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Key Points

•New horizons for the
blood service: biosafe
and customized plate-
lets from pluripotent
stem cells.

• Progress of good
manufacturing practice
in platelets for transfu-
sion: addressing prod-
uct safety, cost,
function, and chal-
lenges remaining.

The production of in vitro–derived platelets has great potential for transfusion medicine.

Here, we build on our experience in the forward programming (FoP) of human pluripotent

stem cells (hPSCs) to megakaryocytes (MKs) and address several aspects of the complex

challenges to bring this technology to the bedside. We first identify clinical-grade hPSC lines

that generate MKs efficiently. We design a bespoke media to maximize both production and

maturity of MKs and improve platelet output. Crucially, we transition the lentiviral-based

FoP of hPSCs to a nonviral inducible system. We also show how small molecules promote

a definitive hematopoiesis phenotype during the differentiation process, thereby increasing

the quality of the final product. Finally, we generate platelets using a bioreactor designed to

reproduce the physical cues that promote platelet production in the bonemarrow. We show

that these platelets are able to contribute to both thrombus formation in vitro and have

a hemostatic effect in thrombocytopenic mice in vivo.

Introduction

The production of platelets in vitro from human pluripotent stem cells (hPSCs) offers huge potential
clinical benefits, including: (a) stable, on-demand supply, a tangible benefit given the fact that donor-
derived platelets have a shelf-life of 5 to 7 days; (b) biosafety, a very relevant advantage given the past
history of contamination of donor-derived blood products with HIV and hepatitis C virus; and (c) the
potential to address the immunological difficulties for patients alloimmunized against HLA class I
antigens.1-3 The latter could be achieved through the use of carefully selected cell lines homozygous for
common HLA haplotypes or genome-edited lines that do not express the HLA class I antigens.4,5 We
have previously published6 a robust system for the efficient production of large numbers of highly pure
megakaryocytes (MKs; the platelet mother cell) based on the forward programming (FoP) of hPSCs
through the ectopic expression of 3 transcription factors (TFs) GATA1, TAL1, and FLI1 (the 3TFs).

The transition from the research bench to the clinical production of platelets represents a unique
challenge that will necessitate efficient MK differentiation from hPSCs and subsequent effective platelet
release. In addition, clinical manufacturing needs to take into account regulatory requirements, sourcing
of reagents, and translation to a subsequent large-scale manufacturing process.

We first considered the starting material. A well-described challenge when producing somatic cells from
both human embryonic stem cells (hESCs) and human inducible pluripotent stem cells (hiPSCs) is the
huge variability of efficiency for any given differentiation protocol across different cell lines. This is a well-
documented issue7-11 with donor-derived genetic variation rather than cell of origin being the main driver
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of this molecular heterogeneity.12-14 Predicting which hPSCs are
likely to have a satisfactory terminally differentiated output or
eliminating this variability remains one of the biggest challenges in
the field, made even more crucial given the paucity of available
clinical-grade cell lines and the cost of producing and qualifying
such lines. We present data for MK production from both embryonic
stem cells (ESCs) and inducible pluripotent stem cells (iPSCs),
derived in regulatory-compliant conditions with potential for clinical-
grade manufacture.

We also address challenges pertinent to the manufacturing process,
focusing on cell-seeding conditions, improving MK maturation
and subsequent platelet production by use of bespoke media. In
addition, we show that cell output is maintained after transition into
good manufacturing practice (GMP)-grade reagents.

A crucial limitation of the original FoP protocol is reliance on
lentiviral vectors. Clinical-grade lentiviral vectors are costly and are
a potential source of batch-to-batch variability that may present
issues in terms of final product quality. We show that genetic
engineering of hPSC lines to introduce an optimized Tet-ON–based
inducible system,15 chemically controlling the expression of the
3TFs, drives the MK FoP as efficiently as the original lentiviral
approach.

Finally, we demonstrate that FoP MKs derived from clinical-grade
inducible cell lines release functional platelets using a scalable
bioreactor system specifically developed for this purpose and
demonstrate clinical benefit in vivo after transfusion of in vitro–derived
platelets to thrombocytopenic mice.

Materials and methods

Institutional review board approval

In vivo experiments were regulated under the Animals Act 1986,
Amendment Regulations 2012 following ethical review by the
University of Cambridge Animal Welfare and Ethical Review Body
(AWERB). Experiments were performed under Project License
P667BD734 by trained, personal license (PIL) holders.

Human pluripotent cell culture

hESCs and hPSCs were obtained from the UK Regenerative
Medicine Platform (UKRMP), the Human Induced Pluripotent Stem
Cell Initiative (HipSci), Cell and Gene Therapy Catapult (Catapult),
and National Institute of Neurological Disorders and Stroke
(NINDS) Human Cell and Data Repository (NHCDR) (supplemental
Table 1). hPSCs were maintained on a recombinant vitronectin
(VTN-N) human substrate at 0.5 mg/cm2 (Thermo Fisher Scientific)
or laminin-521 at 5 mg/mL (BioLamina) in E8 media (Thermo Fisher
Scientific) and passaged using EDTA/phosphate-buffered saline or
TrypLE Select (Thermo Fisher Scientific).

