define a grid of values {ψ̃ ,1
ψ̃ } ≡ {(− − ) (− − ) … ( ) ( )}1, 1 , 1, 0.975 , , 0.975, 1 , 1, 12 ,
which we use to index a set of models

∑(ψ̃) = [ψ̃ ( ) + ψ̃ ( − )]Δ ( )
=

T A k A k t kexp 1 ,i

k

i i

1

3

1 2

so that by our model (ψ̃) =T Ti i if ψ̃ = ψ*. G-estimation
searches for the value of ψ̃ that makes the unexposed potential
survival time (ψ̃)Ti independent of the exposure given previous
treatment and covariate history (sequential exposure-assignment
ignorability); this is a sufficient condition for no confounding
under the above structural model. As usual in the g-estimation lit-
erature to date, the exposure-potential outcome relation is mod-
eledwith the following pooled logistic regression:

( ( ( ) = )) = α + α ( − ) + α′ ( )
+ α′ ( − ) + α
+ α ( ) + α′ ( ) + α (ψ)

A k t A k L k

L k age

A L T

logit Pr 1 1
1

0 0 .i

0 1 2

3 4

5 6 7

Our g-estimate ψ̂* of ψ* is the value of ψ̃ for which test of
hypothesis of α7 = 0 (no association of exposurewith Ti(ψ) under
themodel) has a 2-sidedP value equal to 1. In addition to the gen-
eral validity (effect identification) assumptions mentioned earlier,
the procedure assumes that the structural model and the pooled
logistic regression model are correct. The 95% confidence limits
for ψ* are values of ψ for which the test of hypothesis of α7 = 0
has a 2-sidedP value equal to 0.05. To see the effect of confound-
ing by baseline exposure as well as exposure lagging in defining
the target effect, we also fitted 3 simpler models, which omit
lagged exposure A(k− 1) from the SAFTM or the baseline expo-
sureA(0) from the logistic exposuremodel or both.

To accommodate censoring of (ψ̃)Ti by end of follow-up, we
defineC as the time from the baseline visit (visit 1) to end of 1998
and replace (ψ̃)Ti with the following pair of variables: an observ-
able potentially censored survival time (ψ̃) =C Ci i if ψ ≥ 0,
and (ψ̃) = ψ̃C C expi i if ψ < 0, so that (ψ̃) = {C Cmin ,i i

ψ̃}C expi ; and an observable censoring indicator Δ (ψ̃) = 1i if
(ψ̃) < (ψ̃)T Ci i , 0 otherwise (28). To transform the estimated

survival-time ratio (ψ̂*)exp into a hazard ratio for the exposure
effect, we fitted a Weibull model to the censored data (ψ̂*)Ci ,
Δ (ψ̂*)i , then used the fitted Weibull shape parameter s to esti-
mate the hazard ratio as ( ψ̂*)sexp . Confidence intervals for the
hazard ratios ( ψ)sexp computed from ( ψ)sexp and ( ψ)sexp
using the limits ψ and ψ for ψ* are too narrow because they do
not account for uncertainty in the estimated shape parameter s. In
our example however s appears to have a very small standard
error and so it appears safe to ignore its variability.

We specified the following conventional time-dependent
Cox model for the regression of the hazard on baseline (k = 0)
and subsequent exposure and confounders:
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λ ( ) = λ ( ) (θ ( ) + θ ( − ) + θ′ ( )
+ θ′ ( − ) + θ + θ ( ) + θ′ ( ))

t t A k A k L k

L k age A L

exp 1
1 0 0 ,

T 0 1 2 3

4 5 6 7

where k is the latest visit before time t. Like our MSM, this
Cox model assumes that current and lagged exposure terms
A(k) and A(k − 1) are sufficient to capture the total effect of
exposure and adjusts for confounding by early exposure by
including prebaseline exposure A(0). Note that for the first
visit (k = 1), lagged and baseline exposures and confounders
coincide so there would be no adjustment for lagged confounders
and early confounding by the exposure in that visit.

Under the general validity assumptions mentioned earlier, if
the time-varying confounders are not affected by (or do not
share causeswith) previous treatment (clearly violated in Figure 1),
exp(θ1 + θ2) is the causal hazard ratio for the outcome comparing
always smoking with never smoking during the study follow-up.
To see the effect of confounding by baseline exposure as well as
the lagged exposure in defining the target effect, we also fitted 3
simpler time-dependent Coxmodels that omit lagged exposureA
(k− 1) or the baseline exposureA(0) or both from the Coxmodel
mentioned above. All Stata (StataCorp LLC) and R (R Founda-
tion for Statistical Computing) code is provided in Web Appen-
dix 1 (available at https://academic.oup.com/aje).

