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Abstract

Carotid plaque segmentation in ultrasound longitudinal B-mode images using deep learning is 

presented in this work. We report on 101 severely stenotic carotid plaque patients. A standard U-

Net is compared with a dilated U-Net architecture in which the dilated convolution layers were 

used in the bottleneck. Both a fully automatic and a semi-automatic approach with a bounding box 

was implemented. The performance degradation in plaque segmentation due to errors in the 

bounding box is quantified. We found that the bounding box significantly improved the 

performance of the networks with U-Net Dice coefficients of 0.48 for automatic and 0.83 for semi-

automatic segmentation of plaque. Similar results were also obtained for the dilated U-Net with 

Dice coefficients of 0.55 for automatic and 0.84 for semi-automatic when compared to manual 

segmentations of the same plaque by an experienced sonographer. A five percent error in the 

bounding box in both dimensions reduced the Dice coefficient to 0.79 and 0.80 for U-Net and 

dilated U-Net respectively.
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Introduction

Accurate segmentation of carotid plaques on B-mode images allows for quantification of 

useful biomechanical properties. Various elastography methods require plaque segmentation 
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as the starting point1–5, for accurate quantification of strain indices assessing plaque 

vulnerability. Carotid plaque presents on B-mode ultrasound images as either echogenic 

(bright), echolucent (dark), calcific with acoustic shadowing and heterogeneous with 

mixture of more than one plaque type6. This makes carotid plaque segmentation a 

challenging task and is typically performed manually by experienced sonographers.

Several research groups have implemented methods for carotid plaque segmentation. 

Destrempes et al. 20117 developed a method where the user provided a manual segmentation 

of plaque in the first image of the video sequence, following which motion estimation and a 

Bayesian model was used to estimate plaque boundaries in the remaining frames of the 

video loop. McCormick et al. 20121 also developed a method where manual segmentation of 

plaque at end diastole frame was performed, with the segmented plaque region tracked over 

the rest of the cardiac cycle with displacement estimation made using a multi-level coarse to 

fine approach8 and Bayesian regularization9. The aim of this paper is to eliminate the need 

of the initial manual segmentation. Segmentation approaches described in references1,7, are 

classified as manual segmentation, while a semi-automatic segmentation method is defined 

to be where a user only needs to provide minimal inputs such as a bounding box or seed 

points and the algorithm utilized provides the initial segmentation. A fully automatic method 

is defined to be one where no input from the user is needed other than selecting the B-mode 

image that needs to be segmented.

Recently deep neural networks have been used for automatic segmentation, especially those 

using convolutional Neural networks (CNN) in a U shaped structure or U-Net, have shown 

promising segmentation results in biomedical image segmentations10. The success of U-Net 

was due to the use of contracting or encoding layers followed by up-sampling or decoding 

layers that increase the resolution of the output. Moreover, with the use of skip connection 

the network could aggregate multi-scale information. Another CNN architecture that is used 

for segmentation and accomplishes the same effect are dilated convolution networks11. The 

advantage with dilated networks are that there is no need for down and up-sampling and is 

suitable for dense prediction tasks such as segmentation.

Deep learning has been used for several ultrasound based image segmentation tasks12–18. 

Use of three-dimensional (3D) data sets provide significant improvements when compared 

to 2D data sets12,13,18. Qiu et al.13 developed a fully automatic segmentation method using 

CNN for 3D segmentation of the brain ventricle structure in embryonic mice. Their 

implementation consisted of a two-stage process where the first stage performed localization 

of the relevant structure within a bounding box, which was then supplied as an input to the 

second stage, which performed the segmentation. Leclerc et al.14 compared deep learning 

methods to traditional segmentation methods for 2D echocardiography segmentation and 

found that deep learning methods outperformed the latter. Moreover, they did not observe 

any significant additional improvements over U-Net when compared to more sophisticated 

networks with auxiliary loss, stacked hourglasses and dense skip connections14. Behboodi et 

al.15 demonstrated breast lesion segmentation using U-Net with limited annotated data using 

transfer learning and data augmentation.
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Deep learning has also been used for ultrasound carotid plaque segmentation16,17. Zhou et 

al.16 utilized U-Net to segment carotid plaques utilizing 3D ultrasound data sets on human 

subjects with >60% stenosis. They obtained a Dice coefficient of 0.9 with U-Net, which was 

an improvement over a previous approach using level sets with a Dice coefficient of 0.88. 

