Skip to main content
. 2021 Mar 31;11:582788. doi: 10.3389/fonc.2021.582788

Table 2.

Discriminative performance of different predictive models in the training and validation cohorts.

Predictive models Training cohort Validation cohort
AUC (95% CI) Accuracy Sensitivity Specificity AUC (95% CI) Accuracy Sensitivity Specificity
Clinical-radiological model 0.744 (0.642 - 0.846) 0.682 0.512 0.841 0.757 (0.595 - 0.920) 0.757 0.667 0.842
Radiomics model
AP 0.774 (0.675 - 0.873) 0.682 0.659 0.705 0.752 (0.592 - 0.911) 0.649 0.667 0.632
PVP 0.797 (0.705 - 0.890) 0.682 0.610 0.750 0.830 (0.684 - 0.977) 0.784 0.833 0.737
DP 0.736 (0.629 - 0.843) 0.682 0.561 0.795 0.757 (0.592 - 0.923) 0.730 0.667 0.789
AP-PVP 0.818 (0.729 - 0.907) 0.718 0.683 0.750 0.810 (0.671 - 0.949) 0.757 0.667 0.842
AP-DP 0.780 (0.681 - 0.879) 0.718 0.732 0.705 0.804 (0.652 - 0.956) 0.703 0.833 0.579
PVP-DP 0.800 (0.707 - 0.893) 0.706 0.683 0.727 0.830 (0.690 - 0.971) 0.757 0.889 0.632
AP-PVP-DP 0.838 (0.753 - 0.922) 0.753 0.732 0.773 0.833 (0.691 - 0.975) 0.703 0.889 0.526
Combined model 0.878 (0.806 - 0.950) 0.812 0.805 0.818 0.833 (0.687 - 0.979) 0.730 0.833 0.632

AP, arterial phase; PVP, portal venous phase; DP, delayed phase; AUC, area under the curve; CI, confidence interval.