RESULTS

The baseline characteristics of participants are provided in
Table 1. Of 1,756 men included in our analysis, 244 devel-
oped the outcome over follow-up, with median incidence time of
11.5 (interquartile range, 9.9–13.1) years. The censoring rate due
to loss to follow-up or competing risks was 10.0% (176/1,756).
The hazard ratios for smoking based on theMSM fit by SIPTW,
SAFTM fit by g-estimation, and conventional time-dependent

Cox regression fit by partial likelihood were 1.27 (95% confi-
dence limit (CL): 0.80, 2.02), 1.25 (95% CL: 0.89, 1.68), and
1.49 (95% CL: 0.94, 2.34), respectively (Table 2). The mean
values of the SIPTWs used forMSM fitting in the second, third,
and fourth visits were 0.997 (range, 0.14, 4.19), 0.998 (range,
0.17, 4.22), and 1.001 (range, 0.10, 6.91), respectively. Correct
model specification and positivity will lead to a mean SIPTW
close to 1 at each study visit, so that the size of the reweighted
data set (“pseudopopulation”) should approximate the size of
original data set at each visit (20).

Deviations of the means from 1 can arise from model mis-
specification, positivity violations, and random or numeric ar-
tefacts. Given that some degree of misspecification is always
present along with random and numeric error, some deviation
from 1 is to be expected.

As Table 2 shows, the MSM and Cox-modeling results are
sensitive to covariates included in the model, including whether
lagged exposure or prebaseline exposure were in the model.
The SAFTM that included both A(k) and A(k − 1) varied simi-
larly depending on whether the lagged exposure variable was
adjusted for in the pooled logistic g-estimator. Nonetheless,
when the lagged exposure variable was excluded in the struc-
tural model, results were insensitive to whether the prebaseline
exposure was included in the pooled logistic g-estimator.

The time-dependent Cox regression with model specifica-
tion 1 in Table 2 includes both current and lagged exposures
(see the time-dependent Cox model above) and reports an esti-
mated hazard ratio, exp(θ1 + θ2) of 1.49 (95% CL: 0.94, 2.34)
for the total effect of exposure by combining the parameters of
current and lagged exposure terms. Based on this model, the
hazard ratio, exp(θ1), estimate for current smoking adjusted
for lagged and baseline smoking as well as covariate history is
1.06 (95%CL: 0.71, 1.58).

Finally, Figure 2 shows a comparison of the cumulative mor-
tality functions under 2 scenarios (fully exposed to smoking ver-
sus fully unexposed to smoking) from the time-dependent Cox
regression model, the MSM, and the SAFTM, each including
current and lagged exposure when adjusted for prebaseline expo-
sure (see the first row of Table 2). As with the results from
Table 2, Figure 2 suggests similarity between the MSM and the
SAFTM estimates. While the difference in the curves between
fully exposed and fully unexposed to smoking from the time-
dependent Cox regression model suggest a smaller effect, this is
likely the result of the fact that these curves are specific to indivi-
duals with average covariate values (Figure 2).

DISCUSSION

As with conventional statistical modeling, interpreting asso-
ciations from longitudinal causal models as causal effects re-
quires validity conditions including precisely defined exposure;
no uncontrolled confounding, selection bias, or measurement
error; and no bias frommodel specification. Structural positivity
(positive probability of each exposure level at each covariate
level) is also often listed and is essential to basic inverse-proba-
bility-of-treatment-weight (IPTW) methods, but other assump-
tions might loosen this requirement by enabling projections to
unobserved exposure levels (e.g., trend assumptions to interpo-
late between observed doses). Even with structural positivity,

Table 1. Baseline Characteristics of 1,756 ParticipantsMeasured at
Visit 0a, Caerphilly Heart Disease Study, United Kingdom, 1979–1998

Characteristic No. %

Current smoker 905 51.5

History of heart attack 113 6.4

History of gout 81 4.6

History of high blood pressure 364 20.7

History of diabetes 28 1.6

High systolic blood pressure (≥140 mmHg) 906 51.6

High diastolic blood pressure (≥90 mmHg) 867 49.4

Obese (BMIb ≥ 30) 196 11.2

Underweight (BMIb < 20) 61 3.5

High fibrinogen (above the 75th percentile) 263 15.0

High cholesterol (above the 75th percentile) 447 25.5

Age (years)c 57.4 (4.5)d

Abbreviation: BMI, bodymass index.
a Sterne and Tilling (9).
b Weight (kg)/height (m)2.
c Measured at visit 1.
d Values are expressed asmean (standard deviation).
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these assumptions become important when (as is often the case)
there is random nonpositivity (i.e., no observations at some of
the possible exposure-covariate combinations).

