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Abstract

Ghost quantitative trait loci (QTL) are the false discoveries in QTL mapping, that arise due to the “accumulation” of the polygenic effects,
uniformly distributed over the genome. The locations on the chromosome that are strongly correlated with the total of the polygenic
effects depend on a specific sample correlation structure determined by the genotypes at all loci. The problem is particularly severe when
the same genotypes are used to study multiple QTL, e.g. using recombinant inbred lines or studying the expression QTL. In this case, the
ghost QTL phenomenon can lead to false hotspots, where multiple QTL show apparent linkage to the same locus. We illustrate the prob-
lem using the classic backcross design and suggest that it can be solved by the application of the extended mixed effect model, where the
random effects are allowed to have a nonzero mean. We provide formulas for estimating the thresholds for the corresponding t-test statis-
tics and use them in the stepwise selection strategy, which allows for a simultaneous detection of several QTL. Extensive simulation studies

illustrate that our approach eliminates ghost QTL/false hotspots, while preserving a high power of true QTL detection.
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Introduction

Since the advent of dense genetic markers, a significant effort
has been devoted to the development of statistical methods for
the identification of quantitative trait loci (QTL), i.e. the genomic
regions associated with quantitative traits. The localization of
QTL in humans and other general populations is hindered by the
presence of many sources of trait variation, including population
stratification or a multitude of environmental components, like
diet or exposure to stress. These additional sources of variation
reduce the power of identifying important QTL and may lead to
many false discoveries when using inadequate and oversimpli-
fied statistical modeling.

These undesired effects can be effectively controlled when
mapping QTL in experimental populations, that are bred and
raised under strictly controlled conditions. One of the advantages
of experimental populations is that the covariance between
genetic markers has a predictable spatial structure and can be
calculated based on precise mathematical models. This allows
for efficient and precise multiple testing corrections (Feingold
et al. 1993; Dupuis and Siegmund 1999) as well as for the identifi-
cation of QTL in areas between genotyped markers using the in-
terval mapping (IM) approach of Lander and Botstein (1989), or its
extensions like Haley and Knott Regression (HK, Haley and Knott
1992), composite interval mapping (CIM, Zeng 1994) or multiple
interval mapping (MIM, Kao et al. 1999; Bogdan et al. 2008).

However, despite the relatively simple experimental structure
of QTL mapping data, false discoveries, or so called “ghost QTL”,
can still occur. One of the well-understood reasons for ghost QTL
is that the IM mixture model has more flexibility in the intervals
between markers. As noted in Feenstra and Skovgaard (2004),
this may lead to ghost QTL between markers, particularly when
markers are sparsely distributed and the trait distribution does
not satisfy the model assumption or there exist nonrandom miss-
ing marker data patterns. In Feenstra and Skovgaard (2004), this
problem is addressed by the refinement of the IM mixture model
and in Feenstra et al. (2006) by the improved version of HK
regression. Here, we discuss another source of ghost QTL in
experimental studies, namely, the influence of the polygenic
background that may lead to false discoveries even when using a
densely populated map of markers that does not require IM.

The polygenic variation of many of the quantitative traits, in-
cluding gene-expression levels, has been suggested in a variety of
recent articles (Visscher and Haley 1996; Price et al. 2008; Fraser
et al. 2010, 2011; Turchin et al. 2012; Vilhjadlmsson and Nordborg
2013). The classical Fisher (1919) infinitesimal genetic model,
which assumes that polygenes are uniformly distributed over the
whole genome, “forms the basis of quantitative genetics theories
(Bulmer 1980; Henderson 1988; MacKay and Falconer 1996) that
have been applied successfully to genetic improvement of live-
stock” Liu and Dekkers (1998). In the case of experimental
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crosses, where the parental lines are vastly different with respect
to many relevant features, it is natural to assume that the aver-
age polygenic effect may be different between these lines. As dis-
cussed in (Dekkers and Dentine 1991; Visscher and Haley 1996;
Liu and Dekkers 1998), the small individual effects of the poly-
genes can “accumulate” at certain positions on the chromosome
and may lead to the detection of ghost QTL. As noted by Visscher
and Haley (1996), this effect is not eliminated by conditioning on
marker cofactors, as suggested by CIM of Zeng (1994).