FoP

Lentiviral programming was carried out as described6 but in-
corporating recent modifications, including using 2-dimensional
(2D) culture of either clumps or single cells. Briefly, 24 hours prior to
transduction (day 21), hPSCs were dissociated and seeded on
vitronectin plates for programming. Differentiation starts with 2 days
of mesoderm induction followed by MK-specific media then
disruption and seeding as a suspension culture on day 10 (see
supplemental Methods for specific details). Thereafter, cells are fed
every 2 to 3 days.

Inducible FoP (iMK_FoP) followed the same key steps except
differentiation is initiated from the inducible cassette by the addition
of doxycycline.

Generation of inducible targeting constructs

To generate inducible MK-FoP hPSC lines, we adapted the OPTi-
OX system15,16 (patent 1619876.4) using TET-ON 3G, third-
generation reverse tetracycline-controlled transactivator (rtTA)17

and the tetracycline-response element (TRE) promoter to drive
exogenous gene expression. We target the rtTA and TRE to 2
different genomic safe harbors, using clustered regularly inter-
spaced short palindromic repeats (CRISPR)/CRISPR-associated
protein 9 (Cas9) nickase (Cas9n) constructs targeted to ROSA26
and zinc finger nucleases (ZFNs)18 targeted to the AAVS1 locus.
We customized the system by replacing enhanced green
fluorescent protein (eGFP) of the OPTi-OX plasmid with a poly-
cistronic cassette containing the 3TFs and green fluorescent
protein (GFP).

Generation of hiPSCs for MK-FoP

To create single-step inducible lines, low passage number
parental lines were dissociated to single cells using TrypLE
Select, then nucleoporated using the Nucleofector kit (Lonza) to
which a mix of all 6 plasmids, 6 mg in total, in a minimal volume
was added: 1 mg of pRosa26-CAG-rtTA (OPTi-OX), 1 mg of
pRosa26-guideA_cas9n, 1 mg of pRosa26-guideB_cas9n, 1 mg
of pAAVS1-TRE-GFP, 1 mg of pZFN_AAVS1-L-ELD, and 1 mg of
pZFN_AAVS1-R-KKR (vector maps 1-6; supplemental Figure 4)
were added. Selection with puromycin and G418 is started
48 hours after transfection, and colonies, which are expanded for
genotyping and subsequent banking, start to appear 7 to 10
days later.

GMP translation of culture conditions

Each component of the FoP protocol was checked for compliance
with GMP standards and where necessary replaced with GMP-
compliant equivalents. Each component was then tested empirically
beside the current laboratory-grade component.

In vitro MK and platelet analysis by flow cytometry

Flow cytometry of MKs was carried out using a Gallios flow
cytometer (Beckman Coulter) using antibodies listed in supple-
mental Table 5. Static platelet assays were carried out using high-
glucose RPMI 1640 (ATCC modification) including Calcein AM as
a viability dye and flow count fluorospheres (Beckman Coulter) to
determine viable platelet number.

Bioreactor

Second-generation bioreactors (Platelet BioGenesis) were seeded
with an average of 2.8E106 iLIPSC-GR1.1.2 (n 5 3) and
2.9E106 iDELTA-3.7 (n 5 3) for in vitro function and an average
of 1.74E107 iLIPSC-GR1.1.2 (n 5 6) for in vivo function
experiments, viable MKs per run. MKs were filtered (70 mM),
centrifuged at 120g for 8 minutes at room temperature, and
resuspended in 10 mL of AMK.

Platelet-function assays

Platelet function was measured by flow cytometry after adding labile
PG12 to temporarily sequester activation during centrifugation
steps. In vitro thrombus formation under flow was performed using
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bioreactor-derived or donor platelets stained with CellTracker
Red (Thermo Fisher Scientific) added to whole human donor blood
previously stained green with 3,39-dihexyloxacarbocyanine iodide
(Sigma) and perfused through collagen-coated Vena8 Biochips
(Cellex). In the murine transfusion and hemostasis model,
immunodeficient NRG/J mice were platelet depleted using 0.6
mg/g body weight anti-CD42b antibody (Emfret Analytics). After
confirmation of depletion for each mouse, mice were IV injected
with either Tyrode buffer, washed donor or in vitro bioreactor-
derived platelets. Collected mouse blood was analyzed by flow
cytometry as for the in vitro assays, and hemoglobin levels were
assayed using the QuantiChrom Haemoglobin Assay kit (Bio-
Assay Systems).

Details for all methods used are available in supplemental
Methods.

Results

Here, we describe how we have addressed specific challenges
in translating the FoP of hPSCs toward the MK lineage for the
production of platelets in vitro.