The chief advantage of longitudinal causal modeling is that it
allows previous exposure to affect time-varying confounders;
also, its typical implementation with inverse-probability-of-
censoring weighting (IPCW) uses weaker censoring assump-
tions than that of random censoring implicit in conventional
models and software. Nonetheless, 2major concerns are inclusion
of adequate exposure terms from different visits, so that con-
founding by earlier exposure is controlled, and model specifica-
tion so that the desired target effect is represented by a simple
transform of the exposure coefficient.

Contrasting MSM and conventional models with and without
lagged exposure (models 1 vs. 3 and 2 vs. 4) in Table 2, we see
how the common practice of including only the current exposure
in a time-dependent model can be inadequate for capturing the
causal effects of a continuous exposure. This difference high-
lights the importance of correct specification of the exposure in
the causal models as well as for conventional time-dependent
Cox models. The lagged exposure term captures the cumulative
effect of smoking on myocardial infarction, and the results sug-
gest that the duration of exposurematters. Amore accurate speci-
fication would, however, use amount smoked (e.g., pack-years)
during follow-up as the primary exposure.

Contrasting MSM and conventional models with and with-
out prebaseline exposure (models 1 vs. 2 and 3 vs. 4) in Table 2
indicates that prebaseline exposure (i.e., exposure at the first
visit if the analysis starts from the second visit) can act as a
baseline confounder and should be adjusted for in the analysis.
The results from theMSM and time-dependent Cox model are
very similar, especially with no prebaseline exposure adjust-
ment. This similarity is unsurprising, given that their model
forms are similar, the degree of time-varying confounding is
low (as suggested by the narrow range of SIPTWs), and time-
varying confounders are not strongly affected by the previous
exposure (data are not shown). The parameters they estimate
are not, however, the same: MSM coefficients represent par-
tially marginal effects (averaged over confounders in the
weight function but not in theMSM), while Cox model coeffi-
cients represent fully confounder-conditional effects. Because
the baseline confounders are in our MSM, that model (like the

time-dependent Cox model) is conditional with respect to
baseline confounders, and so our MSM effect estimates are
only marginal with respect to time-varying confounders.

On the other hand, our results from g-estimation are simi-
lar to those of MSM analysis when a lagged exposure term is
included, but their results diverge otherwise. The divergence
can be explained by noting that g-estimation is based on a
very different model, namely an SAFTM, which imposes a
stronger interindividual homogeneity requirement than the
MSM, which assumes only homogeneity across the levels
defined by the MSM variables; in parallel, the g-estimates
are conditional with respect to all of the time-varying and
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Figure 2. Cumulative distribution functions for mortality among
1,756 men from the Caerphilly Heart Disease Study, United Kingdom,
1979–1998, obtained from a time-dependent Cox regression model,
marginal structural model (MSM), and structural nested accelerated
failure time model (SAFTM), each including current and lagged expo-
sure when prebaseline exposure is adjusted for (the first row of
Table 2), under 2 exposure scenarios (exposed to smoking at all time
points versus unexposed to smoking at all time points). Predicted val-
ues from the time-dependent Cox regression model were obtained by
setting all covariates to their mean values.

Table 2. Hazard Ratio for Smoking and Cardiovascular OutcomesUsing 2 Longitudinal Causal Models and a
Conventional Time-Dependent CoxModelWith Different Exposure Terms (n = 4,621 Person-Visits), Caerphilly Heart
Disease Study, United Kingdom, 1979–1998

Model Lagged
Exposure

Prebaseline Exposure
Adjustment

MSM + SIPTW SAFTM +
G-Estimation

Time-Dependent
CoxModel +

Partial Likelihood

HR 95%CL HR 95%CL HR 95%CL

1 Yes Yes 1.27 0.80, 2.02 1.25 0.89, 1.68 1.49 0.94, 2.34

2 Yes No 1.68 1.25, 2.26 1.63 1.13, 2.33 1.62 1.22, 2.16

3 No Yes 1.01 0.67, 1.54 1.25 1.18, 1.40 1.23 0.87, 1.73

4 No No 1.44 1.08, 1.93 1.26 1.18, 1.68 1.47 1.13, 1.92

Abbreviations: CL, confidence limit; HR, hazard ratio; MSM, marginal structural model; SAFTM, structural acceler-
ated failure timemodel; SIPTW, stabilized inverse-probability-of-treatment weight.
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baseline confounders. The g-estimates in Table 2 appear to
be more precise than estimates from the MSM and time-
dependent Cox model, reflecting the stronger assumption, as
well as the more efficient fitting method and more precise (as
opposed to conservative) variance estimation available for
the SAFTM.

