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Abstract

In this paper, we show that gadolinium-loaded synthetic melanin nanoparticles (Gd(III)-SMNPs) 

exhibit up to a 40-fold enhanced photoacoustic signal intensity relative to synthetic melanin alone 

and higher than other metal-chelated SMNPs. This property makes these materials useful as dual 

labeling agents because Gd(III)-SMNPs also behave as magnetic resonance imaging (MRI) 
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contrast agents. As a proof-of-concept, we used these nanoparticles to label human mesenchymal 

stem cells. Cellular uptake was confirmed with bright-field optical and transmission electron 

microscopy. The Gd(III)-SMNP-labeled stem cells continued to express the stem cell surface 

markers CD73, CD90, and CD105 and proliferate. The labeled stem cells were subsequently 

injected intramyocardially in mice, and the tissue was observed by photoacoustic and MR 

imaging. We found that the photoacoustic signal increased as the cell number increased (R2 = 

0.96), indicating that such an approach could be employed to discriminate between stem cell 

populations with a limit of detection of 2.3 × 104 cells in in vitro tests. This multimodal 

photoacoustic/MRI approach combines the excellent temporal resolution of photoacoustics with 

the anatomic resolution of MRI.

Graphical Abstract

1. INTRODUCTION

Melanin is a natural pigment with myriad functions arising from its chemical structure 

including metal ion chelation, photoprotection, free radical quenching, and coloration.1-5 In 

humans, melanins can serve as a biomarker for melanoma6,7 and Parkinson’s disease.8 To 

exploit these properties, several groups have reported synthetic melanin nanoparticles 

(SMNPs) synthesized by auto-oxidation of dopamine or L-3,4-dihydroxyphenylalanine.4,9 

These materials have also been employed as contrast agents.10-12 For example, SMNPs 

loaded with paramagnetic iron can act as efficient contrast agents for T1-weighted magnetic 

resonance imaging (MRI).13,14 SMNPs also have a strong optical absorption in the near-

infrared region,12 and previous research has shown that melanins prepared from dopamine 

monomers provide photoacoustic (PA) signal.15 Pristine and metal-doped polydopamine 

nanoparticles have shown excellent biocompatibility and biodegradeability and can be used 

for combined therapy such as phototherapy, drug delivery, and imaging16-20—including 

stem cell imaging.

Indeed, stem cell imaging is an important tool for monitoring cell-based therapies.21,22 MRI 

is one of the most common modalities for imaging cells and typically utilizes ferromagnetic 

inorganic nanoparticles,23-30 stable paramagnetic complexes,31 or gadolinium (Gd)-based 

chelates.32-34 However, MRI is limited by long temporal resolution; acoustic and 

photoacoustic imaging can overcome this limitation with video frame rates35,36 Recently, we 

and others have reported photoacoustic cell imaging via Prussian blue-poly (1-lysine),35 

iron-oxide based nanobubbles with 1,1′-dioctadecyl-3,3,3′,3′-
tetramethylindotricarbocyanine iodide,37 exosome-like silica nanoparticles,38 biodegradable 
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P2O5–CaO–Na2O phosphate-based glass nanospheres,39 and phosphorylcholine-coated 

semiconducting polymers.40 However, a multimodal probe with both MRI and photoacoustic 

imaging would have significant utility. Real-time photoacoustic imaging would provide a 

means for monitoring delivery, and deep tissue MRI would be used in tandem to provide 

longer-term follow-up of stem cell location and quantities, superimposed with anatomical 

information.

Thus, we prepared SMNPs via polymerization of dopamine in the presence of Mn(III) using 

a recently developed metal-templated loading approach.14 The data showed that using 

postmodification to chelate the Gd to the synthetic melanin particle surface led to a very low 

Gd-loading percentage; thus, we used the Mn displacement method for the synthesis of Gd-

SMNPs to yield high and tunable Gd loadings.14 We then displaced the Mn from SMNPs 

with gadolinium to yield a dual, MRI/photoacoustic contrast agent due to the lower binding 

affinity of Mn.14,41 Surprisingly, the gadolinium-loaded particles exhibited dramatically 

enhanced photoacoustic contrast over metal-free SMNPs. We then prepared various metal-

loaded SMNPs and investigated them for similar enhancements in photoacoustic contrast. 