Identifying cryobanked clinical-grade hPSC lines that

efficiently produce MKs by FoP

The initial step for the production of MKs by lentiviral FoP of hPSCs
required 3-dimensional (3D) embryoid body formation to promote
mesoderm formation (Figure 1A top panel).6 Cellular output is
dependent on the number of cells forming each embryoid body,
a potential challenge for translation to a GMP-compliant large-scale
reproducible process. We therefore moved to a 2D system, first
seeding cell clumps (Figure 1A middle panel) and subsequently
single cells on a vitronectin-coated surface (Figure 1A bottom
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Figure 1. Identifying GMP-grade hPSC lines with good MK output for future clinical-grade production. (A) Refining the seeding of hPSCs for FoP. The original

protocol (Moreau et al,6 top panel) uses a 3D embryoid body (EB) to promote the initial mesoderm induction step (top panel). We progressed this toward a 2D system more

suited to large-scale manufacturing, first using 2D cell clumps (middle panel), then single-cell seeding (bottom panel). Images (left) show light microscope images of day

0 cultures for each method. Scale bars, 500 mm. (B) Transitioning from 3D to 2D single-cell seeding does not compromise MK yield or purity. Bar graphs for 3 hPSC lines

(QOLG, FFDK, and A1ATD1) seeded as clumps or single cells showing the number of MKs (expressed per undifferentiated starting hiPSC) obtained by day 20 of culture (left

graph) and their purity by percentage of mature CD411CD421 cells (right). Mean 6 13 standard error of the mean (SEM); n 5 4. (C) Screening GMP hPSC lines for MK

output by FoP. Eighteen GMP hPSC lines were tested for their MK output at day 20 using the culture protocol shown in panel A (bottom panel) alongside 2 control iPSC

lines. Bar graph showing MK output for the 9 GMP lines that had over 50% CD411CD421 cells, including 5 hESCs (lavender bars), 4 hiPSCs (light blue bars), and 2 control

hiPSC lines (orange bars). Yields are expressed per 1.00E105 undifferentiated starting cells (dotted line) plotted on a log10 axis, Mean 6 13 SEM where n . 1. Numbers

above each column are the mean yield of MKs per starting cell. (D) Cytospins of the control line QOLGand DELTA-3 at day 24 of differentiation showing large multinucleated

MKs stained using Rapid Romanowsky. Scale bars, 50 mm. ns, not significant; SCF, stem cell factor; TPO, thrombopoietin.
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panel) to remove the inherent operator-dependent variability of
the clump system. FGF2 and BMP4 were used for the first 2 days
to promote mesoderm differentiation. The 2D clump culture and
subsequent single-cell seeding method yielded comparable
numbers of viable MKs (Figure 1B left) at comparable high
purity (Figure 1B right) at day 20 of culture, consistent with the

previously published data using the 3D embryoid body method.
The single-cell seeding method was used for all subsequent
experiments.

To identify a candidate hPSC line with satisfactory output in MKs by
FoP for future clinical use, we screened a panel of 18 hPSC lines
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Figure 2. Optimizing culture conditions to improve MK maturity and platelet production. (A-B) Bar graphs comparing previously published culture medium (CM) and
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in values. Mean 6 13 SD; n 5 2. (H) Viability by Calcein-AM of the platelet-size CD411CD421 particles also significantly increased for QOLG and iLIPSC-GR1.1.2. Error

bars indicate the range in values. Mean 6 13 SD; n 5 2.
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generated under GMP-compatible conditions (supplemental Ta-
ble 1). Nine of the GMP cell lines tested showed mature MK purity
at day 20 over 50% (5 hESCs, 4 hiPSCs) but, among those, the
output varied widely, yielding between 0.03 and 48 mature MK per
seeded hPSC (Figure 1C). Although the ploidy profile showed that

most cells were of low ploidy (2N and 4N) as previously reported,
high-ploidy MKs could be readily identified (illustrated for a control
line and the best GMP hiPSC line (DELTA-3) in Figure 1D). The
2 best-performing GMP hiPSCs namely, LIPSC-GR1.1 and
DELTA-3, were selected for further work.
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vested on day 3 of the differentiation protocol. Individual proteins are seen for each of the 3TFs in the inducible cell line sample, however, a small proportion of the total TF

protein is expressed as a “fusion” protein, due to incomplete cleavage at the 2A sequences. (E-F) The inducible cell lines iLIPSC-GR1.1.2 and iDELTA-3.7 differentiate into

MKs readily upon addition of doxycycline. Bar graphs showing MK yield expressed per 1.00E105 undifferentiated starting cells (E) and purity (percentage of CD411CD421