However, these results were obtained on fewer human subjects (n=13) and utilized 3D data 

sets in subjects without significant acoustic shadowing artifacts. Lekadir et al.17 used a CNN 

based classifier to distinguish between plaque composition characteristics such as lipid core, 

fibrous tissue and calcified tissue based on the echogenicity of these different components. 

Deep learning has also been utilized for segmentation and measurement of carotid intima-

media thickness (CIMT), which is more amenable to these approaches due to the well-

defined structure being identified18–20.

In an online segmentation competition21 a U-Net combined with a dilated network was one 

of the winning solutions22. This method combined two popular networks for segmentation 

tasks which are the U-Net10 and dilated convolution network11. We therefore adapted this 

approach for carotid plaque segmentation in our data sets. We also compared this dilated 

convolutional network with U-Net. A dilated convolution11 is similar to a regular 

convolution where the kernel weights are convolved with image data. However, in dilated 

convolution the image data is strided. For example, dilation factor of 2 would mean the 

convolution will occur with every alternate image pixel and 3 would mean it occurs with 

every third pixel. In this paper we investigate two approaches for plaque segmentation, a 

fully automatic approach where the acquired image is directly passed on to the network and 

a semi-automatic approach where a sonographer provides a bounding box which is then used 

as input to the segmentation.

MATERIALS AND METHODS:

Human Patients and Data

We report on 101 in vivo patients who present with severe stenotic carotid plaques, clinically 

indicated for a carotid endarterectomy at University of Wisconsin-Madison. The study was 

approved by institutional IRB and the patients provided informed consent prior to any 

research scans. Radio frequency (RF) data from a Siemens S2000 system (Siemens 

Ultrasound, Mountain View, CA, USA) with an 18L6 transducer was obtained. Clinical B-

mode data and color Doppler were obtained using a 9L4 transducer. Ultrasound data was 

acquired for three views of the carotid, namely the common carotid, carotid bifurcation and 

internal carotid on both left and right carotids for each patient. A total of 352 views with 

plaque were obtained. In each view, the sonographer manually segmented plaque at two to 

three end diastolic frames on B-mode image frames that were converted form RF data 

acquired. The sonographer also used clinical B-mode and color Doppler images for guiding 

the segmentation process. Ultrasound strain imaging23 on parts of these data set has been 

reported in previous studies2,24,25 that used manual segmentation that were then tracked over 

the entire cardiac cycle. This manual segmentation is now used as the ground truth for 

training and testing the networks.
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Network and Training Specifications

The dilated U-Net used in this paper is presented in Fig. 1. In contrast to the traditional U-

Net that uses four down-sampling and up-sampling stages each, this network has three 

stages. The bottleneck or the middle section has six dilated convolution layers where the 

traditional U-Net has three convolution layers. The dilated U-Net has 22 convolution layers 

and 4.5 million trainable parameters. The U-Net used for comparison in this paper has 24 

convolution layers and 11 million trainable parameters.