In this article, we show that the locations of ghost QTL depend
mainly on the structure of the incidence matrix of genotypes.
When many traits are regressed on the same genotype matrix this
may result in hotspot effects, i.e., the appearance of ghost QTL at
the same positions for a large number of different traits. This may
be one of the reasons for the hotspots in eQTL studies, ie., the
trans-eQTL that are associated with widespread changes in the ex-
pression of many genes (Schadt et al. 2003, 2008; Yvert et al. 2003;
Breitling et al. 2008; Wu et al. 2008). True biological hotspots may
arise when a large group of genes is involved in the same biological
pathway and is regulated by the same major QTL. An example of
such a biological hotspot is discussed in Schadt et al. (2003), where a
group of genes related to obesity traits in mice maps to the same re-
gion on chromosome 2. However, in most of the cases, the hotspots
are inconsistent and elusive (Pérez-Encisco 2004; de Koning and
Haley 2005; Breitling et al. 2008). The reasons for possible false
detections of hotspots are discussed in Leek and Storey (2007) and
Breitling et al. (2008). Interestingly, some researchers believe that
the majority of the hotspot phenomena are artifacts of the correla-
tion between e-traits caused by factors which are not accounted for
in the statistical model used for detection of SNP-trait associations.
Toward this end, in this article we present a simulation study that
illustrates that such false hotspots arise naturally as clusters of the
polygenic ghost QTL.

When polygenic ghost QTL occur, we demonstrate that they can
be eliminated by an application of a mixed effect model, where the
random effects are allowed to have a nonzero mean. The nonzero
mean allows for a polygenic influence on the difference in mean
trait values between different inbred lines. Moreover, to some ex-
tent it plays the role of a fixed effect describing the genome-wide
ancestry, often used to eliminate confounding in Genome-Wide
Association Studies (GWAS) in admixed human populations (see
e.g., Redden et al. 2006). We investigate the distribution of t-test sta-
tistics for the significance of fixed large QTL effects in these mixed
effects model and demonstrate that the correlations between these
statistics at neighboring genomic locations are substantially weaker
than between the corresponding test statistics in the classical single
marker modeling. Even so, the trajectories of the t-statistics can still
be well approximated by the Ornstein-Uhlenbeck process, as in the
classical model (see e.g., Feingold et al. 1993; Dupuis and Siegmund
1999), and we can calculate threshold values to control a weak-
sense experiment-wise error rate at any nominal level. Similarly as
in Doerge and Churchill (1996), these critical values are then used
in a stepwise selection procedure, which allows for the simulta-
neous detection of several major QTL. This approach has much bet-
ter properties than single marker tests. Further, we use simulations
to demonstrate that our method compares favorably to other
approaches designed to eliminate confounding effects. For exam-
ple, our approach usually performs better than the classical mixed
model with a zero mean or the fixed effects model augmented with
the principal components of the incidence matrix as supplemen-
tary regressors. We show that our method eliminates ghost QTL
and is highly successful in detecting major QTL.

Additionally, our method allows for a substantial improve-
ment in the precision of QTL localization as compared to the clas-
sical fixed effect model approach. We apply our method to the
data of Zeng et al. (2000) to reveal the genetic architecture of the
shape of the posterior lobe of the male genital arch in Drosophila.
According to our analysis, the relatively large (72%) heritability of
this trait can be attributed entirely to the polygenic effects and
most (if not all) QTL identified in earlier articles can be consid-
ered as ghost QTL.

Methods

Ghost QTL and hotspots due to the polygenic
background

Although we discuss the ghost QTL effects using an example of
the backcross population, all mathematical formulas and statis-
tical methodology can be directly extended to other intercross
designs and recombinant inbred lines, where the correlation be-
tween genotype variables decays exponentially as the distance
between the respective loci increases (see e.g., Siegmund and
Yakir 2007 or Frommlet et al. 2016).