MKs) (F) at day 20 of differentiation. Mean 6 13 SEM; n 5 10 iLIPSC-GR1.1.2; n 5 15 iDELTA-3.7. (G-H) Testing GMP-grade culture components. Bar graphs showing the

number (G) and the percentage (H) of viable CD411CD421 MKs at day 20 postinduction for iLIPSC-GR1.1.2 cultured with GMP (blue)-grade reagents expressed relative to

laboratory-grade reagents. Mean 6 13 SEM, n 5 3. Dox, doxycycline; E2A, equine rhinitis A virus; Neo, neomycin; P2A, porcine teschovirus-1; Puro, puromycin; T2A, Tho-

seaasigna virus are the self-cleaving oligopepetides; both TAL1 and FLI1 are codon optimized; TRE 3GV, third-generation Tet response element; .
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Bespoke media improve MK maturation and platelet

production in vitro

A host of GMP-grade off-the-shelf proprietary media for the
production of hematopoietic cells are available but none address
the specific requirement of MK cultures, particularly in terms of lipid
supplementation. To release platelets, MKs dramatically reorganize
their cytoplasm, making long protrusions (proplatelets) along
which the nascent platelets are formed. Mature MKs therefore
accumulate large reserves of membrane, known as the demarca-
tion membrane system (DMS), during differentiation. Low-density
lipoprotein supplements and the polyunsaturated fatty acids,
arachidonic acid, and docosahexaenoic acid have been shown to
increase the production of MKs from hematopoietic progenitors.14,19-22

We developed a bespoke culture medium (called AMK; supple-
mental Table 2) based on a standard basal medium into which
chemically defined supplements were added including a variety
of lipids, ensuring that a GMP-grade equivalent reagent was
available for each component. Using a research-grade cell line
(QOLG; supplemental Table 1) and the 2 clinical-grade cell
lines LIPSC-GR1.1 and DELTA-3, we compared AMK vs the
previously published proprietary medium (culture medium [CM])
and showed MK numbers were marginally increased in AMK,
to 15 MKs per iPSC for LIPSC-GR1.1 and 80 MKs per iPSC
for DELTA-3 at day 20 (Figure 2A), and the purity maintained
(Figure 2B). Cultures showed occasional highly polynucleated
MKs in both culture conditions (Figure 2C). However, assessing
cytoplasmic maturity of the DMS using glycoprotein Ibb (GPIbb;
CD42c) staining using the class I-IV system23,24 revealed a
much higher proportion of MKs containing a fully developed
DMS system in AMK (Figure 2D). These results were confirmed
by electron microscopy in which MKs cultured in AMK showed
developing DMS in areas (Figure 2E). This translated to a gain

in proplatelet extensions (Figure 2F left) with more branches
(Figure 2F right).

In vitro platelet production for the clinic will be a 2-stage process
requiring first MK production in liquid culture followed by sub-
sequent platelet release, in bespoke bioreactors. Proplatelet
formation is an active, metabolically demanding cellular process.
Recent data suggest that high glucose-containing storage media
improve donor-derived platelet viability.25,26 Transferring mature
MKs cultured in AMK into a cytokine-free, glucose-rich basal
medium showed that, at 72 hours even in static liquid-culture
conditions, the high-glucose media markedly improved the number
of platelets released per MK (threefold and sevenfold for LIPSC-
GR1.1 and DELTA-3, respectively), when compared with MKs that
were assayed for platelet release in cytokine-free AMK (Figure 2G).
This was in part driven by an increase in platelet viability as indicated
by the vital dye Calcein-AM (Figure 2H).

We confirmed the efficacy of AMK followed by high-glucose media
for platelet production in MKs derived from primary CD341

hematopoietic progenitors (supplemental Figure 1).

Single-cell seeding, followed by our GMP-compatible medium for
MK expansion and finally a cytokine-free high-glucose medium for
platelet release in combination, resulted in average yields of 57
(624) and 165 (647) viable platelets per starting iPSC for LIPSC-
GR1.1 and DELTA-3, respectively. This demonstrates that GMP-
grade culture media can be created from readily available base
reagents and that tailoring the content of the media to the cell type
of interest can produce improvement in both the quality and quantity
of cells produced. We specifically demonstrate that lipid supple-
mentation produces MKs with improved DMS structure (Figure 2)
and ultimately better platelet output.

Figure 4. (continued) mean 613 SEM. HoxA9 expression remains significantly. **P , .01 upregulated at day 5. (B) MK maturation from iLIPSC-GR1.1.2 and iDELTA-3.7

with CHIR99021. Bar graphs showing the number of viable MKs for iLIPSC-GR1.1.2 on day 20 and iDELTA-3.7 on day 30 expressed relative to AMK. AMK (blue bar),

CHIR99021 (red bar) or DMSO (green bar). Viable MKs for iLIPSC-GR1.1.2 peak earlier at D20 in CHIR99021 treated cultures. Mean 613 SEM; n 5 6 biological replicates,

