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Abstract

We propose a novel Bayesian approach that robustifies genomic modeling by leveraging expert knowledge (EK) through prior distribu-
tions. The central component is the hierarchical decomposition of phenotypic variation into additive and nonadditive genetic variation,
which leads to an intuitive model parameterization that can be visualized as a tree. The edges of the tree represent ratios of variances, for
example broad-sense heritability, which are quantities for which EK is natural to exist. Penalized complexity priors are defined for all edges
of the tree in a bottom-up procedure that respects the model structure and incorporates EK through all levels. We investigate models with
different sources of variation and compare the performance of different priors implementing varying amounts of EK in the context of plant
breeding. A simulation study shows that the proposed priors implementing EK improve the robustness of genomic modeling and the se-
lection of the genetically best individuals in a breeding program. We observe this improvement in both variety selection on genetic values
and parent selection on additive values; the variety selection benefited the most. In a real case study, EK increases phenotype prediction
accuracy for cases in which the standard maximum likelihood approach did not find optimal estimates for the variance components.
Finally, we discuss the importance of EK priors for genomic modeling and breeding, and point to future research areas of easy-to-use and
parsimonious priors in genomic modeling.
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Introduction

Plant breeding programs are improving productivity of a range of
crops and with this addressing the global and rising hunger prob-
lem that impacts 820 million people across the world (FAO et al.
2019). One of the most important food sources in the world is
wheat (Shewry and Hey 2015), however, recent improvements in
wheat yield are smaller than the projected requirements (Ray
et al. 2013) and might become more variable or even decrease due to
climate change (Asseng et al. 2015). This trend is in stark contrast to
the United Nation’s Sustainable Development Goals that aim to end
hunger and malnutrition by 2030 (UN General Assembly 2015).
Breeding has contributed significantly to the improvement of wheat
yields in the past (e.g., Mackay et al. 20171; Rife et al. 2019), and the re-
cent adoption of genomic selection could enable further significant
improvements (Gaynor et al. 2017; Belamkar et al. 2018; Sweeney
et al. 2019).

Breeding programs generate and evaluate new genotypes with
the aim to improve key characteristics such as plant height, dis-
ease resistance, and yield. Nowadays, a key component in breed-
ing is genomic modeling, where we aim to reduce environmental
noise in phenotypic observations and associate the remaining
variation with variation in individual genomes. We use these
associations to estimate genetic values for phenotyped or even
nonphenotyped individuals and with this identify the genetically

best individuals (Meuwissen et al. 2001). Improving this process
involves improving the methods for disentangling genetic varia-
tion from environmental variation.

Genetic variation can be decomposed into additive and nonad-
ditive components (Fisher 1918; Falconer and Mackay 1996; Lynch
and Walsh 1998; Maki-Tanila and Hill 2014). Additive variation is
defined as variation of additive values, which are sums of allele
substitution effects over the unobserved genotypes of causal
loci. Statistically, the allele substitution effects are coefficients
of multiple linear regression of phenotypic values on causal
genotypes coded in an additive manner. Nonadditive variation is
defined as the remaining genetic variation not captured by the ad-
ditive values. It is commonly partitioned into dominance and epis-
tasis values. Dominance values capture deviations from additive
values at individual loci. Epistasis values capture deviations
from additive and dominance values at combinations of loci.
Statistically, dominance and epistasis values capture deviations
due to allele interactions at individual loci and combinations of
loci, respectively. Modeling interactions between two loci at a time
give additive-by-additive, additive-by-dominance, and dominance-
by-dominance epistasis. Modeling interactions between a larger
number of loci increase the number of interactions.

Estimates of genetic values and their additive and nonadditive
components have different applications in breeding (Acquaah
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2007). Breeders use estimates of additive values to identify
parents of the next generation, because additive values indicate
the expected change in mean genetic value in the next generation
under the assumption that allele frequencies will not change.
Breeders use estimates of genetic values to identify individuals
for commercial production, because genetic values indicate the
expected phenotypic value. Estimates of genetic values are par-
ticularly valuable in plant breeding where individual genotypes
can be effectively cloned. While genomic modeling currently fo-
cuses on additive values (Meuwissen et al. 2001; Varona et al.
2018), the literature on modeling nonadditive variation is growing
(Oakey et al. 2006; Wittenburg et al. 2011; Munoz et al. 2014,
Bouvet et al. 2016; Martini et al. 2017; Vitezica et al. 2017; Varona
et al. 2018; de Almeida Filho et al. 2019; Santantonio et al. 2019;
Tolhurst et al. 2019; Martini et al. 2020). Notably, modeling nonad-
ditive variation has been shown to improve the estimation of ad-
ditive values in certain cases (Varona et al. 2018).

However, modeling nonadditive variation is challenging be-
cause it is difficult to separate nonadditive variation from addi-
tive and environmental variation even when large datasets are
available (e.g., Misztal 1997; Zhu et al. 2015; de los Campos et al.
2019). Furthermore, pervasive linkage and linkage disequilibrium
are challenging the decomposition of genetic variance into its
components (Gianola et al. 2013; Morota and Gianola 2014;
Morota et al. 2014). This suggests that genomic modeling needs ro-
bust methods that do not estimate spurious nonadditive values
and whose inference is stable for all sample sizes.

One way to handle partially confounded sources of variation
is to take advantage of expert knowledge (EK) on their absolute or
relative sizes. Information about the relative magnitude of
the sources of phenotypic variation has been collated since the
seminal work of Fisher (1918). The magnitude of genetic varia-
tion for a range of traits is well known (e.g., Houle, 1992;
Falconer and Mackay, 1996; Lynch and Walsh, 1998). Data and
theory indicate that the majority of genetic variation is captured
by additive values (Hill et al. 2008; M&ki-Tanila and Hill 2014),
while the magnitude of variation in dominance and epistasis
values varies considerably due to a range of factors. For exam-
ple, there is no dominance variation between inbred individuals
by definition. Furthermore, model specification has a strong ef-
fect on the resulting estimates (e.g., Huang and Mackay 2016;
Martini et al. 2017; Vitezica et al. 2017; Martini et al. 2020). With
common model specifications, additive values capture most of
the genetic variation because they capture the main effects (in
the statistical sense), while dominance and epistasis values cap-
ture interaction deviations from the main effects (Hill et al.
2008; Méiki-Tanila and Hill 2014; Hill and Méaki-Tanila 2015;
Huang and Mackay 2016). This EK does not need to come di-
rectly from the literature, it can also be formed based on inter-
nal estimates for a similar population in the past, or be a
combination of both.

In a Bayesian setting, we can take advantage of such EK
through prior distributions; see (Gianola and Fernando 1986;
Sorensen and Gianola 2007) for an introduction to Bayesian
methods in animal breeding and quantitative genetics, respec-
tively. Prior distributions reflect beliefs and uncertainties about
unknown quantities of a model and should be elicited from an
expert in the field of interest (O’'Hagan et al. 2006; Farrow 2013).
Intuitively, prior distributions allow EK to act as additional
observations, and make the current analysis more robust by bor-
rowing strength from past analyses. Priors can improve weak
identifiability of the sources of variation by guiding inference to-
ward EK when the information in the sample is low. However,
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Figure 1 Tree structure visualizing the three possible model
formulations A, AD, and ADX. Edge labels illustrate where EK applies,
namely on the relative magnitude of the genetic and environmental
variation and the relative magnitude of the additive, dominance, and
epistasis variation.

quantification of the effective number of samples added by a
prior is only available in specific situations (Morita et al. 2008).