The influence of the polygenic effects on the appearance of
ghost QTL can be explained by first assuming that trait data are
generated according to the polygenic model:

Y:1nﬂ0+zy+57 (1>

where Y is the n dimensional vector of trait values, 1, is the n-di-
mensional all-ones vector, fy is the expected value of the trait, Z
is the n x p matrix with genotypes of p polygenic loci coded as Z;
= 1if the i-th individual is homozygous at the j-th locus and Z; =
—1ifitis heterozygous at this locus and y = (y4, ... ,vp)T is the vec-
tor of polygenic effects, which is distributed as y ~ N(1pu, t*Ipxp)
with Ip.p, denoting the pxp identity matrix. Further e=
(€1y-s en)T is the vector of environmental errors, which is distrib-
uted as € ~ N(0, 6%Ix). The mean parameter y in the distribution
of polygenic effects is responsible for the difference between
mean values of the trait for two original inbred lines (i.e., 2pu) and
v describes the variability of the polygenic effects.

When the polygenic background is not considered, and classical
QTL mapping analysis based on single marker t-tests is performed,
the upper left panel in Figure 1 illustrates the results for the data
simulated according to model (1) with n=400, p= 1500, the poly-
genic effects equally spaced at the distance of 1 cM over ten 150 cM
chromosomes, 8, = 0, u = 0.006, t = 0.01 and ¢ = 1. This model has
a heritability of 50% and allows for 27% of the polygenes to have
the sign opposite to the sign of the overall polygenic effect. The
results show clear QTL peaks on the chromosomes 1 and 6. The
lower left panel of Figure 1 illustrates the lack of correlation be-
tween t-test statistics and the values of individual polygenic effects
and demonstrates that the peaks which appear in the left upper
panel are not related to extraordinary large polygenic effects.

Next, we investigate the question as to why and how these
ghost QTL arise and whether we can predict their location. Let us
observe that the single marker tests are based on the following
estimates of the marker effects:

B = Y (X - X))(Yi - Y)
! Y (X - Xg)°

)

where X; is the genotype of i individual at j™ marker, X; =
%Z?:l XU and ? = %Z?:l Yi-
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Figure 1 Ghost QTL due to the polygenic effects. Here t is the value of the single marker t-statistic at a given locus, y is the corresponding value of the
polygenic effect, X is the vector of the corresponding marker genotypes, U is the vector of the genome-wide ancestries for all individuals in the sample

and Cor(X, U) is the sample correlation coefficient between X and U.

Replacing the trait values with the formula (1), one can easily
obtain the expected value of ﬁj given X and Z,

- N (X — X P (7. _7.

E(ﬁ}-|X,Z) _ HZ;:l( ij . })Zlil( 211 1)
T TL Xy

P Cov(X,2-) _ Cov(Xy,D)

= VarX Varx;

2

where C/o\v(X-j, 7)) is the sample covariance between genotypes at
j™ marker and I polygenic loci, Var X, is the sample variance of
the genotype of j® marker and D = S°F . Z). If polygenes are ap-
proximately uniformly distributed over the genome, then
D/p =2U — 1, where U is the n-dimensional vector of the individ-
ual genome-wide ancestries, ie. of proportions of the
“homozygous” part of the genome. And indeed, as illustrated in
the lower right panel of Figure 1, single marker test statistics are
quite strongly correlated with values of the sample correlation
between the respective marker genotypes and U, which depend
only on the genotype data and not on the trait values. The right

upper panel of Figure 1 represents the plot of correlations be-
tween U and the vectors of marker genotypes along the chromo-
some, with two clear peaks corresponding to the ghost QTL
positions.

The possibility of occurrence of ghost QTL due to the polygenic
background has been previously discussed by many authors (see
e.g., Dekkers and Dentine 1991; Visscher and Haley 1996; Liu and
Dekkers 1998) and is also well recognized in localizing genes in
admixed human populations, where the vector of genome-wide
ancestries is typically used as a covariate to eliminate excessive
false discoveries (see e.g., Redden et al. 2006).

In the case of QTL mapping in a backcross population, the
genome-wide ancestries oscillate around 50%. Ghost QTL arise
due to the random deviations from this expected value and their
expected locations are specific for a given sample of individuals.
However, the typical ghost QTL locations remain the same for a
variety of polygenic traits which are mapped using the same ge-
notype data. Such a situation may occur for example in eQTL
mapping experiments, where the expression levels of thousands
of genes are mapped using the same genotype data. We believe
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that this observation may provide a new perspective toward un-
derstanding the hotspots phenomena in eQTL mapping (see e.g.,
Schadt et al. 2003, 2008; Yvert et al. 2003; Breitling et al. 2008; Wu
et al. 2008; Vilhjalmsson and Nordborg 2013), where the classical
single marker tests often lead to the identification of genome
regions seemingly associated with the expression of a large num-
ber of genes all over the genome. Another situation where the
hotspots could naturally appear is the QTL mapping in recombi-
nant inbred lines. Since the incidence matrix is specific and fixed
for each line, the ghost QTL might have a tendency to systemati-
cally appear in the same positions if the replicated experiments
use the same numbers of individuals from different RILs.
According to our results, the hotspot effects might be avoided if
the composition of the sample changes in different experiments.