AMK vs CHIR99021 and CHIR99021 vs DMSO are not significantly different using Kruskal-Wallis multiple comparison test. Viable MKs at day 30 for iDELTA-3.7 are

significantly higher in CHIR99021 treated cultures using Kruskal-Wallis multiple comparison test AMK vs CHIR99021, **P 5 .007; AMK vs DMSO, P 5 ns; CHIR99021 vs

DMSO, *P 5 .01. Mean 6 13 SEM; n 5 12 biological replicates. (C) Cytospins of iDELTA-3.7 MKs cultured in either AMK alone, with CHIR99021 or with DMSO (control for

CHIR99021) stained using Rapid Romanowski. Black arrowsheads indicate multinucleated cells. Multinucleated MKs are more frequent in the CHIR99021 samples although

rare large cells are also seen in the DMSO as illustrated here. Scale bars, 50 mm. (D) Transmission electron microscopy of mature iDELTA3.7 MKs at day 27 reveals a much

more extensive DMS in the CHIR99021-treated cells. Scale bars, 2 mm, a granules (a), dense granules (d), multilobular nucleus (N), mitochondria (M). Left image DMSO

sample 31700 (8 images examined), right CHIR99021-treated samples 31700 (15 images examined). The rectangle indicates the magnified area shown of the cytoplasmic

DMS (below) 33500. (E) Switch from “embryonic” to “adult” phenotype in CHIR99021-treated MKs. Bar graphs showing expression levels of a panel of markers of MK

maturity. CHIR99021-treated iDELTA-3.7 derived MKs have levels of messenger RNA expression closer to those seen in peripheral blood (PB)–derived MKs. After

normalization to the endogenous control gene HMBS, results are expressed relative to PB-derived MKs calculated using the relative standard curve method. Bars: red,

CHIR99021-treated iMKs; green, DMSO control. Mean 6 13 SEM, n 5 3. KDR, a marker of fetal identity, is significantly reduced compared with the DMSO control, **P ,

.01, Mean 6 13 SEM, n 5 7, VWF, a marker of “adult” phenotype is significantly increased compared with the DMSO control **P , .01, Mean 6 13 SEM, n 5 5 as is

STAT5a ***P , .001, Mean 6 13 SEM, n 5 3 and DKK1 *P , .05, Mean 6 13 SEM, n 5 3. The maturity markers ITGA2 (CD49b) n 5 3, HOXA9 n 5 6 and GPIbb

(CD42C) n 5 3 all Mean 6 13 EM, P 5 ns. (F) Platelet production from CHIR99021-treated MKs is increased. Bar graph showing the number of viable Calcein-AM1 CD411

CD421 (left) platelets produced per MK for platelets derived from iLIPSC-GR1.1.2 (n 5 3) and iDELTA-3.7 (n 5 8) from MKs cultured in AMK alone (blue bars), CHIR99021

(red), or vehicle control (green). The increase is nonsignificant for iLIPSC-GR1.1.2 for both AMK vs CHIR99021 and CHIR99021 vs DMSO, for iDELTA-3.7 *P 5 .03 for AMK

vCHIR99021 and **P 5 .08 for CHIR99021 vs DMSO using ANOVA plus Bonferroni’s multiple comparison test. Mean 6 13 SEM. iLIPSC-GR1.1.2, n 5 3 and iDELTA-3.7

n 5 8. (G) Expression of VWF and CD9 proteins is increased in CHIR99021-treated MKs shown for iDELTA3.7. VWF expression was assessed by flow cytometry. Both VWF

and CD9 expression are elevated by CHIR99021 treatment. Top bar chart shows %CD42a1VWF1 and bottom %CD42a1CD91 both show a significant increase in

CHIR99021 treated cultures compared with DMSO control. CHIR99021 vs DMSO for % CD42a1VWF1 **P , .01, CHIR99021vs DMSO for % CD42a1CD91 ***P , .001,

Mean 613 SEM, n 5 5.
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Viral-free FoP using genetically engineered

hPSC lines

The published6 FoP method to produce MKs from hPSCs relies
on transduction of the stem cells with 3 lentiviral vectors for
overexpression of the 3TFs GATA1, FLI1, and TAL1. Programming
using lentiviral overexpression of TFs is increasingly being used to
promote the efficiency of differentiation protocols, promote terminal
maturation, and increase purity of the final product.27-29 Large-scale
GMP MK production by this route would require the sourcing of
large quantities of clinical-grade lentiviral vectors, with significant
cost implications. In addition, batch-to-batch variations may have
considerable influence on the reproducibility of transductions
generating a polyclonal population. This led to exploration of
the efficacy of using genetically engineered clonal cell lines
embedding an optimized inducible expression cassette based
on a dual genetic safe harbor–targeting strategy15 as an alterna-
tive for translation progression. The OPTi-OX system uses the
TET-ON 3G, third-generation rtTA constitutively expressed through
a CAG promoter targeted to the ROSA26 locus. The Tet-responsive
inducible expression cassette is targeted to the AAVS1 locus.
The 3TFs, together with a GFP reporter, were introduced as
a polycistronic sequence (PC3) into the OPTi-OX inducible
cassette, separated by 3 different self-cleaving 2A peptide
sequences, ensuring production of 4 individual proteins from 1
messenger RNA via ribosomal skipping.30,31 Two different
antibiotic-resistance sequences, neomycin in the pROSA-neo
CAG-rtTA vector and puromycin in the pAAVS1-puro TRE-PC3
vector, enabled selection of double-targeted hPSC clones in
a single-step transfection. A summary of the targeting and clone
selection strategy is depicted in Figure 3A and detailed in
supplemental Results.