We propose an easy-to-use, intuitive, and robust Bayesian
approach that builds on two recent innovations in Bayesian sta-
tistics: (1) the hierarchical decomposition (HD) prior framework
(Fuglstad et al. 2020) to provide a hierarchical description of the
decomposition of phenotypic variation into different types of var-
iation, and (2) the penalized complexity (PC) prior framework
(Simpson et al. 2017) to facilitate robust genomic modeling. The
key ideas of the approach are that (1) visualization eases model
specification and communication about the model (see Figure 1),
(2) HD of variation makes it easy to incorporate EK on e.g. herita-
bility, (3) leveraging EK provides robust methods, and (4) compari-
son of posterior distributions and prior distributions reveal the
amount of information the data provided on the decomposition
of variation.

The aim of this paper is to demonstrate the new approach and
to evaluate the potential impact of using the approach along with
EK in plant breeding. We first describe the genomic model
and how to incorporate the EK in this model. To test the proposed
approach, we first use a simulated wheat breeding program
and evaluate inference stability, estimation of genetic values,
and variance components with different priors and with the stan-
dard maximum likelithood (ML) estimation. We also investigate
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the impact of dataset size. Then we apply the approach to a pub-
licly available wheat yield dataset with 1739 individuals from 11
different trials in 6 locations in Germany with varying amounts
of observed phenotypes from Gowda et al. (2014) and Zhao et al.
(2015). We use cross-validation to assess the accuracy of pheno-
type prediction when using the proposed priors in the model.
A description of the simulated and real wheat breeding case
studies, model fitting, and analysis follows. Our key focus is to
demonstrate how an analyst can take advantage of EK from liter-
ature or domain experts to enable robust genomic modeling of
additive and nonadditive variation. This focus involves specifying
and visualizing the EK in an intuitive way. We then present the
results and discuss the relevance of our work.

Materials and methods
Genomic model

We model observed phenotypic values of n individuals y=
(y1,...,yn) with the aim to estimate their genetic values and their
additive and nonadditive components. To this end, we use the
genomic information about the individuals contained in the
observed single nucleotide polymorphism (SNP) matrix Z, where
row i contains SNP marker genotypes for individual i coded addi-
tively with 0, 1, 2. We let Z, be the column-centered Z where we
have removed markers with low minor allele frequency, and let
Z; be the column-centered matrix obtained from Z after setting
heterozygote genotypes to 1 and homozygote genotypes to 0.

We model the phenotypic observation y; of individual i as:

yi=p+gite, i=1....n, O]

where u is an intercept, g; is the genetic value, and e; the environ-
mental residual for individual i. We model the environmental
residual as an independently and identically distributed
Gaussian random variable, e = (eq,...,e,) ~ N(0,021,), where o2
is the environmental variance and I, is the n x n identity matrix.
The intercept is typically well-identified from the data, and we
specify the nearly translation-invariant prior u ~ A(0, 1000).

We consider the simple additive model with g; = a; (Model A), and
nonadditive extension with dominance g; = a; + d; (Model AD), and
epistasis g; =a; +d; +%; (Model ADX). Here, a = (ai,...,0as),d =
(d1,...,dn) and x = (x1,...,Xy), respectively, denote vectors of the
additive, the dominance and the epistasis values for the individuals.
Figure 1 shows the model structure for all three models, where ev-
ery added component extends the model tree by one level. Moving
from the root downwards, Model A is defined by the first split. Here
only the additive value represents the genetic value. Model AD is de-
fined by the first two splits, and as such has one level more. The ge-
netic value splits into additive and nonadditive values, where only
the dominance value represents the nonadditive value. Model ADX
is defined by the complete tree and the nonadditive value consists
of both dominance and epistasis values.

We model the genetic values as a ~ N (0,62A), d ~ N(0,03D),
and x ~ N(0,¢2X), where ¢2, 03 and o2 are the additive, domi-
nance, and epistasis variances, respectively. We specify the co-
variance matrices as A = Z, 2] /S,, D = Z42] /S, and X = A® A/Sx
(we consider only additive-by-additive epistatis), where ® is the
Hadamard product (Henderson 1985; Horn 1990; Gianola and de
los Campos 2008; Vitezica et al. 2017). To incorporate our EK in a
unified way, we scale the covariance matrices with S, S4, and Sx
according to Sgrbye and Rue (2018). The idea of such scaling is
not new, see Legarra (2016), Vitezica et al. (2017), and Fuglstad

et al. (2020) for details. Finally, the phenotypic variance is

o‘g:aé-&-ag:agﬁ-aé-&-aiﬁ-ag.

EK about variance components

As highlighted in the introduction, there is prior information
about the relative magnitude of the genetic and environmental
variation and the relative magnitude of the additive, dominance,
and epistasis variation that can guide the construction of prior
distributions. We specify this EK in a hierarchical manner:

EK-pheno:

informs on the split of phenotypic variation into genetic and
environmental variation. The proportizon of genetic to pheno-
typic variation is denoted as Re :%g:hé, where h} is the
broad-sense heritability.

EK-genetic:
informs on the split of genetic variation into additive and non-
additive variation. The proportion of additive to genetic varia-
tion is denoted as Rg :%:% where h? is the narrow-sense
heritability.

EK-nonadd:

informs on the split of non-additive variation into dominance
and epistasis variation. The proportion of dominance to non-
.\ e 2 12 .
additive variation is denoted as Rﬁ’ =24 _—_l4_ where hé is
=

oj—cl — hi-hY

the proportion of dominance to phenotypic variation.

Figure 1 illustrates where the respective EK in the form of rela-
tive magnitudes R, applies. Of note, for Model A only EK-pheno is
used, and EK-genetic is one (Ré = 1) as nonadditive effects are not
considered in this model. Similarly, for Model AD only EK-pheno
and EK-genetic are used as EK-nonadd is one (Rd% =1).

Values for the relative magnitudes R, will vary between study
systems and traits in line with the EK. In this study, our knowl-
edge is based on the cited literature in the introduction and prac-
tical experience with the analysis of a range of datasets. We
follow the fact that many complex traits in agriculture are under
sizeable environmental effect and that additive effects capture
most genetic variation by standard quantitative model construc-
tion. With this in mind, we assume EK-pheno to be Rg% =0.25,

EK-genetic to be Rs = 0.85, and EK-nonadd to be R =067. This
implies R; = 0.15-0.67 ~ 0.10 and Ry =0.15-0.33 ~ 0.05. We em-
g

phasize that we use this information to construct prior distribu-
tions, i.e., these relative magnitudes are only taken as a guide and
not as the exact magnitude of variance components. Fuglstad
et al. (2020) show that the prior for the first partition, the broad-
sense heritability hé, is not very influential.

We present two approaches for constructing a prior based on
EK-pheno, EK-genetic, and EK-nonadd: (1) a component-wise
(comp) prior, that is placed independently on each variance pa-
rameter; and (2) a tree-based (tree) model-wise prior that is de-
fined jointly for all variance parameters. Both approaches are
motivated by the concept of PC priors (Simpson et al. 2017).

PC priors

A PC prior for a parameter 0 is typically controlled by: (1) a preferred
parameter value 0y which is intuitive or leads to a simpler model;
and (2) an idea on how strongly we believe in 0. The PC prior
shrinks toward 6,, unless the data indicate otherwise. This is
achieved by constructing the prior based on a set of well-defined
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principles, for details, we refer to Simpson et al. (2017). PC priors can
be applied to a standard deviation or variance, a proportion of
variances, or other parameters such as correlations (Guo et al. 2017).

The PC prior for a standard deviation (o) of a random effect
will shrink the standard deviation toward zero, that is, toward a
simpler model without the corresponding random effect (assum-
ing the prior mean of the effect is zero). This prior is denoted as
6 ~ PCo(v/V,u) and results in an exponential distribution with
rate parameter —In(x)/v/V. The subscript 0 in PCo() indicates
that the prior shrinks toward ¢ =0. To define the prior the analyst
has to specify an upper value vV and a tail probability « such
that the upper-tail probability P(¢ > v/V) = «. Here, we use o=
0.25 so the prior distribution is weakly informative toward vV,
but shrinks to zero unless the data inform otherwise.