We found that the photoacoustic signal of the SMNPs increases with incorporation of 

different metal ions with Gd(III), showing the highest signal intensities among SMNPs 

doped with Ni(II), Zn(II), Cu(II), Mn(III), or Fe(III). This discovery of enhanced 

photoacoustic signals due to gadolinium integration into the nanoparticles sets the stage for 

other multimodal imaging efforts.

2. METHODS

2.1. Reagents.

The following materials were acquired and used as received: dopamine hydrochloride 

(Sigma-Aldrich), potassium permanganate (Thermo Fisher), hydrochloride (Sigma-Aldrich), 

ethanol (Sigma-Aldrich), ammonia (Sigma-Aldrich), nitric acid (Sigma-Aldrich), Tris base 

(Sigma-Aldrich), phosphate-buffered saline (PBS; Thermo Fisher), matrigel (Corning), 

ultraPure agarose (Thermo Fisher), and dimethyl sulfoxide (DMSO, Sigma-Aldrich).

2.2. Instrumentation.

The size of the SMNPs was measured by dynamic light scattering (DLS) (Zetasizer-90, 

Malvern Instruments). Transmission electron microscopy (TEM) used a FEI Sphera 

microscope operating at 200 kV. Micrographs were recorded on a 2 K X2 KGatan CCD 

camera. Photoacoustic imaging was performed with a Vevo 2100 instrument (Visualsonics) 

with a 21 MHz-centered transducer as described previously.42 This system utilizes a 

flashlamp pumped Q-switched Nd:YAG laser with an optical parameteric oscillator and a 

second harmonic generator with wavelengths of 680–970 nm with a 1 nm step size and a 

pulse of 4–6 ns. The peak energy is 45 ± 5 mJ at 20 Hz at the source, the field-of-view 

(FOV) is 14–23 mm, and the acquisition rate is 5 frames/s. The specimens were aligned at a 

depth of approximately 1 cm from the transducer. The laser was optimized prior to use with 

a built-in energy power software and meter. We used 100% laser energy with 10–20 dB gain 

and 21 MHz frequency. Photoacoustic spectra were collected from 680 to 970 nm, and three-

dimensional scans were performed. The distance between the imaging transducer and 
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phantom was maintained constant in each of the scans. We collected eight fields-of-view for 

each specimen. Absorbance measurements used a Shimadzu UV-3600 spectrophotometer. 

The metal concentration for the initial doped SMNP synthesis was quantified by inductively 

coupled plasma-optical emission spectrometry (ICP-OES) using a PerkinElmer Optima 

3000DV spectrometer. The metal concentration for MRI and Gd(III) retention was 

quantified by inductively coupled plasma-mass spectrometry (ICP-MS) using an Agilent 

4500 series ICP-MS (Agilent Technology, Inc.).

2.3. SMNP Syntheses.

SMNPs were prepared from dopamine according to a previously published method.43 In a 

typical reaction, 50 mL of deionized water and 20 mL of ethanol were fully mixed with 1.2 

mL of ammonia (28–30%) under constant stirring at room temperature for 1 h. Then, 5 mL 

of dopamine hydrochloride aqueous solution (4 mg/mL) was quickly injected into this 

solution. The SMNPs were centrifuged and washed with deionized water three times to yield 

the final sample.

Metal-doped SMNPs were prepared according to published procedures.13,14 Briefly, 

dopamine hydrochloride and metal salts were fully dissolved in 100 mL of deionized water 

under stirring at room temperature for 1 h. Subsequently, 50 mL of Tris aqueous (25 mM) 

solution was quickly injected into the solution. After another 1.5 h, the doped nanoparticles 

were centrifuged and washed three times with deionized water13 at neutral pH. Gd(III)-

doped SMNPs were prepared by employing an additional step using Mn(III)-doped SMNPs:
13 60 mg of GdCl3 was added to 10 mL of Mn(III)-doped SMNPs (2 mg/mL in solution) and 

stirred at room temperature overnight, separated by centrifugation, and washed three times 

with deionized water. To calculate the metal loading in the final product, an aliquot of each 

sample was added to a concentrated HNO3 solution for overnight digestion. The solution 

was then diluted to 10 mL (1% HNO3) and analyzed by inductively coupled plasma-optical 

emission spectroscopy (ICP-OES). The solution for MRI was digested in aqua regia for 1 h, 

diluted to 10 mL (2% HNO3), and analyzed by inductively coupled plasma-mass 

spectroscopy (ICP-MS).