This targeting strategy (Figure 3B) yielded 50% of clones
containing the correct insert in both alleles of the ROSA26 and
AAVS1 loci and are referred to as HOM-HOM clones. The
remaining clones were HET-HOM clones where only a single allele
of the Rosa 26 locus showed insertion of the rtTA cassette. Each of
these clones grew as classical tightly packed colonies with defined
edges and expressed markers of pluripotency (supplemental
Figure 2A-B). The third-generation TET ON/OFF system allows
tight control of the transgenic cassette expression, notably avoiding
TF expression leaks, which allows the genetically engineered cell
lines to remain pluripotent over months in culture. We assessed the
genetic integrity postediting of 2 inducible clones derived from
LIPSC-GR1.1 and DELTA-3 and show that each inducible clone
has a normal karyotype (supplemental Figure 2C), and that both
DELTA-3 and its inducible derivative showed no abnormalities using
Affymetrix CytoScan 750K single-nucleotide polymorphism geno-
typing arrays. The parent LIPSC-GR1.1 line and its inducible clone
both showed an interstitial gain of chromosome Xq26.2 of FIRRE,
a noncoding RNA, and STK26 (MST4), a serine /threonine kinase

(supplemental Figure 2D), which is known to be constitutional and
not related to culture conditions.32

HOM-HOM clones were generated from 3 LIPSC-GR1.1 and
2 DELTA-3 clones. iLIPSC-GR1.1.2 and iDELTA-3.7 were selected
for further work. The FoP culture protocol with the inducible cell
lines was as described for viral programming with the exception of
a 3-day mesoderm induction rather than 2 day. We noted that the
number and purity of MKs produced were improved with the longer
mesoderm-induction phase (supplemental Figure 3A). We believed
this related to the different dynamic of transgene expression
with the inducible system compared with lentiviral overexpres-
sion (supplemental Figure 3B-C). A robust induction of GFP
expression in iLIPSC-GR1.1.2 and iDELTA-3.7 upon addition of
doxycycline reached a maximum at 24 to 36 hours postinduction
using 0.25 mg/mL doxycycline (Figure 3C; supplemental Figure 3B
top). Thereafter, the fluorescent signal rapidly faded.

Western blot analysis of cell lysates generated 72 hours following
doxycycline induction confirmed the presence of all 3 individual TFs
(Figure 3D).

Despite the short-lived expression of the FoP TFs, it was still
sufficient to produce an MK output slightly better than that seen
with the lentiviral overexpression system. By day 20 of culture,
iLIPSC-GR1.1.2 and iPCG3.7 showed an average yield of 27 and
112 mature MKs per starting iPSC, respectively (Figure 3E) (a 1.4-
fold to 1.8-fold improvement from the output shown in Figure 2A)
with a purity . 80% for both inducible cell lines (Figure 3F).

All cultures described were carried out using research-grade
reagents. By replacing all culture reagents with either equivalent
components or alternatives suitable for the production of a clinical-
grade product (supplemental Table 2), we show for iLIPSC-
GR1.1.2 (Figure 3G-H) that both purity and MK numbers obtained
in the cultures using GMP reagents were comparable to the
research-grade cultures for iLIPSC-GR1.1.2. This indicates the
robustness of differentiation by FoP.

Promoting a definitive hematopoiesis phenotype

hPSC-derived somatic cells showing an “embryonic” phenotype,
which may confer different functionality to these cells compared
with their counterpart “adult” cells (eg, pancreatic b islet cells,33

neurons,34 and erythroblasts35), has been well documented. This is
particularly well known in the case of hematopoiesis, where the
distinction between “primitive” embryonic cells and “definitive” adult
cells has profound phenotypic consequences. hPSC-derived
erythroblasts, for example, poorly enucleate and express embryonic
and fetal globins. We and others have previously documented this
embryonic vs adult identity for MKs.36-39 The embryonic signature in
hPSC-derived MKs results in the consistent overexpression/under-
expression of some genes that reflect their origin.40 Genes playing
key roles in MK maturation and platelet function, such as GPVI,41