For a variance proportion p € [0, 1], we denote the PC prior as
p ~ PCo(R). The numerical value R € [0, 1] encodes the available
EK about the proportion and is set as the median of the prior, i.e.
P(p > R) = 0.5. The subscript 0 indicates that the prior shrinks to-
ward P=0. Shrinkage toward the median is achieved by the PC
prior p ~ PCy(R), where R has the same interpretation as for
PCy(R). For PCy(R), we need to specify how concentrated the dis-
tribution is on logit-scale in the interval [logit(R) — 1,logit(R) + 1]
around the median [see Fuglstad et al. (2020) for details]. We allo-
cated 75% probability to this interval.

The PC prior for a variance proportion depends on the structure
of the two random components that are involved through their co-
variance matrices. We omit this in the notation for simplicity, and
to emphasize that we chose to make the marginal priors on the
proportions independent of each other. As the PC prior on propor-
tions depends on the covariance matrix structure, it is application
specific, and the priors do not correspond to common families of
distributions such as the exponential or normal distributions [see
Riebler et al. (2016) and Fuglstad et al. (2020) for more details].

Component-wise prior

In the component-wise setting, we use a PC prior for each standard
deviation parameter o.. The PC prior on o, requires an upper value
V'V, so in addition to the relative magnitudes specified through
EK-pheno, EK-genetic, and EK-nonadd we need information on the
magnitude of the phenotypic variance to set up the component-
wise priors. For this purpose, we could calculate the empirical phe-
notypic variance Vp from a separate dataset, which is a trial study
or a study believed to exhibit similar phenotypic variance as the
study at hand. From this, we can define the upper values for
the individual PC priors. For example, to formulate priors for
Model A, we use EK-pheno to find e, ~ PCo( hévp, 0.25) and
Oe ~PC0( (1*]’1%)\/1),0‘25)4 For Model AD, we need EK-pheno
and EK-genetic to formulate the priors, and for Model ADX, the
most complex model, we take into account all available EK.

We follow the tree-structure shown in Figure 1 downwards to
define the upper values, and multiply the relative magnitudes on
the edges leading to the respective leaf nodes. For Model ADX,
this leads us to:

Ge ~ Pco( (1- hg)vp,o.25),
Ga ~ PCo(y/R2V5,0.25),

* o4 ~ PCo(4/h2V5,0.25), and

Gy ~ pco( (h2 —hZ — h3)Ve, 0.25)_

Combining the available EK procedure with the three different
genomic models gave us settings, we denote as A-comp®,

AD-comp*, and ADX-comp*. We have contrasted these settings
with a default component-wise PC prior proposed by Simpson
et al. (2017) with vV = 0.968 and « = 0.01 on all variance parame-
ters, which gave us settings denoted as A-comp, AD-comp, and
ADX-comp. This default prior is a prior without any EK.
Preliminary analyses showed that the inferences for AD-comp,
AD-comp*, ADX-comp, and ADX-comp* are not stable, ie. the
methods are not robust in the sense that they did not avoid esti-
mating spurious nonadditive effects, and we do not present
results from these settings. The priors for A-comp* and A-comp
are plotted in Supplementary Figure S1 in File S1 in the
Supplementary materials using hé =0.25 and Vp = 1. If Vp takes
another value, we simply rescale the x- and y-axes; the shape of
the prior stays the same. In the simulated case study, we will use
Vp = 1.86. The priors are equal on all standard deviations for
A-comp, AD-comp, and ADX-comp. The priors for AD-comp* and
ADX-comp* can be seen in Supplementary Figures S2 and S3 in
File S1. See Supplementary Note S1 in File S1 for a detailed de-
scription of the component-wise prior and posterior distributions
for Model A and Model AD.

Tree-based model-wise prior

In the model-wise setting, we shift the focus in Figure 1 from the
leaf nodes to the splits. In other words, a shift from the
component-wise perspective of variances associated with differ-
ent sources of variation to a model-wise perspective of how these
variances arise as a HD of the phenotypic variance. This provides
a complementary way to construct priors where EK-pheno, EK-
genetic, and EK-nonadd are directly incorporated at the appropri-
ate levels in the tree structure. We achieve this by applying the
HD prior framework of Fuglstad et al. (2020). We focus the presen-
tation on the essential ideas for understanding and successfully
applying the priors, and provide the comprehensive and mathe-
matical description in Supplementary Note S1 in File S1. We em-
phasize that in the following p. denotes an actual variance
proportion that we will infer (along with variances), while R.
denotes EX for this proportion.

We first assign a marginal prior for the decomposition of var-
iances in the lowest split, and then move step-wise up the tree
assigning a prior to the decomposition of variance in each split
conditional on the splits below it. The bottom-up process ends
with the assignment of a prior to the root split, and the resultis a
joint prior for the decomposition of phenotypic variance into the
different sources of variance. In the final step, we assign a prior
for phenotypic variance o2 that is conditionally independent of
the prior on the decomposition of the phenotypic variance.

We follow Fuglstad et al. (2020) and simplify the prior at each
split by conditioning on EK from the lower splits. For example,
the prior for p: is constructed under the assumption that
Pa = =R ) ; that is, n(pa\p 2 ) is replaced with n(pa|p 4= =R o ) Note
that even though we construct the prior from the bottom and up,
the arrows in the tree indicate how the phenotypic variance is
distributed in the model from the top down. This means that the
amount of, for example, dominance variance ¢4 depends on the
variance partitions further up, since 3 = app s (1-ps )p . follow-
ing the tree structure (Figure 1).

In this study, we assumed that at the lower levels the model
shrinks toward the expert knowledge EK-nonadd and EK-genetic
by using PCy(-) priors. Furthermore, at the top level, we use a
PCy(-) prior to shrink toward the environmental effect unless the
data indicate otherwise to reduce overfitting. Note that we could
have chosen different assumptions. To obtain a prior fulfilling
our assumptions, we follow four steps:
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Figure 2 The HD prior used in the ADX-tree*?. setting with the proportion
of genetic to phenotypic variance p ¢ , additive to genetic variance 2% and
Fe

dominance to nonadditive variance pa.WeuseRe =0.25 Ry =0.85,
Tx gte
and R4 =067. This is a dataset specific prior.

#Additive and nonadditive model with model-wise EK prior.

1) we use a PCy(-) prior for the proportion of dominance to
nonadditive variance with median Ra = hZh (EK-nonadd),

2) we use a PCy(-) prior for the propomon ‘of ‘additive to ge-
netic variance with median Rs = a 2 (EK-genetic),

3) we use a PCo(-) prior for the proportlon of genetic to pheno-
typic variance with median R;% = hé (EK-pheno), and

4) we achieve scale-independence through the noninforma-
tive and scale-invariant Jeffreys’ prior for the phenotypic
variance o2 ~ 1/c3.

This construction gives the joint prior =(s3,p e, D2, )=
7e =
n(o3)n(p £ )n(p%)n(p%) for Model ADX, where the conditioning on

EK from lower splits is omitted to simplify notation. We denote this
setting as ADX-tree* and show this prior in Figure 2 for R g =
7

0.25, Rs = 0.85 and R4 =0.67. Note that the model-wise priors

with EK are dependent on the covariance matrices of the modeled
effects and are therefore dataset specific (Fuglstad et al. 2020), and
the plots of these priors thus pertain to one specific dataset. The
spike at P=1 for p i in Figure 2 is an artifact of the parameteriza-

tion chosen for visualization and does not induce overfitting; see
Fuglstad et al. (2020) for details. See Supplementary Note S1 in File
S1 for a detailed description of the model-wise prior and posterior
distributions for Model A and Model AD.