2.4. Cell Culture.

Poietic human mesenchymal stem cells (hMSCs; Lonza, PT-2501) were grown in 

supplemented media (Lonza, PT-3001) and seeded in a T75 flask at a concentration of 5000 

cells/cm2. These cells were labeled with nanoparticles and incubated under standard 

conditions. The hMSCs were washed three times with PBS to remove free nanoparticles and 

detached using TrypLE Express (Life Technologies). Cell viability was determined using 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide for the MTT assay (Biotium). 

Then, 10 μL of MTT solution was added to 100 μL of medium in each well, mixed briefly, 

and incubated at 37 °C for 4 h. Then, 200 μL of DMSO was added to each well and pipetted 

to dissolve the resulting formazan salt. Absorbance was measured to 570 nm. The MTT 

assays were conducted by plating 8000 cells per well in replicate (n = 8) in a 96 well plate 

and treated at varying timepoints (0–24 h) at a constant concentration (0.42 mg/mL) as well 

as at varying concentrations (0–0.84 mg/mL) at a constant time (4 h) unless otherwise noted. 

The wells were analyzed in replicate (n = 8).
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2.5. In Vitro Photoacoustic Imaging and MRI.

For photoacoustic imaging of hMSCs, cells were labeled with nanoparticles and mixed in a 

1% agar solution. The gain was set to 10–20 dB and read at a wavelength of 720 nm. Eight 

fields of view were collected for each sample. To measure the relaxivity of the Gd-SMNPs, 

various concentrations of Gd-SMNPs from 0 to 0.46 mM were prepared in a 1% agar 

solution. For the 4.7 T MRI, we used a MRS 4000 system from MR Solutions with a 

variable strength electromagnet set to 4.7 T. After scouting, we acquired T1 spin echo 

multislice images with horizontal phase encoding directions, FOVs of 60 mm, an echo time 

of 11 ms, a repetition time of 720 ms, a flip angle of 90°, a 512 × 512 matrix, and autogain 

calibration. We acquired 12 slices with 1 mm thickness. The ϕ and θ angles were set to zero 

for coronal slices with no echo asymmetry. The T1 reciprocal was plotted as a function of 

concentration from 0.046 to 0.46 mM. For the 7 T MRI, we used a Bruker 7.0 T magnet 

with Avance II hardware. After scouting, we acquired T1 spin echo multislice images with 

horizontal phase encoding directions, FOVs of 6.91/3.12 cm, an echo time of 1/1, a 

repetition time of 750 ms, a flip angle of 90°, and a 256 × 116 matrix. We acquired 6 slices 

with 2 mm thickness. The T1 reciprocal was plotted as a function of concentration from 

0.046 to 0.46 mM.

2.6. In Vivo Photoacoustic Imaging and MRI.

For imaging, 500 000 Gd(III)-SMNP-labeled hMSCs were injected in a 50% matrigel 

mixture in the left ventricle (LV) wall of nude mice. Control mice were injected with a PBS/

matrigel solution only. Echocardiograms were performed in the long axis (lax) mode. MRI 

was performed before injection and 15 min after injection with labeled hMSCs.

2.7. Data Analysis.

ImageJ 1.48 v58 was used to quantitate the photoacoustic signal for the SMNPs via region 

of interest (ROI) analysis for the average integrated density in arbitrary units (bit depth) 

using the maximum intensity projection for 8-bit images.44 The photoacoustic means and 

standard deviations were calculated from eight fields-of-view in each sample. The error bars 

represent the standard deviation of the measurements unless otherwise noted.

3. RESULTS AND DISCUSSION

3.1. Synthesis and Characterization.

Three types of SMNPs were used in these studies: (1) SMNPs prepared by polymerization 

of dopamine (SMNP);43 (2) metal-doped SMNPs made by polymerization of dopamine in 

the presence of metal salts; and (3) Gd(III)-doped SMNPs made via a metal exchange 

method beginning with Mn(III)-doped SMNPs as a template (Figure 1).13,14 The synthesis 

began with the polymerization of dopamine (Figure 1A,B) to form spherical particles. 