Figure 5. (continued) formation under flow. Left panel: representative images from control, donor blood, iDELTA-3.7, and iLIPSC-GR1.1.2 bioreactor-generated platelets. In

vitro–derived or donor platelets (red) human donor platelets (green). Scale bars, 20 mm. Right panel: the percentage incorporation of Cell Tracker Red–stained platelets for

n 5 3 replicates (3 3 80 images per chip scored) for iLIPSC-GR1.1.2 (left) and iDELTA-3.7 (right). For both lines, the incorporation of donor platelets and bioreactor platelets

in thrombi are not significantly different from each other. (E) Transmission electron microscopy of a bioreactor-generated platelet. Cross-section of a bioreactor-generated

platelet from LIPSC-GR1.1 containing both a (a) and d (d) granules, open canicular system (OCS), dense tubular system (DTS), and mitochondria (M). Scale bar, 500 nm;

original magnification 35000.
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tetraspanin CD9,42 or von Willebrand factor (VWF), are poorly
expressed in hPSC-derived MKs.36,43 Platelet-function studies in
newborns and particularly premature babies suggest that fetal
platelets may be less reactive44 than adult platelets. To this day,
however, there is no clear evidence that platelets produced from
hPSCs in vitro are less functional than their adult counterpart,
although this may be related to the difficulty of carrying detailed
functional analyses due to low yields of viable platelets produced
in vitro.

The addition of the specific glycogen synthase kinase 3b inhibitor
CHIR99021 (CHIR), activating the Wnt-signaling pathway (sup-
plemental Figure 5A), during early mesoderm specification has
been shown to favor the specification of definitive hematopoiesis
using iPSC-derived hematopoietic stem cells.45,46 We therefore
hypothesize that a similar effect could be seen in the MK lineage.

Using quantitative polymerase chain reaction (PCR), we showed
that the transient addition of CHIR99021 at the start of FoP during
mesoderm commitment prolonged Brachyury (T) expression
(Figure 4A) and upregulated expression of known downstream
TFs such as HOXA9, CDX4, and, to a lesser extent, SALL4
(Figure 4A).

There was a trend toward an improvement in the number of mature
MKs obtained by day 20 with iLIPSC-GR1.1.2 (Figure 4B left) and
a significant twofold increase in the number of MKs obtained from
iDELTA-3.7 (Figure 4B right). In the case of the latter cell line,
CHIR99021 altered the dynamic of MK production with a peak in
MK output occurring later at day 30 (supplemental Figure 5B),
reflecting again the inherent differences in the iPSC line response
to differentiation clues. Although the ploidy profile remained
unaffected, highly polynucleated MKs were again readily seen in
the cytospins (Figure 4C).

Staining for GP1Bb of CHIR99021-treated cultures showed
a further trend toward stage III/IV mature MKs (supplemental
Figure 5C) but not significantly more than that reported herein
following culture in the AMK medium. However, in some of the
CHIR99021-treated MKs, a more highly developed DMS was
revealed by electron microscopy (Figure 4D). The marked change
induced by CHIR99021, which is only present in culture for
24 hours between days 1 to 2 of programming, in the hPSC-derived
MKs suggests attenuation of a primitive hematopoietic develop-
mental program and a switch to a more “definitive” adult
phenotype.47 Using quantitative PCR, we show in CHIR99201-
treated cells an increase in the expression of genes that we and
others have shown to be expressed at lower levels in hPSC-derived
MKs compared with MKs derived from adult peripheral blood
CD341 progenitors, namely VWF, NFE2, STAT5A, and HOXA9
and the surface-expressed DKK1, GP1bb, and ITGA2 (CD49b)

(Figure 4E). Similarly, we found a decrease in expression of KDR,
a marker of fetal MK identity36 in CHIR99021-treated cells. This
translated to an increase in the number of platelets released by
iDELTA-3.7 and iLIPSC-GR1.1.2 (Figure 4F) after passaging cells
into RPMI 1640.

The increased expression of VWFwas confirmed at the protein level
by flow cytometry (Figure 4G; supplemental Figure 5D) and
mirrored by increased CD9 expression (Figure 4G; supplemental
Figure 5E). Both are located on chromosome 12 at adjacent loci
and their promoters may be subject to control by the same
enhancer element,48 suggesting that the effect of CHIR99021 is
mediated through epigenetic changes.