The 352 plaque views were divided into training, validation and testing sets, with 90% of the 

data used for training and validation and 10% for testing. Within the training and validation 

data sets, the split used was 95-5. Since each patient or view had multiple, end diastolic 

frame segmentations a total of 862 frames were available. The original B-mode images for a 

typical 4 cm depth acquisition were of size 455 (width) × 691(depth) pixels. The frames 

were resampled to size of 512×512 pixels. The networks were trained using back 

propagation and the ‘rmsprop’ algorithm26. Dice loss and binary cross entropy (BCE) were 

separately used as loss functions for training. The networks performed slightly better with 

BCE and hence it was chosen as the loss function used for this paper. Dice coefficient, Dice 

loss and BCE loss are defined by the following formulae:

Dice coefficent =  2 y ∩ p
y + p

Dice loss = 1 −  Dice coefficent

BCE loss = − ylog p + 1 − y log 1 − p

Here y is the ground truth and p is the prediction made by the network. For calculating the 

Dice coefficient, thresholding is performed such that values greater than 0.5 are made equal 

to 1 and lower than 0.5 are made equal to 0. This is not required for the BCE function and 

this function is directly available in the keras library which is implemented to handle any 

possible corner cases.

The initial learning rate was 10E-4. The learning rate was reduced by a factor of 0.2 every 

time the performance of the networks did not improve for three consecutive epochs on the 

validation set. The networks were run for up to 35 epochs. The training was stopped if the 

network performance did not improve for eight consecutive epochs. Online data 

augmentation was provided by random horizontal, vertical and horizontal-vertical flips. A 

NVIDIA Tesla K40c GPU (NVIDIA Corporation, Santa Clara, CA, USA) with an Intel(R) 

Xeon(R) CPU E5-2640 v4 (Intel Corporation, Santa Clara, CA, USA) was used to run the 

networks. The dilated U-Net took about 200 second per epoch and U-Net took about 218 

seconds per epoch.

For the semi-automatic bounding box approach, an example is illustrated in Fig. 2. The 

sonographer is expected to provide a rectangular region i.e. the red box bounding the plaque 
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and the algorithm adds an additional 12.5% buffer on all sides of the red box. This was done 

with the intent of having 75% plaque and 25% background along the axes of the input. It 

should also be noted that this is done for each plaque region. Thus for Fig. 2 which has three 

separate plaque regions the sonographer will perform the process three times. The region 

within the bounding box was resampled to a size of 256×256 pixels, smaller than the input 

image size of 512×512 pixels accounting for the smaller size of the plaque regions when 

compared to the entire B-mode frame. Thus, semi-automatic networks had input and output 

image size of 256×256 pixels.

The bounding box was automatically derived from the ground truth segmentation. However, 

to account for offset and overall size variations that a sonographer could make while 

providing the bounding boxes. The dimensions of the boxes derived from the ground truth 

were randomly varied from between 4% to −4% and the boxes were offset between 6.25% to 

−6.25% in training which is half of the buffer region in both directions. Along with making 

the networks more robust for practical use this also provides additional data augmentation.

The flow chart for our segmentation method is presented in Fig. 3. The B-mode image is 

first resampled based on the bounding box. The resampled B-mode image is then provided 

as an input to the network, which then provides the segmented region as the output. The 

output is then resampled back to the original view, i.e. same as the initial B-mode frame 

dimensions. The training for the semi-automatic method was performed independent of the 

automatic method.

All code used in this work along with trained model weights is available at https://

github.com/Nirvedh/DeepPlaque.

Results

The performance of the automatic setup for segmentation is presented in Fig. 4. We consider 

a Dice coefficient of greater than or equal to 0.75 (which is set as our threshold) as a success 

and those with lower Dice coefficient values to be failures. Figure 4 shows that around 12 of 

the 121 test cases were successful for both the U-Net and dilated U-Net. We can also 

observe that the dilated U-Net performed generally better for the low Dice coefficient cases.

The performance of the semi-automatic setup is presented in Fig. 5. We use the same Dice 

coefficient threshold of greater than or equal to 0.75 as a successful segmentation. Figure 5 

shows that with semi-automated segmentation 109 of the 121 test cases were successful 

using U-Net and 114 for the dilated U-Net. The performance of both networks was similar 

except for the lower performing cases where dilated U-Net provided better segmentation 

results. This is similar to the performance obtained with the automatic segmentation setup.