Previous research has shown that the higher metal binding capacities and faster binding rates 

of synthetic melanin nanoparticles than melanin polymers are due to the higher surface area 

to volume ratio.9 The morphology of these nanoparticles was characterized by transmission 

electron microscopy (TEM) (Figure 1C,D, and Supporting Information Figure S1). All 

samples were spherical and monodisperse: Dynamic light scattering (DLS) (Figure 1, and 
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Supporting Information Figure S2) showed that the size of the SMNPs was 150 nm with a 

polydispersity index (PDI) of 0.11 ± 0.03 (Figure 1E). The size of the Gd(III)-doped SMNPs 

was 160 nm with a PDI of 0.18 ± 0.03 (Figure 1F).

The concentration of metals ranged from 5.9 to 8.3% by weight with respect to 

polydopamine as determined by ICP-OES (Table 1). Although the synthetic conditions were 

optimized for achieving uniform size and high loadings, there were slight variations in 

particle size and metal loading concentration. This is likely due to the changes in affinities 

and coordination geometries between dopamine and different metal ions that may 

significantly affect polymerization kinetics.45 The ζ-potential of Mn-SMNPs was −10.7 mV, 

whereas the ζ-potential of the Gd(III)-doped SMNPs was −9.5 mV.

3.2. Photoacoustic and MRI Performance.

The photoacoustic spectra of SMNPs and metal-doped (Ni(II), Zn(II), Cu(II), Mn(III), 

Fe(III), and Gd(III)) SMNPs indicated a broad peak across all samples from 720 to 760 nm 

(Figure 2A) with Gd(III)-SMNPs showing the highest photoacoustic intensity amongst all 

samples from 680 to 850 nm. Photoacoustic imaging at 720 nm of SMNPs and metal-doped 

SMNPs (Figure 2B,C) showed that the gadolinium-based material exhibited the highest 

photoacoustic signal intensity at neutral pH (all samples were 0.58 mg/mL with respect to 

polydopamine). This effect correlates with absorbance spectroscopy, where Gd(III)-SMNPs 

exhibit the strongest absorbance from 700 to 900 nm (Figure 2D). Miao et al. also showed 

that metal-chelated polydopamine nanoparticles show higher absorbance than polydopamine 

nanoparticles between 700 and 900 nm.46 Importantly, a solution of GdCl3 alone (no 

nanoparticles) had no absorbance (Supporting Information Figure S3). Other lanthanides 

also produce a photoacoustic signal increase relative to metal-free SMNPs (Figure S4). The 

Ce-doped SMNPs had the highest photoacoustic signal of 6 × 104 ± 1 × 103 au, whereas Er-

doped SMNPs had the lowest photoacoustic signal of 9 × 104 ± 8 × 102 au; however, Gd was 

used for further studies because Gd-based contrast agents also have high MRI signals.32-34 

Additionally, lanthanide-doped nanoparticles have been used in luminescence imaging due 

to long luminescence lifetimes, large ranges of upconversion luminescence wavelengths, and 

high signal-to-noise ratios.47

To further understand the activatable nature of this phenomenon, we monitored the 

photoacoustic signal in real time while adding Gd(III) to the manganese-loaded 

nanoparticles (Figure 2E). In aqueous solution, Gd(III) has low absorbance from 400 to 900 

nm (Supporting Information Figure S3). We initially observed a 2-fold intensity increase 

upon addition of Gd(III) (Figure 2F); the signal increased 16-fold with further mixing 

(Figure 2G, and Supporting Information Video 1).

To evaluate stability, photoacoustic signal from SMNPs was studied under continuous laser 

irradiation (pulse duration of 5 ns; 0.167 s between pulses) and showed a constant signal 

over 15 min. The signal difference between the first 100 frames and the last 100 frames is 

6.6%, indicating that the SMNPs are stable under photoacoustic irradiation (Supporting 

Information Figure S5A).
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The photoacoustic signal intensity of Gd(III)-doped SMNPs is dependent on the 

concentration of both SMNPs and Gd(III). The Gd(III)-doped SMNPs were measured from 

0.068 to 0.68 mg/mL of nanoparticles and exhibited a linear increase (R2 = 0.96) with 

increasing SMNP concentration (Figure 3A). Methylene blue (MB, 0.4 mM) was a positive 

control,48,49 and deionized water and Gd(III) solution (40 mg/mL) in water were negative 

controls. At higher concentrations of SMNPs, the photoacoustic intensity with respect to 

SMNPs continued to increase linearly from 0 to 3.5 mg/mL with R2 = 0.98 (Supporting 

Information Figure S5B).