We explored the influence of alternative EK. In addition to
the previously stated values for EK-pheno, EK-genetic, and
EK-nonadd we also tested R = =025, R =0.05, and Re =~ 0.11
(so Rd~095 0.11~0.10 and Ry~ 0.95" 0.89 ~ 0.85). The con-
structions follow the descnptlon above but with these relative
magnitudes instead. We denote this setting as ADX-tree-opp®,
as it expresses almost opposite or “wrong” beliefs compared to
ADX-tree* setting, and show the prior in Supplementary Figure S4
in File S1in the Supplementay materials.

For Model AD, the nonadditive effect only consists of dominance,
and the variance is attributed to the different effects as visualized
by the top and middle split in Figure 1. We construct a prior using
EK-pheno and EK-genetic with R = =0.25 and Ry = 0.85 and denote
this setting AD-tree”. The prior is ‘shown in Flgure 3.

For Model A, the genetic variance is not decomposed to differ-
ent sources and the distribution of the phenotypic variance can
be visualized using the top split in Figure 1. We use EK-pheno
with R e = 0.25 to construct a prior for the proportion of genetic
to phenotypic variance and denote this setting as A-tree®.
We show this prior in Figure 4.

We compared the model-wise prior with EK to a default prior
with no EK by constructing an HD prior using the exchangeable

Density

Figure 3 The HD prior used in the AD-tree*® setting with the proportion
of genetic to phenotypic variance pe and additive to genetic variance ps.
We use R L+ =0.25 and Ry =0.85. This is a dataset specific prior.

“Additive and dominance model with model-wise EK prior.

L] L} ] Ll
0.00 025 050 0.75 1.00

L] ] L} Ll L}
0.00 025 050 0.75 1.00
P P

Figure 4 The prior for the proportion of genetic to phenotypic variance
Pe for the A-tree*® (left) and A-tree® (right) settings. We use Re =0.25.
A-tree is a dataset specific prior. ¢

#Additive model with model-wise EK prior.
PAdditive model with model-wise default prior.
(A) Genetic value (variety selection). (A) Additive value (parent selection).

Dirichlet prior on the proportion of phenotypic variance attrib-
uted to each of the sources of variance following Fuglstad et al.
(2020). For Model A, we use a uniform prior, which is a special
case of the symmetric Dirichlet(m) prior with m=2, on the pro-
portion of genetic to phenotypic variance be and denote this set-
ting as A-tree (see Figure 4). For Models ‘AD and ADX, we use
Dirichlet(3) and Dirichlet(4) priors on the proportions, respec-
tively, and denote these settings AD-tree and ADX-tree. These
priors do not induce shrinkage toward any of the effects, and as-
sume that each model effect contributes equally to the pheno-
typic variance, which due to the lack of EK did not lead to stable
inference for Models AD and ADX. We do not show results from
these settings. The tree structure and prior for AD-tree and ADX-
tree can be seen in Supplementary Figures S5 and S6 in File S1,
respectively. We summarize the model-wise priors that will be
used in the following in Table 1.

Simulated case study

We applied the described genomic model (1) with the above men-
tioned priors to a simulated case study that mimics a wheat
breeding program to investigate the properties of the different
settings. We simulated the breeding program using the R package
AlphaSimR (Faux et al. 2016; Gaynor 2019) and closely followed
the breeding program descriptions of Gaynor et al. (2017) (see
their Figure 3) and Selle et al. (2019).

Specifically, we simulated a wheat-like genome with 21 chro-
mosomes, selected at random, 1000 SNP markers and 1000 causal
loci from each chromosome and used this genome to initiate a
breeding program with breeding individuals. Every year, we have
used 50 fully inbred parents to initiate a new breeding cycle with
100 random crosses. In each cross, we have generated 10
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Table 1 Summary of the model-wise (tree-based) prior distributions on proportions® ¥ and total phenotypic variance

Additive (Model A, g; = a;)

Additive and nonadditive
(Model ADX, g; = a; + d; + x;)

Additive and dominance
(Model AD, g; = a; + d;)

Default Expert Expert Expert
A-tree: A-tree*: AD-tree*: ADX-tree*:
Pgg +e ~ Dirichlet(2) pg ~PG(R g p g ~PC(R g pg ~PG <R g >
gt+e g+e g+e <g+e> gte g+e
2 /
o~ Jeffreys oh ~ Jeffreys’ pa ~ PCu(Ra
pé ~ PCy RE é é
g g
2 ' d
o Jeffreys P4 ~ PCy <R7d+x>

op ~ Jeffreys’

% p ~ PCo(R) describes a PC prior for a variance proportion that has median equal to R and a preference for the variance proportion being equal to 0.
°p ~ PCy(R) describes a PC pnor for a variance proportion with median R and a preference for the variance proportion being equal to the median R, with 75%

probability in [logit(R) — 1,logit(R) + 1] around the median on logit-scale.

progenies and selfed them to generate 1000 F2 (second filial) indi-
viduals, which were selfed again to generate 10,000 F3 (third filial)
individuals. We reduced the 10,000 F3 individuals in four succes-
sive selection stages (headrow, preliminary yield trial, advanced
yield trial, and elite yield trial) with 10% selection intensity in
each stage. In the headrow stage, we simulated a visual selection
on a phenotype with the heritability of 0.03. For the preliminary,
advanced and elite yield trials we, respectively, simulated selec-
tion on phenotype with heritability 0.25, 0.45, and 0.62. We used
the 50 individuals with the highest phenotype values from the
last three selection stages as parents for the next breeding cycle.

We ran the simulation for 30years. At year 1, we set the fol-
lowing variances for the population of the 50 parents: additive
variance of 1.0, dominance variance of 0.5, and epistasis variance
of 0.1. We set the environmental variance to 6.0 for all stages and
years. We ran the simulation for 20 years as a “burn-in” to obtain
realistic breeding data under selection. We then ran the simula-
tion for another 10years with selection on phenotype. We re-
moved the SNP markers with minor allele frequency below 5%.
We did not use the models for selection.

Real case study

We also applied the described genomic model (1) to the publicly
available Central European wheat grain yield data from Gowda
et al. (2014) and Zhao et al. (2015). In short, the data consist of 120
female and 15 male parent lines, which were crossed to create
1604 hybrids. The parents and hybrids were phenotyped for grain
yield in 11 different trials in 6 locations in Germany. The number
of observed phenotypes for the parents and hybrids vary between
the trials, ie., some datasets have more observed phenotypes
than others, ranging from 834 to 1739 (see Supplementary Table
S1 in File S1 in the Supplementary materials). The parents and
hybrids have genotype data for 17,372 high-quality SNP markers.

In the real case study, we analyzed the performance of the
tree-based priors using EX (tree*) for the additive model (A), the
additive and dominance model (AD), and the additive and non-
additive model (ADX). We used the same as in the simulation
study: R: =085 and R 4= =0.67. We have, however, used a
higher value in EK- pheno Re =0.75, in line with Reif et al.
(2011)—later stage trials tend to have higher heritablity than
early stage trials. Again, we emphasize that these values are
only used to construct prior distributions and are not taken as

literal proportions. The resulting priors can be seen in
Supplementary Figure S7 in File S1.

Implementation details

We fitted the models with a Bayesian approach through the R
package RStan (Carpenter et al. 2017; Stan Development Team
2019). This package provides a sampling algorithm that uses the
No-U-Turn sampler, a variant of Hamiltonian Monte Carlo, and
only requires that the user specifies the joint posterior distribu-
tion up to proportionality, without having to write a sampling al-
gorithm. See Supplementary Note S1 in File S1 for details.
Sampling methods such as Markov Chain Monte Carlo and
Hamiltonian Monte Carlo have guaranteed asymptotic accuracy
as the number of drawn samples goes to infinity. However, in an
applied context with finite computational resources, it is hard to
assess this accuracy. Betancourt (2016) developed a diagnostic
metric for the Hamiltonian Monte Carlo, called divergence, which
indicates whether the sampler is able to transition through the
posterior space effectively or not, where in the latter case the
results might be biased (we show an example on this in the
results).