Statistical model for QTL mapping with polygenic
effects

We present a mixed effects model that allows for the precise esti-
mation of locations of strong QTL in the presence of the polygenic
background. We focus our work on the backcross design, but a
similar approach can be used for any type of experimental popu-
lation.

We assume that the sample individuals are genotyped on a
dense set of uniformly distributed markers, such that they cap-
ture similar portions of the polygenic effects. We model these
polygenic effects as independent random variables from N(u, 7).
Additionally, our model allows for a small number of strong QTL,
with effects substantially larger than the magnitude of the ran-
dom effects. The differences between these strong QTL effects
and the corresponding polygenic effects enter the model as fixed
effects. We use m to denote the number of fixed effects which in-
clude the intercept f, and m—1 effects of the large QTL.

Marker genotypes are denoted as X;; = 1if the i-th individual is
homozygous at the j-th marker and X;; = —1 if it is heterozygous.
Our mixed model takes the form:

Y =Xy+Xmf+e, 3)

where X is the n x p incidence matrix with all marker genotypes, y
is a p-dimensional vector from the multivariate normal distribu-
tion, N (1pu, 1°Ipxp), Xm is the nxm matrix, whose first column
consists of all ones and the remaining columns form a subset of
X containing genotypes of markers strongly associated with the
trait, f = (Bo,...,Pm_1) € R™ is the vector of the fixed effects and
e~ N(0,6%Inn).
Model (3) can be rewritten as:

Y =Du+Xpnf+v=Xn0+v, (4)

where D = Zle X, is the column vector containing the sum of all
columns of X, v~ N(0,6°I +7°XXT) is the sum of the random
noise and the variance components of the polygenic effects, X, =
[D,Xm] and 0 = (u, 7). The first element of B, B, describes the
mean population value of the trait Y, while the parameter u is the
mean population value of the polygenic effects. These parame-
ters are not confounded since E(D) = 0 and the parameter u has
no influence on the population mean of Y.

The variable D depends on the “homozygous” proportion of
the genome and resembles a genome-wide ancestry variable pop-
ularly used as a covariate in mapping of admixed human popula-
tions (Redden et al. 2006; Szulc et al. 2017). Model (4) extends the

admixture model of Szulc et al. (2017) by allowing for the variance
component 72 that models variability of the polygenic effects y
over the genome.

Remark 1 The average magnitude of the polygenic effects in our
model depends on the density of markers used for the QTL
mapping. When the distance between markers is relatively large,
individual markers capture a large portion of the polygenic effect
and p and t? are larger than for densely spaced markers. In
Section “Power and the Number of False Positives”, we illustrate
that dense polygenic effects can be captured well even when
markers are spaced every 5 cM. However, the accuracy of the
method improves with increased marker density.

Estimation and testing

Parameters t and ¢ in the model (4) can be estimated using the
method of the restricted maximum likelihood (REML) Harville
(1977). For this purpose, we let T = ¢? +?XXT. REML estimates
parameters of the model (4) by maximizing the restricted log like-
lihood, which up to an additive constant can be written as:

L(o,7) = — %log 5] - %(Y — X 0)TELY - Rnd) o
+%log X7 5 1%,0).

where

0 =0(c,7) = (X, 27 1%,) XL 271y, )
We denote

(6,7) = argmin, ,L(s,7), T =05"T+7"XX". @)

Remark 2 The computational complexity of evaluating the log
likelihood in (5) is O(n® +m?). This can be prohibitive when we
take into account that it has to be repeated a large number of
times with different matrices X,,. To improve the efficiency of the
optimization one can compute the singular value decomposition
(SVD) of X = USVT once, with the computational complexity of
O(n® A p?)). Using SVD, the log likelihood can be evaluated as

1 n
L(o,7) = 721og (S22 + 6%)
i=1

w0(0,7)

- % (Y1 = X1n0(a, 1) (Y = X

1 51 o/
+§10g|(xm)TXm|7

’

where 0(c,7) = (X,)"X/) " (X.)"Y’, and
X, = (2252 + 021 UKy = 22K
Y = (2252 4 621)"2UTY = 1.