The overall mean Dice coefficient along with standard deviation for both networks and both 

setups are presented in Table 1. The mean DC for dilated U-Net was 0.55 for the automatic 

setup while it was 0.48 for the U-Net. The difference was less significant with 0.84 and 0.83 

respectively for the semi-automatic segmentation setup.
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For the semi-automatic method, the Hausdorff error (HE) which is the maximum distance 

between the manual segmentation and the network segmentation and the Mean error (ME) 

which is the average distance between the two segmentations were quantified in Table 2. The 

dilated U-Net had slightly lower distances and hence slightly better overall performance.

It is also of interest to ascertain how the performance of the network would vary with errors 

in the bounding boxes. This is quantified in Table 3 for the U-Net. The zero error average 

Dice coefficient value of 0.83 is 0.79 when an error of 5% is introduced along both axes. For 

the dilated U-Net these results are presented in Table 4. The average Dice coefficients are 

0.84 and 0.80 respectively for the two cases.

Discussion

There are two key observations from this paper. First, the performance of both U-Net CNN 

improved significantly after the bounding box was incorporated for semi-automated 

segmentation. Second, the dilated U-Net provides a better performance for the more difficult 

and complex plaque segmentations. The reason for improvement with the bounding box is 

the wide range of plaque shapes and echogenicity variations in the B-mode images and the 

corresponding background that the network had to segment. This is visualized by observing 

Fig. 6 and Fig. 7 that show two images of the carotid artery with plaque. Note that it is 

difficult for an untrained observer to even roughly identify plaque regions making plaque 

segmentation a challenging problem to solve. For better visualization of the segmentations 

we present the contours of the segmented regions. Fig. 6(b) and Fig. 7(b) with bounding box 

provide better segmentation compared to Fig. 6(a) and Fig. 7(a) without the bounding box. 

In Fig. 6, all four networks were able to correctly identify the location of plaque. However, 

the semi-automatic networks did provide superior segmentation due to their limited scope. 

In Fig. 7(a) both networks have Dice coefficients of 0. This low performance by the 

automatic approach was seen when faced with an acquisition that was unique compared to 

anything observed in the training set. For instance, in Fig. 7(a) there is an artery with 

significant curvature which is not extremely common in most acquisitions.

Figures 6(a) present with Dice coefficients of 0.77 and 0.88 for U-Net and dilated U-Net 

respectively, here the U-Net segmentation is not as good as the one obtained with the dilated 

U-Net. The dilated U-Net is able to identify features better in lower performing situations 

with more complex plaque. At the same time in situations where the networks could provide 

high quality segmentations such as Fig. 6(b) with Dice coefficients of 0.83, and 0.87 and 

also 7(b) with Dice coefficients of 0.92 in both cases we observe that the two networks do 

not perform significantly different. This is similar to the observation made by Leclerc et al.14 

that reported no significant difference between U-Net and more sophisticated networks.

The Dice coefficient threshold of 0.75 was used with the intention of quantifying success of 

the network since from visual inspection if the Dice co-efficient values were below 0.75, the 

value of that segmentation to the sonographer may be questionable. However, this was an 

arbitrary threshold which was used to make performance comparisons between the networks
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Zhou et al.16 used U-Net for segmentation of 3D plaques in transverse view. They provided 

the network with data that were segmented with an initial contour of media-adventitia and 

lumen-media boundaries, following which the network was used to segment the plaque. 

They obtained a Dice coefficient of 0.91 while our network provided a Dice coefficient of 

0.84 which is lower. Some reasons for this may be use of 3D versus 2D datasets, initial 

contours provided, and the lower image quality of B-mode images generated from research 

RF data in this work compared to clinical B-mode images used in Zhou et al.16. However, 

for the purpose of quantitative ultrasound imaging applications, it is necessary to use RF 

data. Additionally, while our bounding box reduced the field of view where the network had 

to segment the plaque and hence resulted in performance improvement, our network can 

autonomously identify adventitia and lumen boundaries while the results in Zhou et al.16 are 

based on pre segmented boundaries.