We also fitted Models A, AD, and ADX with the ML approach
using the low-storage BFGS (Broyden-Fletcher-Goldfarb-Shanno)
algorithm through the R package nloptr (Nocedal 1980; Liu and
Nocedal 1989; Johnson 2020). This approach does not use priors.
We denote them as A-ML, AD-ML, and ADX-ML and use them as
a baseline for comparison because ML is a common approach in
the literature. Inference for ADX-ML was not robust, and we do
not present results from this setting. At last, we compared the
model results to the performance of selection based solely on
phenotype where we treat the phenotype as a point estimate of
the genetic value.

Performance assessment

For the simulated case study, we ran the breeding program simu-
lation 4000 times and fitted the model and prior settings in each
of the last 10 years of simulation (40,000 model fits in total) at the
third selection stage (advanced yield trial) in the program. Here
we had 100 individuals each with five replicates and the goal was
to select the 10 genetically best individuals for the fourth, last,
stage. For each model fit, we evaluated: (1) robustness of method,
(2) the accuracy of selecting the genetically best individuals,
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(3) the accuracy of estimating the different genetic values, and (4)
the accuracy of estimating the variance parameters. We evalu-
ated the fits against the true (simulated) values.

We measure how robust the method (model and inference ap-
proach) is, i.e., to which degree it avoids estimating spurious non-
additive effects, in stability of inference. For the stability of
inference of the Bayesian approach with Stan, we used the pro-
portion of analyses that had stable inference (which we define as
at least 99% samples where no divergent transitions were ob-
served) for each model and prior setting. For the stability of infer-
ence of the ML approach we used the proportion of analyses
where the optimizer algorithm converged.

For the accuracy of selecting the genetically best individuals,
we ranked the best 10 individuals based on the estimated genetic
value or estimated additive value, and counted how many were
among the true genetically best 10 individuals based on the true
genetic value or true additive value. We used the posterior mean
of the effects as estimated values for ranking. Selection on the ge-
netic value indicated selection of new varieties, while the selec-
tion on the additive value indicated selection of new parents.

For the accuracy of estimating the different genetic values (to-
tal genetic, additive, dominance, and epistasis values) we used
Pearson correlation and continuous rank probability score (CRPS,
Gneiting and Raftery 2007). With the correlation, we measured
how well posterior means of genetic values correlated with true
values (high value is desired). This metric works with point esti-
mates and ignores uncertainty of inferred posterior distributions
of each individual genetic value. The CRPS is a proper scoring
rule and as such measures a combination of bias and sharpness
of the posterior distribution compared to true values (low value is
desired). Specifically, CRPS integrates squared difference between
the cumulative estimated posterior distribution and the true
value over the whole posterior distribution (Gneiting and Raftery
2007). See Selle et al. (2019) for a detailed explanation of CRPS
used in a breeding context. In the case of phenotypic selection,
we have a phenotype value for selection candidates, which is a
point estimate of the genetic value, and its CRPS then reduces to
the mean absolute error between the true genetic values and the
phenotype.

The accuracy of the estimates of the variance parameters was
assessed by dividing them by the true genetic variances for each
of the 10years from the simulated breeding program (a value
close to 1is desired). This is not done for phenotype selection.

To test the effect of dataset size on inference, we ran the
breeding program an additional 1000 times and fitted the models
to n=700,600,...,100 individuals in the preliminary stage (in-
stead to 100 individuals in the advanced stage) at year 21. We
used the settings with tree-based EX priors and the ML approach
and investigated the performance of the methods for increasing
number of observations by evaluating the robustness, and the ac-
curacy of estimating the different genetic values and variance
parameters.

We analyzed the real case study with the same models and
tree-based EK priors and focused on the ability of predicting ob-
served phenotypes in a cross-validation scheme. We performed
fivefold cross-validations five times for each of the 11 trials inde-
pendently. For each fold in each cross-validation, we predicted
the held-out phenotypes (their posterior distribution involving in-
tercept, genetic value, and environmental variation), and calcu-
lated the correlation between the point predictions and the
observed phenotypes, and the CRPS using the phenotype poste-
rior prediction distributions and the observed phenotypes avail-
able for each trial. We note that phenotype posterior predictions

involve environmental variation, which does not affect point pre-
dictions and correlations, but affects the CRPS as the whole dis-
tribution of the prediction is involved in the calculations. We also
looked at the posterior medians of the model variances. Of note,
in contrast to the simulated case study, the genetic effects are
unknown for real data, so that we cannot assess the estimation
accuracy of the effects.

Data and code availability

We provide code to simulate the data described in the simulated
case study (Supplementary File S2). We also provide example
code to fit the models presented in this paper together with an
example dataset (Supplementary File S3). In the real case study,
we used data from Gowda et al. (2014) (SNP genotypes) and Zhao
et al. (2015) (phenotypes), and provide code for fitting the models
in Supplementary File S4, including the folds used in the cross-
validation. The Supplementary materials are available at figshare
https://doi.org/10.6084/m9 figshare.12040716.

Results
Simulated case study

In the simulated case study, the model-wise priors and EK im-
proved the inference stability of the nonadditive models and the
selection of the genetically best individuals, but did not signifi-
cantly improve the accuracy of estimating different genetic val-
ues for all individuals or for variance components.

Robustness and stability:

Table 2 shows the proportion of stable model fits by model and
prior setting. The model-wise priors combined with EK improved
the inference stability of the additive and dominant (AD) model
and the nonadditive (ADX) model to the level of stability of the
additive (A) model and phenotypic selection. Phenotypic selection
does not depend on a model fit to a dataset and therefore had the
highest method robustness by definition. This maximum level of
robustness was matched by the simple additive model with the
model-wise prior with and without using EK (A-tree* and A-tree)
and with the standard ML approach (A-ML). This high model ro-
bustness was followed closely by fitting the more complicated
nonadditive and additive and dominance models with model-

Table 2 Method robustness measured in stability of inference by
model and prior setting

Setting (abbreviation) Stability
Phenotype selection 1.00
Add. tree expert (A-tree®) 1.00
Add. tree default (A-tree) 0.99
Add. maximum likelihood (A-ML) 0.99
Non-add. tree expert (ADX-tree") 0.98
Add. + dom. tree expert (AD-tree”) 0.97
Add. comp. expert (A-comp*) 0.94
Add. 4+ dom. maximum likelihood (AD-ML) 0.88
Add. comp. default (A-comp) 0.86
Non-add. tree expert opposite (ADX-tree-opp®) 0.86
Non-add. comp. expert (ADX-comp®) 0.80
Non-add. maximum likelihood (ADX-ML) 0.79
Add. + dom. comp. expert (AD-comp*) 0.69
Add. + dom. tree default (AD-tree) 0.51
Non-add. tree default (ADX-tree) 0.23
Add. 4+ dom. comp. default (AD-comp) 0.13
Non-add. comp. default (ADX-comp) 0.04

? As a proportion of analyses with less than 1% divergences for the Bayesian
approach and as a proportion of analyses with convergence for the ML
approach.
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wise prior and EK (ADX-tree* and AD-tree*). The Bayesian ap-
proach using component-wise priors with EK (A-comp®), the addi-
tive and dominance model with the ML approach (AD-ML), the
component-wise priors without EK (A-comp), and the model-wise
prior with wrong/opposite EK (ADX-tree-opp*) also resulted in
satisfactory robustness, but then the proportion of model fits
with stable inference started to decrease. The robustness of the
additive and dominance model and the nonadditive model with
default component-wise priors (AD-comp and ADX-comp) was
improved by using the model-wise priors (AD-tree and ADX-tree),
and even further by EK (AD-comp* and ADX-comp*), but neither
they nor the nonadditive model fitted with ML (ADX-ML) had
more than 80% stable model fits.