Since S is a diagonal matrix the complexity of evaluating the log
likelihood is now O(nm + m?). Better efficiency is possible by
applying the Sherman and Morrison (1950) formula, which allows
to reduce m*® to m?. We will not explore this technique here since
m is typically small.
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Once the parameters are 1egtimated we can multiply the matrix
X and the vector Yby £~ /

-1/2 4 o-1/2
1og _ sl

to obtain
Y =X 0+ (8)

where, for any fixed m and under mild regularity conditions, the
distribution of e =’y converges to N(0,I,xn) as n increases.
The significance of the j* genetic locus included in the matrix X,
can be investigated by calculating the multiple regression t-test

statistic

where ﬁj is the least squares estimator of f; in the multiple
regression model (8) (recall that 6 = (u,p")") and s(ﬁj) is the
square root of the corresponding element of the diagonal of the

R N N
estimated covariance matrix of B, ;255 ((X/m)TX/m) . with RSS

denoting the residual sum of squares in the model (8).

Stepwise selection procedure

Since we do not know which markers should be included in the
matrix X, we follow Doerge and Churchill (1996) and employ a
stepwise selection procedure to identify large QTL. The procedure
consists of two steps: forward selection and backward elimination.
In the forward selection step, we start with X, = 1, (a column of
ones) and estimate 7 and 6. We then fit a sequence of p single
marker models (4), where X,, is supplemented with just one ge-
netic locus at a time, and we add to the model a marker with a
highest value of the t-test statistic. The estimates 7 and ¢ are then
recomputed and the search procedure repeated with the goal of
identifying the genetic marker that allows for the largest improve-
ment of the current model. The process is repeated until the next
“best” marker is insignificant with respect to the Bonferroni correc-
tion controlling the probability of at least one false discovery
(genomewise or familywise error rate, FWER) of 0.25. The reason
for using such a liberal threshold is that at the initial steps of the
forward selection strategy the major QTL, which are not yet in-
cluded in the fitted model, inflate the estimates of the variance
components % and ¢2. This leads to low power for the initial sig-
nificance tests when the classical threshold of 0.05 is used.
Instead, the application of our liberal threshold leads to the detec-
tion of most of the true effects, together with some false discover-
ies. Therefore, in the second step, the selected markers need to be
filtered out using the backward elimination procedure. At this
step, we employ the critical value adjusted to control FWER at the
classical level 0.05 using the multiple testing correction described
in the following section. After each of the backward elimination
steps r and ¢ are re-estimated.

Multiple testing adjustments

Since the identification of important markers is based on an ex-
tensive search over the whole genome, the critical values for the
respective test statistics need to be adjusted for multiple testing.
The t-test statistics at neighboring loci are positively correlated,
therefore the popular Bonferroni correction is unnecessarily

conservative. In the classical crossing designs, like backcross, F,
or recombinant inbred lines, the correlation between genotypes
decays exponentially as the function of the genetic distance. In
this case, the sequence of t-test statistics at consecutive locations
can be approximated by an Ornstein—Uhlenbeck Gaussian pro-
cess (Feingold et al. 1993; Dupuis and Siegmund 1999; Siegmund
and Yakir 2007), with the autocorrelation function:
Cor(t,s) = e~9=sl where |t — 5| is the genetic distance between loci
tand s. In Siegmund and Yakir (2007), this approximation is used
to calculate the critical value t.; to control FWER at a level o by
numerically solving the (approximate) equation:

a1 —exp{-2C[1 - D(te)] - 25Ltcm(0(tcrit)”(tcrit‘/§5—&)}7 ©)

where ®(-) and ¢(-) denote the cumulative distribution function
and density of the standard normal distribution, C is a number of
chromosomes, L is a total genetic length (in cM), d is the average
distance between neigboring loci (in cM) and

(2/1(®(t/2) - 0.5)