It is of interest to understand the behaviour of the semi-automatic networks when the 

bounding box only includes part of the plaque region. To examine this in Fig. 8, we provide 

the dilated network with a bounding box that only contains part of the plaque shown in Fig. 

6. It is observed that the network segments the part of the plaque but does not segment close 

to the bounding boxes edges as typically that part did not contain plaque during training. It is 

also able to segment the carotid wall where plaque was not present.

It is also of interest to observe the performance of network when provided with a healthy 

volunteer with no plaque. Figure 9 shows the segmentation obtained on common carotid 

walls of a 24-year-old healthy female volunteer. The ground truth red segmentation on the 

carotid walls with adventitia layer included was provided by an experienced sonographer. A 

bounding box was set around each wall segment based on the sonographer segmentation to 

examine the network performance. It is observed that the network is able to easily segment 

the carotid walls when plaque is not present in healthy volunteers. Several other studies have 

previously provided carotid wall segmentation such as Loizou et. al.27 with a snakes based 

segmentation method and also with neural network approaches by Menchón-Lara et al.28 

and Biswas et al.29. Thus the same network can provide segmentations for arterial walls and 

plaques

The choice of 10E-4 as initial learning rate was made as it was found to be large enough to 

enable the network to get trained to estimate the optimal parameters. However, it was 

important to reduce the learning rate appropriately when the performance of the network did 

not improve, so that the network can be fine-tuned for optimal performance. The choice of 

training up to 35 epochs and stopping thereafter if no improvements were seen after this 

point, since we did not want to over-fit our training set. To demonstrate this behaviour of the 

network, Fig. 10 presents three runs of both the U-net and dilated U-net for the training set 

in Fig. 10(a) and 10(b). The validation set that was used to tune the training process is shown 

in Fig. 10(c) and 10(d), while the testing set that the network was completely blinded to is 

shown in Fig. 10(e) and 10(f) for U-net and dilated U-net respectively. In the first run shown 

by the blue marker we let the networks run for 50 epochs. In the next two runs we used 35 

epochs along with our stopping criteria of non-improvement for 8 epochs in the validation 

set. We observe that across all sets the performance is similar in the three runs and hence our 

stopping criteria and number of epochs are sufficient. We also observe initial volatile 
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behaviour attributed to high initial learning rate in all the runs which converges as the 

learning rate is reduced on our criteria of non-improvement for 3 epochs. The three sets have 

similar performance which indicates that we did not have an over-fitting problem in our 

network and hence the number of layers chosen in the network was appropriate for this 

dataset.

An interesting part of this dataset was the presence of two to three cardiac cycles of RF data 

for each acquisition. As previously mentioned the sonographer had segmented up to three 

end diastole frames in each acquisition. Our initial attempt was to treat each segmentation as 

an individual dataset and randomly distribute them in our training, validation and testing set. 

However, this caused overfitting because if frames of the same view existed across the three 

sets then the network could easily learn the segmentation for those plaques without actually 

learning the features required to segment. Hence, we had to split the data at the acquisition 

level instead of the frame level. Thus the multiple frames may provide modest additional 

data augmentation but cannot be used as additional data. Another aspect to consider in future 

work with the temporal dimension of data was to provide multiple consecutive data frames 

to the network so that based on pixel movement the network could separate blood flow from 

tissue and use that information to better segment plaques. In fact, as previously mentioned 

the sonographer does use clinically acquired color Doppler imaging to guide the manual 

segmentation process and hence this would be a natural extension for the network to do as 

well.