The reason for deteriorated robustness of some model and
prior settings is that genetic (especially the nonadditive) and en-
vironmental effects can be partially confounded, which limits the
exploration of the posterior when using the Bayesian approach or
limits convergence of mode-seeking algorithms when using the
ML approach. We show the partial confounding with images of
the covariance matrices for additive, dominance, epistasis, and
environmental sources of variation for one dataset in
Supplementary Figure S8 in File S1, and scatterplots of the pair-
wise elements on and off the diagonal of the same matrices in
Supplementary Figure S9. Supplementary Figure S10 shows
joint posterior samples for the epistasis and environmental var-
iance for model ADX with model-wise priors with and without
EK (ADX-tree* and ADX-tree) for one dataset. Without a robust
method (this includes both the model and inference approach),
the posterior distribution becomes difficult to explore, and this
is also supported by the divergence diagnostics (Table 2).
The posterior of the ADX-tree setting is bimodal and the
sampler has not been able to sample with convergence due to
confounding.

We do not present results from the settings with 80% or less
stable model fits (see Table 2) in the following. Note that Table 2
includes all model abbreviations used. For each setting, the
breeding programs that did not result in stable inference were re-
moved from the results.

(a)
AD-tree*

ADX-tree™

A-tree |

A-tree* |

A-comp* I |

ADX-tree-opp” [[
AD-ML I]]
D] Phenotype selection
36 ;

37 38 3.9
Average number of top 10 individuals

Selecting best individuals:

Figure 5 shows the accuracy of selecting individuals with the
highest genetic value (variety selection, Figure 5A) and with the
highest additive value (parent selection, Figure 5B). The model-
wise priors exploiting EK improved the selection of the genetically
best individuals significantly, and the model choice was impor-
tant for different breeding aims. The settings with the additive
and dominance model and the nonadditive model with model-
wise EK (AD-tree* and ADX-tree*) performed significantly better
in selection of new varieties than the others, which followed in
order from A-tree, A-tree*, A-comp*, A-comp, A-ML, ADX-tree-
opp*, and AD-ML (see Table 2 for abbreviations). The differences
between the settings were small, but they all performed signifi-
cantly better than sole phenotype selection, which is sensitive to
environmental noise. For the selection of new parents, the sim-
pler additive model performed the best, and the model-wise pri-
ors improved its performance (A-tree, A-tree*, and A-comp®).
Wrong EK harmed the parent selection (ADX-tree-opp*), but it
still outperformed sole phenotype selection.

Estimation:

We summarize the remaining results here, and include a detailed
description of the results for the additive model with model-wise
default prior (A-tree) and the ML approach (A-ML), the additive
and dominance model and the nonadditive model with model-
wise EX prior (AD-tree* and ADX-tree”), in addition to phenotype
selection, in Supplementary Note S2, and provide the complete
results for all settings in Supplementary Figures S11-S16 in File
S1.

While using the model-wise priors and EK significantly im-
proved the selection of the genetically best individuals compared
to the ML approach, it did not significantly improve the accuracy
of estimating different genetic values across all individuals
(Supplementary Figures S11 and S12). There was a tendency for
the Bayesian models to perform better than the models fitted
with the ML approach, but the variation between replicates was
larger than the variation between the settings. All models outper-
formed phenotype selection, where we treat the phenotype as a
point estimate of the genetic value.

(b)

svee [l

A-tree”

A-comp*

3.3 3.4 3.5 3.6
Average number of top 10 individuals

Figure 5 Accuracy of selecting individuals with the highest (A) genetic value (for variety selection) and (B) additive value (for parent selection) by model
and prior setting—measured with the number of the top 10 true best individuals among the top 10 selected individuals (average + two standard errors

over replicates).
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Figure 6 Phenotype prediction ability measured with correlation (top;
high value desired), and CRPS (bottom; low value desired) from three of
the trials in the real case study (boxplots show variation over the cross-
validations and folds). Left: Sel13 (1739 observations), middle: Sel12 (834
observations), right: Had12 (1738 observations).
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Supplementary Figure S13 shows that the variance compo-
nent estimates varied considerably around the true values for all
models and prior settings. The estimates from the Bayesian infer-
ence showed slightly larger biases and smaller variances than ML
estimates. Estimates for epistasis variance were considerably
more underestimated than for the dominance variance.

The inference stability did not increase with increasing num-
ber of observations for any of the models fitted with the ML ap-
proach. The Bayesian models with model-wise EK priors had the
same high inference stability as in Table 2. The variation between
replicates decreased for the variance estimates (Supplementary
Figure S14) and the correlation and CRPS of the model effects im-
proved for all models for increasing number of observations
(Supplementary Figures S15 and S16). Seven hundred observa-
tions were not enough for the ML approach to obtain a bias in
dominance and epistasis variance estimates as low as the
Bayesian approach (Supplementary Figure S14), indicating that
the need for good prior distributions is still there, but decreases
with increasing number of observations.

Real case study

The Bayesian approach with model-wise EK priors performed at
least as good as or better than the ML approach. Figure 6 shows
the predictive ability of phenotypes measured with correlation
and CRPS from three trials in Seligenstadt (Sell13 and Sel12) and
Hadmersleben (Had12) over the five fivefold cross-validations.
These trials had phenotype observations for 1739 (Sell3), 834
(Sel12), and 1738 (Had12) parents and hybrids, and represent
three different groups of trials: Sel13 represents the trials Adel3,
Boh13, Hhof12, Hoh12, Hoh13, and Sel13 where few observations
are missing and the Bayesian and ML approaches perform
equally good. Sell12 represents the trials Boh12 and Sel12 where
we have many missing observations and the ML approach is di-
verging. Had12 represents the trials Had12, Had13, and Hhof13
where few observations are missing but the ML approach leads to
overfitting of the nonadditive effects. Inside each group, the
results give similar conclusions, and we show results for only one
trial in each group here. We include correlation and CRPS for all
11 trials in Supplementary Figures S17 and S18 in File S1. The ML
approach was as good as the Bayesian approach in the Sel13 trial
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Figure 7 Posterior median variances from the real case study for three of
the trials for the five fivefold cross-validations. Top: Sel13 (1739
observations), middle: Sel12 (834 observations), bottom: Had12 (1738
observations). For Sel12, the A-ML is overestimating the additive
variance so badly (values over 400) that we have truncated the y-axes at
1.5 to highlight the other results.

where all phenotypes were observed for the parents and hybrids,
but in the Sel12 trial, which consists of only 834 out of 1739 ob-
served phenotypes, the ML approach had worse predictive ability
for the additive model (A), and slightly worse for the nonadditive
model (ADX). In the Had12 trial with practically no unobserved
phenotypes, the ML approach is outperformed by the Bayesian
approach for the nonadditive model due to overfitting through
overestimation of the epistasis variance (see Figure 7). The
results from the additive and dominance (AD) model did not dif-
fer from the results from the additive and nonadditive model,
and we to not discuss them here, but include the results from
AD-tree* and AD-ML in Supplementary File S1 (Supplementary
Figures S17-519).

We explored reasons for the bad performance of A-ML in the
Sel12 trial (representing trials with many missing observations).
The ML optimizer returned a converge error message for two of
the total 25 folds (we removed these model fits from all the
results). However, the severe overestimation of the additive vari-
ance shown in Figure 7 indicates that the optimizer did not find
the global maximum, but rather a local one. A closer investiga-
tion of the variance estimates showed that the optimizer got
“stuck” at the lower boundary values (-20 for the environmental
and -50 for the other variances on a logarithmic scale). We gave 0
as initial value for the intercept and log-variances for both the
Bayesian and ML approach, however, the latter did not converge.