This photoacoustic signal enhancement is likely due to an improved absorption cross-section 

via melanin coordination of the metal ions via catechol groups—this leads to increased 

absorption.50 Indeed, the absorption (Supporting Information Figure S5C) was higher for 5 

and 10% Gd-SMNPs than Mn-SMNPs and 0.5–2% Gd-SMNPs. The photoacoustic signal 

(Figure 3B) also increased with Gd(III) loading when the SMNP concentration was held 

constant. Photoacoustic signal is proportional to concentration. Related work has shown the 

presence of vinylene bonds can increase the mass absorption coefficient and photothermal 

conversion efficacy in polymers.51 Related work has increased the photoacoustic signal of 

nanoparticles via the addition of a silica coat to gold nanorods or semiconductor polymer 

nanoparticles. This is because the silica shell has a lower thermal conductivity and heat 

capacity than water. Thus the coated particles achieve a higher temperature than bare 

particles, leading to a higher thermal gradient and a higher photoacoustic signal.52-54

Gd(III)-SMNPs were also studied in terms of MRI parameters. The r1 was 3.35 and 2.90 

mM−1 s−1 for 4.7 and 7.0 T fields, respectively (Supporting Information Figure S6A-D). 

These values are similar to commercially available agents, Gd-DOTA and Gd-DTPA.55,56 

Additionally, Gd(III)-SMNP subcutaneous injections were performed in mice (Supporting 

Information Figure S6E,F), showing enhanced photoacoustic signal after injection with 

Gd(III)-SMNPs.

3.3. Cellular Imaging.

The hMSC uptake of Gd(III)-SMNPs was measured to determine the optimal concentration 

and time for cell labeling.57,58 The photoacoustic intensity was quantified for 1.5 × 105 cells 

treated with 0–0.84 mg/mL of Gd(III)-SMNPs at 8 h of incubation time (Figure 4A). No 

further increase was seen after 0.42 mg/mL. We then studied the effect of time. The 

photoacoustic intensity of 1.5 × 105 cells treated with 0.42 mg/mL of Gd(III)-SMNPs at 

varying time periods (1–24 h) was quantified (Figure 4B). The hMSCs labeled with 0.42 

mg/mL Gd-SMNPs had an 8-fold higher photoacoustic signal than hMSCs labeled with 0.1 

mg/mL Gd-SMNPs. hMSCs labeled for 4 h with Gd-SMNPs showed a 3-fold higher 

photoacoustic intensity than cells treated for 1 h with Gd-SMNPs (p < 0.05). An MTT assay 

revealed no significant difference (p-value >0.05) in the cell viability of cells treated with up 

to 0.84 mg/mL of Gd(III)-SMNPs (Supporting Information Figure S7), suggesting good 

biocompatibility.59 Therefore, 4 h of incubation with 0.42 mg/mL of Gd(III)-SMNPs was 

determined to be the optimal incubation time without adverse effects on cell viability. Our 

prior work showed that there was no significant release of the Gd(III) ion from the SMNP 

over 7 days after incubation with CaCl2 and ZnCl2 solutions for 7 days as measured by ICP.
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14 We repeated this experiment and found that 97.9% of Gd(III) was retained in the particle 

after 7 days of incubation in water at room temperature as measured by ICP.

Dark-field scanning transmission electron microscopy (STEM), transmission electron 

microscopy (TEM), and bright-field microscopy were used to confirm the uptake of Gd(III)-

SMNPs in hMSCs (Figure 4C,D and Supporting Information Figures S8 and S9). Previous 

studies have shown mesoporous silica uptake in hMSCs from 1 to 4 h,60 similar to our 

observed uptake of Gd(III)-SMNPs in hMSCs. Parameters such as charge, composition, 

surface reactivity, and surface adsorption have been implicated in affecting the time of 

nanoparticle uptake in cells.61 Polydopamine-containing nanoparticles have shown good 

biocompatibility and are cleared from the body via the reticuloendothelial system.16 

PEGylation was not necessary because intravenous injection was not performed; the cells 

were labeled with the nanoparticles ex vivo, and the cells were then implanted into the 

myocardium. Photoacoustic images and imaging intensity of 0–200 K cells indicated a linear 

relationship (R2 = 0.96) between cell number and photoacoustic intensity (Figure 4E,F). The 

lowest number of cells we measured was 5.0 × 104, and we calculated the lowest detectable 

number of cells to be 2.3 × 104 based on three standard deviations above the background 

mean. Previous research reported cell detection limits varying from single cells—10 × 104 

cells in MRI and photoacoustic imaging.42,62,63 However, achieving ultralow detection 

limits is rarely clinically useful because human trials routinely use 106–108 cells.64-66