The sensitivity analysis also demonstrates that while the performance does degrade if the 

bounding boxes are not accurately placed, the degradation is within expected limits. This 

was possible because similar errors were also incorporated in training which ensured that the 

network could handle these errors. Qiu et al.13 and Amiri et al.30 utilized another CNN to 

identify the correct bounding box prior to performing the segmentation. This would be 

challenging in our diverse dataset as we observe from Fig. 7(a) where the automatic U-Net 

could not even detect the correct location of the plaque in the B-mode image.

Conclusion

Severely stenotic carotid plaques in carotid endarterectomy patients with stenosis >70%, 

were segmented using U-Net style convolution neural networks. Sonographer input via a 

bounding box on plaque was required to achieve acceptable segmentation performance on 

these carotid B-mode images on patients with significant plaque and associated shadowing 

artifacts. Presence of acoustic shadowing has a significant impact on the performance of the 

segmentation algorithms and represent cases encountered under imaging conditions for 

carotid endarterectomy patients. A dilated U-Net option that provides improved performance 

in challenging segmentation situations when compared to U-Net was also presented.
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Figure 1: 
CNN model used in the paper, combines U-Net and dilated CNN. Three levels of max 

pooling and up sampling are used and 6 layers of dilated convolutions are used in the 

bottleneck with dilation rates from 1 through 6.
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Figure 2: 
The sonographer will provide a bounding box (red) the system will construct the 

corresponding segmentation view (green) with 12.5% buffer on all sides.
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Figure 3: 
Flow chart of proposed segmentation method
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Figure 4: 
Dice coefficient for test cases using U-Net and dilated U-Net with a usable threshold of 0.75
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Figure 5: 
Dice coefficient for test cases using semi automatic U-Net and dilated U-Net with a usable 

threshold of 0.75
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Figure 6: 
Plaque segmentation example 1 with red contour as ground truth: (a) U-Net (yellow) 

(DC=0.77) and Dilated U-Net (green) (DC=0.88), (b)Semi automatic (yellow) U-Net 

(DC=0.83) and Semi automatic dilated U-Net (DC=0.87)
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Figure 7: 
Plaque segmentation example 2 with red contour as ground truth: (a) U-Net (yellow) (DC=0) 

and Dilated U-Net (no segmentation provided by the network) (DC=0), and a zoomed in 

view with (b)Semi automatic U-Net (yellow) (DC=0.92) and Semi automatic dilated U-Net 

(green) (DC=0.92)
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Figure 8: 
Performance of dilated U-Net model with bounding box including only part of a plaque, red 

is ground truth and green is network segmentation and blue is the bounding box provided. 

For interpretation of the references to colours in this figure legend, refer to the online 

version of this article.
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Figure 9: 
Performance of dilated U-Net model for a healthy subject with no plaque, red is ground truth 

and green is network segmentation.
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Figure 10: 
Training behavior over three independent runs, (a) and (b) in training, (c) and (d) in 

validation, (e) and (f) in the testing set for U-Net and dilated U-Net respectively
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Table 1:

Dice Performance Statistics

Network Type Dice mean Dice standard deviation

U-Net 0.48 0.24

Dilated U-Net 0.55 0.19

Semi U-Net 0.83 0.05

Semi dilated U-Net 0.84 0.05
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Table 2:

Hausdorff error (HE) and Mean error (ME) for the semi automatic methods

Network Type Average HE (mm) Average ME (mm)

U-Net 1.71 0.38

Dilated U-Net 1.60 0.35
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Table 3:

offset sensitivity of U-Net dice coefficient

Offset in x-direction
Offset in y-direction

−5% 0% 5%

−5% 0.79 0.80 0.81

0% 0.80 0.83 0.81

5% 0.79 0.81 0.79
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Table 4:

offset sensitivity of dilated U-Net dice coefficient

Offset in x-direction
Offset in y-direction

−5% 0% 5%

−5% 0.80 0.82 0.80

0% 0.81 0.84 0.81

5% 0.80 0.82 0.80
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