Platelet production in bioreactor

The feasibility of the production of platelets in vitro in clinically
relevant quantities (3 3 1011 platelets per transfusion unit) is made
easier by the final amplification step, namely the vast number of
platelets that are potentially released per individual MK (estimated
to be 1000-2000 in vivo). The bioreactor design used here
reproduces one of the cues that promote platelet production in
the bone marrow, namely shear stress. Platelet production from
optimally cultured iLIPSC-GR1.1.2 and iDELTA-3.7 was performed
using a bespoke bioreactor49 (Figure 5A-B). Bioreactors were
seeded with 3.0E106 viable mature MKs for each cell line and
samples were collected during 3 separate 4-hour runs. The total
yield of collected platelets included those that were present in the
seeded MK suspension (infusion-recovered platelets) as well as
those newly formed within the bioreactor. Runs with iLIPSC-
GR1.1.2 yielded an average total of 1.80E107 platelets corre-
sponding to 368 platelets per starting iPSC and 11 platelets per
MK (Figure 5C top). Runs with iDELTA-3.7 yielded 1.65E107
platelets corresponding to 566 platelets per starting iPSC and 6
platelets per MK (Figure 5C bottom). For these measurements,
platelets were defined as per the proposed criteria.50 If platelets
were defined with the less rigorous criteria of particles expressing
CD41 and CD42, the yields were 535 and 1022 platelets per
hiPSC for GR1.1.2 and iDELTA-3.7, respectively (corresponding
to 19 and 10 platelets per MK, respectively). The appearance of
newly produced platelets within the bioreactor is marked by
a shift in the forward scatter/side scatter plots reflecting the
larger size of newly produced platelets (supplemental Figure 6A;
supplemental Video 1) and an increase in the viability of the
platelets compared with platelets in the original MK static
suspension (supplemental Figure 6B). Bioreactor-generated
platelets (an example is shown in Figure 5E) infused into whole-
blood samples were able to contribute to thrombus formation in
collagen-coated flow chambers51 to the same extent as donor-
derived platelets (Figure 5D).

Figure 6. (continued) both graphs: mean 6 13 SEM, for: nondepleted controls, n 5 6; depleted controls, n 5 6; donor platelets, n 5 3; bioreactor platelets. Mean 6 13

SD; n 5 2. One-way ANOVA for both 4 minutes and 20 minutes, nondepleted vs depleted controls ****P # .0001, depleted controls vs donor platelets ****P # .0001. (B)

Flow cytometry dot plots showing analysis of mouse blood from inferior vena cava bleeds post-IV injection using 5 mL of mouse blood per sample stained with antibodies

specific for mouse (CD42d APC) and human (CD41aAPCH7) platelets. Left panel, A viable mouse platelet population from a nondepleted buffer control. Middle panel, An

animal receiving donor derived platelets. Right panel, In vitro bioreactor derived platelets indicating the clear presence of human platelets and a lack of positively staining mouse

platelets in the CD42d1 window for profoundly thrombocytopenic mice. (C) Bar graph showing mean values for the percentage ratio of human platelets to total platelets in

depleted mice (inset) using the formula (lower right quadrant human platelets (B)/upper left CD42d1 quadrant (A1B)) 3 100. There is no significant difference between the 2

groups using the Student t test. Error bars indicate the range in values. Mean 6 13 SD; n 5 3, donor platelets; n 5 2, bioreactor platelets.
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Platelet transfusion in thrombocytopenic mice

To confirm the hemostatic effects of the in vitro–derived platelets, we
used immunocompromised NOD, Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ
(NRG/J) mice. Mice were platelet depleted using an anti-CD42
mouse-specific antibody. Both blood counts postdepletion and
flow cytometry confirmed that the animals were profoundly
thrombocytopenic (supplemental Figure 7A). The mice were then
transfused with either donor platelets (3.00E107; n 5 3),
in vitro–derived platelets (3.00E107; n 5 2), or vehicle control
(n 5 7). Nondepleted mice were used as control (n 5 6).
Immediately after transfusion, the mouse tails were transected.
The quantification of hemoglobin loss following transection at
4 minutes to 20 minutes served as proxy for blood loss at each
time point. Figure 6A shows an amelioration of blood loss relative
to the depleted vehicle control mice. Mice transfused with donor
platelets showed a significant amelioration of bleeding by 96.3%
of the depleted controls after 4 minutes whereas the bioreactor
generated platelets decreased bleeding to a lesser extent by
65.2% (Figure 6A left panel). By 20 minutes, for both donor and
bioreactor platelets, this dropped to 73.6% and 33% of the
depleted controls, respectively (Figure 6A right panel). Flow
cytometry analysis of whole blood taken after completion of the
bleeding assay showed a population of human platelets in mice
transfused with donor platelets (Figure 6B middle panel) and in
mice transfused with in vitro–derived platelets (Figure 6B right
panel). At the 20-minute time point, the proportion of the human
platelet in the total platelet population present (mouse and human
combined) was comparable for donor platelets and in vitro–derived
platelets. We therefore think that the functional difference in this
particular model between the 2 types of platelets cannot be
explained by a difference in survival in circulation or consumption
within the forming thrombus.

Discussion

Ultimately, the production of a transfusion unit will require further
progress in each of these 2 phases of production: the liquid
culture expansion of MKs and the platelet production in
bioreactors. In addition, other crucial preclinical data will need to
be acquired, including storage and shelf-life of the final product.
Recovery and survival studies of transfused platelets in humans,
however, require 1 3 1010 platelets and will probably represent
the first (and necessary) human studies with in vitro–derived
platelets. The number and the quality of functional platelets,
produced in GMP media from clinical-grade cell lines demon-
strated in this manuscript, pave the way for such studies to take
place in the very near future.
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