We next conducted additional studies to understand what effects labeling has on the cells’ 

biology. CD73, CD90, and CD105 were used as hMSC marker proteins for flow cytometry 

analysis. Analysis showed that the labeled hMSCs still express these three stem cell surface 

markers (Supporting Information Figure S10A-C). However, the expression of CD90 in the 

labeled cells was 16% less than the expression of CD73 in the control cells, suggesting that 

the SMNP labeling may be affecting the expression of CD73. The proliferation of unlabeled 

and labeled hMSCs was also measured over time. hMSCs were labeled by incubation with 

Gd(III)-SMNPs for 4 h. Cells continued to proliferate for 3 weeks after labeling with the 

nanoparticles (Supporting Information Figure S8E). Although labeled cells proliferated 

approximately 26% slower than the unlabeled hMSCs, both the labeled and unlabeled 

hMSCs doubled in approximately 3 days (Supporting Information Figure S11). Although 

chelation increases the biocompatibility of Gd-based agents,67 it is possible that free Gd is 

present, as cells internalize the particles, which may act for slow proliferation and affect the 

expression of marker proteins.59

Finally, in vivo experiments using 500 000 cells labeled with Gd(III)-SMNPs were 

performed in mice (Figure 5). Bone marrow mononuclear cells have been found to promote 

heart function and neovascularisation after myocardial infarction via intramyocardial 

injection delivery.68 Echocardiograms pre- and immediately post-injection are also shown in 

Figure 5 and indicate that the photoacoustic signal increased 64-fold +11.3. Transverse MRI 

images pre- and post-injection show that the MRI signal increased 2.0-fold ±0.17 versus 

baseline (Figure 5C,D).
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4. CONCLUSIONS

This study details a synthetic melanin-based contrast agent for photoacoustic imaging and 

MRI. The most important finding is that the photoacoustic intensity increased dramatically 

upon incorporation of metal ions into polydopamine-based nanoparticles. Chelation is 

known to increase the biocompatibility of Gd-based contrast agents67 that are clinically used 

in MRI.69,70 We used the Gd(III)-enhanced photoacoustic signal to image stem cells, in vivo 

coupling this modality with MRI. The labeled stem cells still expressed stem cell surface 

markers and continued to proliferate.
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ABBREVIATIONS

DMSO dimethyl sulfoxide

hMSCs human mesenchymal stem cells

ICP-OES inductively coupled plasma-optical emission spectrometry

ICP-MS inductively coupled plasma-mass spectrometry

PBS phosphate-buffered saline

Lu lung

LV left ventricle

SMNPs synthetic melanin nanoparticles

STEM scanning transmission electron microscopy

TEM transmission electron microscopy
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Figure 1. 
Synthesis and characterization of synthetic melanin nanoparticles (SMNPs). (A) Molecular 

structure of dopamine and route to nanoparticles, (B) synthesis of Gd(III)-doped SMNPs, 

(C) TEM micrograph of SMNPs shows spherical morphology and uniform size, (D) TEM 

micrograph of Gd(III)-doped SMNPs shows spherical morphology and uniform size, (E) 

DLS indicates a low dispersity solution and a particle size of 150 nm for SMNPs, (F) DLS 

data indicate a particle size of 160 nm for Gd(III)-doped SMNPs.
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Figure 2. 
Photoacoustic (PA) imaging and intensity data of SMNPs and metal-doped SMNPs. (A) 

Photoacoustic spectra from 680 to 970 nm indicate a broad peak for all nanoparticle samples 

from 720 to 760 nm. (B) Gd(III)-SMNPs have the highest photoacoustic signal of 

nanoparticles doped with Ni, Zn, Cu, Mn, Fe, or Gd. The Gd(III)-doped SMNPs showed the 

highest photoacoustic signal and SMNPs without doping showed the lowest signal. (C) 

Photoacoustic imaging intensity of SMNPs and metal-doped SMNPs (Ni, Zn, Cu, Mn, Fe, 

and Gd). (D) Absorbance data of SMNPs and metal-doped (Ni, Zn, Cu, Mn, Fe, Gd-doped) 

SMNPs indicated that Gd(III) had the highest absorbance from 700 to 950 nm. (E) 