YO~ 200/2) + o(t/2)”

(10)

In case of the backcross under a regular fixed effects model,
the coefficient é can be calculated analytically and is equal to
0.02 (see e.g., Dupuis and Siegmund 1999). In the presence of the
polygenic effects (4), the structure of dependencies between t sta-
tistics at neighboring loci is difficult to calculate, which substan-
tially complicates the theoretical analysis of the correlation
decay. Instead, we empirically verify that the decay is still ap-
proximately exponential, where the rate of correlation decay
increases with n and the unknown variance of random effects 12
(see Figure 2). In our mapping procedure, at each step of the back-
ward elimination, we estimate § based on the empirical decay of
the correlations between neighboring test statistics and then cal-
culate a significance threshold using Equation (9).

To verify that our procedure controls the probability of incor-
rectly including false QTL, we perform 1000 replicates for an ex-
periment in which we simulate the data according to the model
(4) with the vector B = 0. We simulate 10 chromosomes, each of
the length 150 cM, with p=1500 polygenic effects placed uni-
formly every 1 cM. The single marker test statistics are calculated
at markers spaced every 1 cM. In Figure 3, we present the esti-
mate of FWER, i.e. the percentage of replications under which at
least one of the single marker statistics in the mixed effect model
is significant. It can be seen that in an ideal case when the poly-
genic effects variance ¢? and the random noise variance ¢? are
known (i.e., we do not have to estimate them), FWER is very close
to the nominal value of 0.05. When these parameters are esti-
mated, FWER is slightly below 0.05 when t = 0 (i.e., there are no
polygenic effects) and slightly above when ¢ is large. In case when
7 = 0, this parameter is slightly overestimated by our procedure,
which results in the upward shift of the threshold. In the situa-
tion when t is large we observe the opposite effect, which sug-
gests that ¢ is slightly underestimated. This underestimation of
the polygenic variance might be due to the inclusion of the ghost
QTL in the initial liberal forward selection procedure. However,
these undesirable effects are rather inconsequential. In both
cases, FWER is close to the nominal level and seems to converge
as nincreases.

Markers versus polygenic loci

Clearly the markers used for QTL mapping do not need to coin-
cide exactly with polygenic loci. Also, the polygenic effects do not
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Figure 2 The logarithms of correlations between t-values as the function of the genetic distance between markers (in cM) for the polygenic standard

deviation t = 0.01 and 0.2, n=100 and 400, and ¢ = 1.
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Figure 3 Family-wise error rate (FWER) for different t (polygenic standard deviation) and n (sample size) varying from 200 to 500. On the left we assume
that r and ¢ are known, on the right they are estimated. Horizontal bars represent the 95% error bands.

need to be distributed uniformly on the genome. In our simula-
tions, we consider three scenarios. In the first two, we simulate
10 chromosomes of the length of 150 cM, with polygenic loci
spaced uniformly every 1 cM. In the first of these simulations, the
genetic markers are placed exactly at these polygenic loci. In the
second simulation, we try to capture the polygenic effects using
markers uniformly spaced at the distance of 5cM. In the final
simulation, the polygenic effects y;, spaced every 1 cM, are simu-
lated from the mixture distribution y;7(1 — &)dg + EN(u, t%), where
we set ¢ = 0.2. Thus, most of the elements of vector y are equal to
zero while the nonzero elements are uniformly spaced over the
genome, with an average distance of 5 cM. In this scenario, we
use a dense map of markers spaced every 1 cM to estimate this
unknown polygenic effect.

Models and methods for QTL mapping

We compare our approach based on the mixed model with a non-
zero mean to several other popular methods for QTL mapping.
Specifically, the methods based on the fixed effect models, which
are most commonly used for QTL mapping in experimental pop-
ulations, and several classical approaches aimed at eliminating
false discoveries due to the ‘relatedness” between individuals
caused by the polygenic effects.