In Figure 7, we see that for Sel13 the approaches are in agree-
ment on the variance estimates. With a dataset with many unob-
served phenotypes (represented by Sel12), the additive model
fitted with the ML approach (A-ML) estimated the environmental
log-variance at -20, and in compensation severely overestimated
the additive variance. The nonadditive model fitted with ML
(ADX-ML) had the same underestimation of the environmental
variance for some folds, but compensated with nonadditive
effects. This indicates overfitting and means that predictions
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from such are based solely on genetic values, and no environ-
mental effects, which gives misleading predictions. ADX-ML was
also underestimating the environmental variance for the data
from Had12, Had13, and Hhof13, and compensated this variance
with the dominance and epistasis effects. We reran the ML opti-
mizer with initial values set to posterior medians from the corre-
sponding Bayesian models. In this case, the ML approach was not
outperformed by the Bayesian approach (see Supplementary
Figures S17 and S18 in File S1). The variance estimates for all
environments can be seen in Supplementary Figure S19.

In Supplementary Figures S17 and S18, we see that the trend
is the same across the trials; for datasets where we have observed
most of the phenotypes for the parents and hybrids, the ML and
Bayesian approaches are in general performing equally, and we
gain predictive accuracy by including nonadditive effects, but as
soon as there are many unobserved phenotypes, such as for
Boh12 and Sel12 (see Supplementary Table S1 for information
about all trials), the ML approach is deteriorating. For the Had12,
Had13, and Hhof13 trials, which has few unobserved phenotypes
but still has poor predictive abilities for the nonadditive model
(ADX), the ML approach has problems with overfitting (see
Supplementary Figure S19). The model underestimates the envi-
ronmental variance and attributes this variation to the domi-
nance and epistasis effects.

Discussion

In this study, we have introduced new priors for robust genomic
modeling of additive and nonadditive variation based on the PC
prior (Simpson et al. 2017) and HD prior (Fuglstad et al. 2020)
frameworks. In the simulated case study, the new priors enabled
straightforward use of EK, which in turn improved the robustness
of genomic modeling and the selection of the genetically best
individuals in a wheat breeding program. However, it did not im-
prove the overall accuracy of estimating genetic values for all
individuals or for variance components. In the real case study,
the new priors improved the prediction ability, especially for tri-
als with fewer observations, and they reduced overfitting. These
results highlight three points for discussion: (1) expert-knowledge
priors for genomic modeling and prediction, (2) the importance of
priors for breeding, and (3) limitations of our work.

EK priors for genomic modeling and prediction

Genomic modeling is challenging due to inherent high-
dimensionality and pervasive correlations between loci and
therefore requires substantial amounts of information for robust
estimation. Most genomes harbor millions of segregating loci
that are highly or mildly correlated. While estimating additive
effects at these loci is a challenging task in itself (e.g., Visscher
et al. 2017; Young 2019), estimating dominance and epistasis
effects is an even greater challenge (e.g., Misztal 1997; Zhu et al.
2015; de los Campos et al. 2019). One challenge in estimating the
interactive dominance and epistasis effects is that they are corre-
lated with the main additive effects and all these effects are fur-
ther correlated across nearby loci (Mdki-Tanila and Hill 2014; Hill
and Maki-Tanila 2015; Vitezica et al. 2017). Information to esti-
mate all these locus effects and corresponding individual values
has to inherently come from the data, but could also come in a
limited extent from the EK. There is a wealth of EK in genetics
(e.g., Houle 1992; Falconer and Mackay 1996; Lynch and Walsh
1998), however, this EK is seldom used because it is not clear how
to use itin a credible and a consistent manner.

We showed how to use the EK about the magnitude of differ-
ent sources of variation by leveraging two recently introduced
prior frameworks (Simpson et al. 2017; Fuglstad et al. 2020). While
the PC priors are parsimonious and intuitive, they require abso-
lute prior statements when used in a component-wise approach,
which are challenging to elicit for multiple effects. The HD frame-
work imposes a tree structure according to a domain model, and
the intuitive PC prior can be used in the HD prior framework to
ensure robust modeling. This model-wise approach enables the
use of relative prior statements, which are less challenging to
elicit than the absolute prior statements, because we tend to
have good knowledge of the broad-sense heritabililty for most
traits and by the standard quantitative genetic model construc-
tion we know that additive effects capture majority of genetic
variance (Hill et al. 2008; Méaki-Tanila and Hill 2014; Hill and
Maéki-Tanila 2015; Huang and Mackay 2016). The presented priors
therefore pave a way for a fruitful elicitation dialog between a ge-
neticist and a statistician (Farrow 2013). In particular, the HD
prior framework provides both a method for prior construction
and a platform for communication among geneticists and statis-
ticlans. The model-wise EK prior must naturally be adapted to
each model, as it depends on the model structure, but using the
tree structures makes this adaption intuitive and should as such
help with prior elicitation (O'Hagan et al. 2006; Farrow 2013).
Furthermore, the graphical representation allows a description of
a joint prior in a visual way with minimal statistical jargon
(Figure 1).

An example of using such EK was the choices of a median for
the broad-sense heritability of 0.25 in the simulated and 0.75 in
the real case study. However, as Figure 2 and Supplementary
Figure S7 show the priors do not differ tremendously. This shows
that the prior proposed in this study is vague and not restricted
by the value chosen for the median. Perhaps there is even
scope for more concentrated priors, should such information be
available.

The HD prior framework enabled us to use EK on relative addi-
tive and nonadditive variation. If nonadditive effects are to be
added to the model, EK is necessary for the inference to be stable
and the results reliable, and the simulation study shows that the
EK must be added in such a way that the magnitude of the var-
iances are not restricted by the prior, ie., the model-wise ap-
proach instead of the component-wise approach. In the
simulated case study, the EK improved the stability of inference
of the Bayesian approach over the ML approach and improved
the selection of the genetically best individuals. This improve-
ment was due the additional information that alleviated the
strong confounding between the nonadditive (particularly epista-
sis) and environmental variation.

The HD prior framework is also useful when EX is only avail-
able on parts of the model. For example, an expert may not have
a good intuition about the level of broad-sense heritability, say
for a new trait, but will likely have a good intuition on how the ge-
netic variance relatively decomposes into additive, dominance,
and epistasis components, simply due to the model specification
(Hill et al. 2008; Médki-Tanila and Hill 2014; Hill and Mé&ki-Tanila
2015; Huang and Mackay 2016). In those cases, we can use weakly
informative default priors on the parts of the model where EK is
missing, and priors based on EK for the rest of the model. The
component-wise specification of EK with the standard (Sorensen
and Gianola 2007) or the PC (Simpson et al. 2017) priors is infeasi-
ble in this context, and does not admit a simple visualization of
the implied assumptions on the decomposition of the phenotypic
variance. Furthermore, the component-wise specification of EK is
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particularly challenging when phenotypic variance is unknown
or when collected observations are influenced by a range
of effects which can inflate sample phenotypic variance.
The model-wise approach with the HD prior can address these
situations.

There exists previous work on penalized estimation of genetic
covariances (e.g., Meyer et al. 2011; Meyer 2016, 2019) that also
uses Bayesian principles and scale-free penalty functions to re-
duce variation of the estimates from small datasets and for large
numbers of traits. Our proposed priors and EK reduced variation
of estimates in the simulated case study. However, our estimates
were biased, which is expected given the small sample size and
that the Bayesian approach induced bias toward a lower variance
(e.g., Sorensen and Gianola 2007). It is worth noting that the ML
estimates of genetic variance also were largely underestimated,
which we believe is due to the small sample size and a large
number of parameters to estimate. We see in Supplementary
Note S2 (File S1) that the data inform about phenotypic variance
and broad-sense heritability, but only weakly about the division
of the additive and nonadditive, and dominance and epistasis.
Furthermore, for some datasets, we could not obtain the ML esti-
mates, while priors robustified the modeling by penalizing the ge-
netic effects. The real case study also showed that using EK
increases the inference robustness in datasets with a large
amount of unobserved phenotypes, and reduces overfitting. We
saw this improvement in both the Bayesian approach and the ML
approach where we used the results from the Bayesian models as
initial values for the optimization algorithm. However, the latter
approach requires specific EX on the size of the variances, which
in the same way as the component-wise EK priors, is difficult to
elicit from experts in the field. We note, however, that genomic
models are inherently misspecified by trying to estimate the ef-
fect of causal loci through correlated marker loci (Gianola et al.
2009; de los Campos et al. 2015). Also, linkage and linkage disequi-
librium are challenging the decomposition of genetic variance
into its components (Gianola et al. 2013; Morota et al. 2014;
Morota and Gianola 2014). Indeed, our variance estimates were
not very accurate in the simulated case study.