The confidence intervals in Table 2 are wide, so it is not
possible to determine whether in the example there is a practi-
cal difference from including lagged exposure terms and ad-
justing for baseline exposure. Under common defaults, the
observed difference between the analyses could be seen as sta-
tistically important in a study in which each point estimate lies
outside the other’s 95% confidence interval. Nonetheless, the
differences we have emphasized concern the underlying popu-
lation structure and so need to be considered regardless of the
sizes of the standard errors. In particular, even with no uncon-
trolled confounding in either analysis, the conventional analy-
sis does not estimate the same causal parameters as in the
longitudinal causal models.

In our example, Sterne and Tilling (9) estimated a hazard
ratio of 1.06 (95% CL: 0.71, 1.58) for exp(θ1), the effect of cur-
rent smoking adjusted for lagged and baseline smoking and co-
variate history in a conventional time-dependent Cox model,
and compared it with the g-estimate of 1.38 (95% CL: 1.04,
1.60) for the total effect of smoking (using Stata’s stgest com-
mand, which we computed as 1.31 (95% CL: 0.90, 1.71) using
the R code provided in the appendix). They concluded that the
standard survival analysis approach to the analysis of time-
varying exposures substantially underestimated the effect of
smoking. They attributed the difference in estimates to the bias
arising from conventional adjustment for time-varying con-
founders affected by the previous exposure. Nonetheless, the
hazard ratio of 1.06 from conventional time-dependent Cox
modeling estimates the acute effect adjusted for the previous
chronic effect, which is a causal parameter different from that in
the longitudinal (g-estimation) analysis. Thus the difference
between the 2 estimates might be due in part to differences in
their target parameters rather thanmore confounding in the con-
ventional analysis. While quite imprecise on the matter, our
analysis suggests that, in this example, the difference in results
is more due to differences in the targeted effects than differ-
ences in confounding.

Conventional analyses assume there is no time-varying
confounding affected by prior exposure, which is true when
the acute effect of current exposure A(k) is the target because
current exposure A(k) does not affect the time-varying con-
founders L(k). In particular, the path A(k− 1)→ L(k)→ Y(k) is
assumed absent this analysis, which, if correct, prevents over-
adjustment bias due to conditioning on L(k). As noted earlier,
in the presence of unmeasured factorsU(k − 1) affecting L(k),
conditioning on L(k) makes A(k − 1) a noncausal predictor of
Y(k). Again there is no concern about this collider bias when
the target is the effect of current exposure A(k), as if one as-
sumes that the previous exposure does have a direct effect on
the current exposure then A(k − 1) is indeed a confounder and
is adjusted for in this conventional analysis. Unlike the con-
ventional analyses presented in Table 2 for the total effect of
the exposure, this analysis has causal interpretation in the
absence of model misspecification and uncontrolled con-
founding. We note, however, that it would be necessary to

include product terms between current exposure and previ-
ous exposure and covariate history; this is because, under
our MSM, the acute effect of the exposure need not be con-
stant over strata of past exposure and covariate history (2).

Residual confounding might arise even if the model is cor-
rectly specified and there are no uncontrolled confounders
including early exposure. In the Caerphilly study, as in other
interval cohorts, confounders are not measured at the times of
exposure change and, in fact, concurrent or lagged time-
varying confounders are the mismeasured versions of the
true values of the confounders. Moreover, residual confounding
can arise frommeasurement errors in confounders and prebase-
line exposure. Another concern is error in smoking measure-
ment itself and the questionable assumption that smoking
reported at each visit (k) represents smoking during the
ensuing interval [k, k + 1).

In sum, inclusion of correct exposure terms to account for
the target effect and confounding by early exposure is crucial
for longitudinal causal analysis as well as for conventional
analysis, and sensitivity analysis using different specifica-
tions is often warranted. Regardless, when comparing differ-
ent approaches to estimate causal effects, we should make
sure that they are targeting the same causal parameter, or at
least addressing the same research question.
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