Quantification of photoacoustic imaging intensity for live exchanging of Mn(III)-SMNPs 

with Gd(III). Mn(III)-SMNPs were used to increase the Gd(III) loading via Mn–Gd ion 

exchange to observe the photoacoustic intensity change in real time with mixing via 

pipetting. The photoacoustic intensity shows a change in signal upon addition of Gd(III) (1 

mg/mL) to Mn(III)-doped SMNPs (0.68 mg/mL); (F, G) Snapshots from the in situ 

photoacoustic movie at frames 200 and 700, respectively. The scale bar in panels C and G 

represents 4 mm.
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Figure 3. 
Photoacoustic (PA) intensity of Gd(III)-doped SMNPs is dependent on the concentration of 

SMNPs and Gd(III). (A) Photoacoustic intensity data, where 0.68, 0.34, and 0.068 represent 

the 5% Gd-SMNP concentrations (mg/mL). Mn(III)-SMNPs without Gd(III) doping (0.68 

mg/mL), MB (0.4 mM), H2O, and Gd(III) (40 mg/mL) are controls. (B) Photoacoustic 

intensity data with constant Mn-SMNP concentration, where 0.5–10% represent the 

concentration of Gd(III) in Mn-SMNPs. Nanoparticle concentration for all is 0.2 mg/mL. 

The error bars represent the standard deviation of the ROIs (n = 8).
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Figure 4. 
Optimization of hMSC labeling parameters. (A) Increasing concentrations of nanoparticles 

(0.1–0.84 mg/mL of Gd(III)-SMNPs) were used to label 150 000 hMSCs; the photoacoustic 

signal increased accordingly. For panels (A) and (B), unlabeled hMSCs were the negative 

control. Gd(III)-SMNPs (0.152 μmol/mL Gd(III)) were the positive control. (B) The effect 

of incubation time on photoacoustic intensity of 150 000 hMSCs treated with 0.42 mg/mL of 

Gd(III)-SMNPs. The photoacoustic intensity increased as time increased from 1 to 24 h. 

*Indicates p-value <0.05. (C) Dark-field scanning transmission electron microscopy (STEM) 

of hMSCs treated with Gd(III)-SMNPs (4 h, 0.42 mg/mL), where the white dots indicate the 

Gd(III)-SMNPs. (D) TEM microscopy of hMSCs treated with Gd(III)-SMNPs (4 h, 0.42 

mg/mL), where the black dots indicate the Gd(III)-SMNPs. (E) Photoacoustic imaging data 

of hMSCs labeled with Gd(III)-SMNPs. The photoacoustic intensity increased upon 

increasing the incubation time from 1 to 24 h, suggesting increased internalization of the 

particles with increasing time. The scale bar represents 1 cm. (F) Photoacoustic intensity 

data of 0–200 000 hMSCs labeled with Gd(III)-SMNPs showed a linear relationship 

between cell number and photoacoustic intensity.
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Figure 5. 
Photoacoustic and MR imaging of Gd(III)-SMNPs-labeled hMSCs implanted into mouse 

hearts. (A) Photoacoustic imaging of the longitudinal axis view of live mouse heart pre-

injection. The area circled in white represents the left ventricle (LV). The area circled in 

green represents the area of the left ventricle wall before injection. (B) Photoacoustic 

imaging of the longitudinal axis view of a live mouse heart post-injection. For this, 500 000 

hMSCs labeled with Gd(III)-SMNPs were injected. The green-circled area shows the 

increase in photoacoustic imaging intensity (red). (C) Transverse MRI view of a mouse heart 

pre-injection. The green-circled area represents the LV wall. Lu is the lung. (D) Transverse 

MRI view of a mouse heart post-injection. For this, 500 000 hMSCs labeled with Gd(III)-

SMNPs were injected. The green-circled area shows the increase in MRI signal intensity in 

the LV wall. The scale bar in A and B represents 2 mm; the scale bar for C and D represents 

5 mm.
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Table 1.

ICP-OES Measurements of Metal-Doped SMNPs
a

sample metal loading (wt %)

Mn(III)-doped SMNPs 6.0

Fe(III)-doped SMNPs 5.9

Ni(II)-doped SMNPs 5.9

Cu(II)-doped SMNPs 6.2

Zn(II)-doped SMNPs 8.3

Gd(III)-doped SMNPs 6.4

a
Metal loading varies from 5.9 to 8.3% by weight for metal-doped SMNP samples.
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