Future research could expand the HD prior framework to
other settings. For example, to multiple traits or modeling
genotype-by-environment interactions, which are notoriously
noisy, and we aim to find parsimonious models (e.g., Meyer 2016,
2019; Tolhurst et al. 2019). Also, expand to model macro- and
micro-environmental effects (e.g., Selle et al. 2019) and to model
multiple layers of sparse, yet high-dimensional, “omic” data from
modern biological experiments using network-like models
(Damianou and Lawrence 2013).

Importance of priors for breeding

Robust genomic modeling of nonadditive variation is important
for breeding programs. There is substantial literature indicating
sizeable nonadditive genetic variation (e.g., Oakey et al. 2006;
Munoz et al. 2014; Bouvet et al. 2016; Varona et al. 2018; de
Almeida Filho et al. 2019; Santantonio et al. 2019; Tolhurst et al.
2019), but robust modeling of this variation is often challenging.
We have shown how to achieve this robust modeling with the
proposed priors and EK. We evaluated this approach with a simu-
lated wheat breeding program where we assessed the ability to
select the genetically best individuals on their genetic value (vari-
ety selection) and additive value (parent selection). The results
showed that the proposed priors and the EK improved variety
and parent selection. We observed more improvement in the va-
riety selection, which is expected because there is more variation

in genetic values than its first-order approximation additive val-
ues. However, this additional nonadditive variation is hard to
model due to a small signal from the data relative to environ-
mental variation and confounding with the environmental varia-
tion. This confounding is expected. As pointed by one of the
reviewers, we obtain the epistasis covariance matrix using the
Hadamard product of the additive covariance matrix with itself,
and such repeated Hadamard multiplication converges to an
identity matrix, i.e., to the covariance matrix of the environmen-
tal effect. Both the simulated and real case studies showed that
including nonadditive effects in the model requires some sort of
penalization to avoid overfitting environmental noise as nonaddi-
tive genetic effects. The proposed priors and the EK helped us to
achieve this.

Importantly, all models improved upon sole phenotypic selec-
tion in the simulated case study, which shows the overall impor-
tance of genomic modeling While the differences between the
different models and priors were small, the improved genomic
modeling can contribute to the much needed improvements in
plant breeding (Ray et al. 2013; Asseng et al. 2015). Also, even a
small improvement in the variety selection has a huge impact on
production, because varieties are used extensively (Acquaah
2007). In the terms of model complexity, the answer to whether
to use the additive model, the additive and dominance model or
the nonadditive model depended on the aim of the analysis. The
latter models were the best in selecting the genetically best indi-
viduals on genetic value, whereas the additive model performed
best in selecting the genetically best individuals on additive
value. The reason for this is likely the small sample size and large
number of parameters to estimate with the nonadditive model
(Varona et al. 2018). In the real case study adding nonadditive
effects to the model improved the phenotypic prediction accu-
racy beyond the additive model, and the EX helped us to avoid
overfitting, which shows the advantage of the EK.

Of note is the observation that the proposed priors and the EK
improved the selection of the genetically best individuals, but not
the estimation of the different genetic values. We did not expect
this difference. In principle, both of these metrics are important,
but for breeding the ability to select the genetically best individu-
als is more important (de los Campos et al. 2013). A possible ex-
planation for the difference between the two metrics is that the
top individuals deviated more from the overall distribution and
the overall metrics do not capture well the tail-behaviour.

The importance of the proposed priors and the EK will likely
vary with the stage and size of a breeding program, and as the
simulation study with increasing amount of observations and the
real case study shows, the importance of priors increases with
the decreasing amount of observations. Prior importance is
known to decrease as the amount of data increases (Sorensen
and Gianola 2007), but the required amount of data for accurate
estimation of nonadditive effects is huge compared to the size of
most breeding programs. Therefore, the proposed PC and HD pri-
ors could be helpful also in large breeding programs as they en-
force shrinkage according to the EK unless the data indicate
otherwise, reducing the risk of estimating spurious effects.

Limitations of our work

The aim of this paper was to describe the use of the EK to im-
prove genomic modeling, which we achieved through two re-
cently introduced prior frameworks (Simpson et al. 2017; Fuglstad
et al. 2020), and demonstrated their use in a simulated and a real
case study of wheat breeding. There are multiple other possible
uses of the proposed priors in genomic modeling and prediction.
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The simulated case study is small with only 100 individuals at
the advanced yield trials of a wheat breeding program, and up to
700 individuals at the preliminary yield trials. A small number of
individuals and a limited genetic variation at this stage made a
good case study to test the importance of priors, and we show
that using our approach can be beneficial beyond the standard
genomic model. We have also chosen this stage for computation-
ally simplicity and speed because we evaluate the robustness of
estimation over many replicates. Studies with more individuals
are a natural next step, but is beyond the scope of this paper due
to computational reasons. Finally, we could have tested more
prior options, in particular the shrinkage of the nonadditive val-
ues toward the additive values, i.e., the PCy(:) versus the PCy(:)
prior. More research is needed in the future to see how the EK can
improve genetic modeling further.

Interesting areas for future research are also in other breeding
domains with the recent rise in volumes of individual genotype
and phenotype data, which provide power for estimating domi-
nance and epistasis values (e.g., Alves et al. 2020; Joshi et al. 2020).
The ability to estimate the nonadditive values would be very ben-
eficial in breeding programs that aim to exploit biotechnology
(e.g., Gottardo et al. 2019). Finally, an exciting area for estimating
nonadditive individual values is in the area of personalized hu-
man medicine (de los Campos et al. 2010; Mackay and Moore
2014; Sackton and Hartl 2016; de los Campos et al. 2018; Begum
2019).

The proposed priors are novel and require further computa-
tional work to facilitate widespread use. The PC priors (Simpson
et al. 2017) are increasingly used in the R-INLA software (Rue et al.
2009, 2017), while HD priors (Fuglstad et al. 2020) have been
implemented with the general purpose Bayesian software Stan
(Carpenter et al. 2017; Stan Development Team 2019). This imple-
mentation is technical and Stan is slow for genomic models, al-
though there is active development to increase its computational
performance (Margossian et al. 2020).

We are in the process of developing an R package that will of-
fer an intuitive user interface to specify HD priors. The clear
graphical representation of the priors along the model defined
tree encourages increased transparency within the scientific
community. It facilitates communication and discussion between
statisticians and nonstatisticians in the process of the model de-
sign, prior specification but also model assessment. Existing EK is
intuitively incorporated into PC prior distributions for the param-
eters where it applies to. The resulting model-wise prior can be
fed directly into Stan or INLA, or can be precomputed for use in
other Bayesian software. Thus, the new priors will be straightfor-
ward to apply for statisticians and nonstatisticians, robustify the
analysis, and the use of INLA will speed up computations.
Further work is needed to enable Bayesian treatment of large ge-
nomic models fitted to datasets with hundreds of thousands of
individuals.

Conclusion

In conclusion, we have presented how to use the EK on relative
magnitude of genetic variation and its additive and nonadditive
components in the context of a Bayesian approach with two
novel prior frameworks. We believe that when modeling a phe-
nomenon for which there exists a lot of knowledge, we should
employ methods that are able to take advantage of this resource.
We have demonstrated with a simulated and a real case study
that such methods are important and helpful in the breeding

context, and they might have potential also in other areas that
use genomic modeling.
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