* Single marker approach based on the regular fixed effects model. Here,
we perform regular single marker t-tests adjusted for multiple
testing using the threshold provided in Dupuis and Siegmund
(1999). Single marker tests are still the most popular methods
for QTL mapping based on the dense set of markers.
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As shown in a variety of articles (see e.g., Frommlet et al. 2012), a
single marker approach performs well only when there are few
clearly separated QTL. A substantial improvement is possible
by using the multiple regression models, incorporating the
effects of many QTL at the same time. However, in the difficult
case of many and/or strongly correlated QTL, the performance
of the multiple regression QTL mapping depends on the heuris-
tics used to search through the large set of possible regression
models. Since the main purpose of our simulation study is to
compare different strategies of dealing with the polygenic back-
ground, we decided to use the same stepwise selection strategy
for all considered models.

Stepwise selection strategy based on the fixed effects model:

Y =Xpf+e, (11)

with e ~ N(0, 6°I1xn). This model neglects the polygenic back-
ground.

Stepwise selection strategy based on the mixed effects model
with a zero mean for the random term:

Y=Xnf+ute, (12)

with u ~ N(0,7°X'X) and e~ N(0,0°I,xy). This is a classical
mixed model approach used for QTL mapping in the presence
of the polygenic background (see e.g., Van Raden 2008; Kang
et al. 2010). In the backcross design, the genomic relatedness
matrix X'X does not require scaling, due to the same variance
of genotypes at each locus.

Stepwise selection strategy based on the fixed effects
model and including several principal components of the ma-
trix X:

Y = Xnf+ZE+¢, (13)

where € ~ N(0, 6°Inxn) and the columns of the matrix Z contain
several principal components of matrix X. This is a popular
approach for removing false discoveries in GWAS in the pres-
ence of the population stratification (see e.g., Price et al. 2008,
2010).

Stepwise selection strategy based on the mixed effects model
with a zero mean and including several principal components
of the matrix X:

Y=Xnp+ZE+Uu+e, (14)

where u ~ N(0,72X’'X), € ~ N(0, 6°Ixn) and the columns of matrix
Z contain several principal components of matrix X. This ap-
proach combines a mixed effects model with a zero mean with
the principal components approach in the spirit of Conomos et al.
(2018).

Genetic model

To compare statistical properties of different procedures, we per-
form 1000 replicates of the experiment, where in each simula-
tion, we independently generate the backcross incidence matrix
X and the trait values according to the model:

P
Yi= Z 7 Xij + 0.5Xi 151 + 0.5Xj 825 — 0.5X; 1975 + &, (15)
=1

with i=1,...,n, for n=200 and 400, p=1500 polygenic loci uni-
formly spaced over ten 150 cM chromosomes, y4,...,7, indepen-
dently sampled from the normal distribution A/(0.004,0.01%) and
the random errors ¢, ..., & independently sampled from N(0, 1).

The incidence matrix X is obtained by the independent sam-
pling of each of the 10 chromosomes for all n individuals. The ge-
notype of the first marker on each chromosome is selected
randomly from the set {—1,1} and the genotypes of consecutive
markers are simulated according to the Markov chain with the
transition probabilities defined by the recombination fractions
between consecutive markers.

Two of the three simulated major QTL have identical genetic
effects, which are consistent with the sign of the joint polygenic
effect. The first of these QTL is placed at the left end of chromo-
some 2, and the second QTL is located at the center of chromo-
some 6. We choose these positions to verify the hypothesis that
in the presence of the polygenic effects the power of a major QTL
detection depends on its distance from the center of the chromo-
some. This hypothesis is motivated by the observation that the
genotypes at the center of the chromosome are usually strongly
correlated with the sum of genotypes over this chromosome. The
third QTL is placed at the center of chromosome 9 and its sign is
opposite to the joint polygenic effect.

Further, we simulate the polygenic effects from two distribu-
tions which violate the model assumptions.

* The mixture distribution given by
7; ~ 0.890 4 0.2N(0.02,0.05?%) , (16)

where d, is a singular distribution under which the polygenic ef-
fect is equal to zero with probability one. In this model, the non-
zero polygenic effects are spaced at the average distance of 5 cM,
but the distances between them are not equal. The expected
value and the standard deviation of the normal distribution of
nonzero polygenic effects are proportionally larger than in the
case when they are spaced every 1 cM, so the polygenic heritabil-
ity of the trait remains comparable to earlier scenarios. Still, a
large majority of the polygenic effects is smaller than 0.1, so they
are much weaker than the major QTL.

* The Laplace distribution (double exponential) with the mean
equal to 0.004 and the variance equal to 0.01%, so that both
parameters match the parameters of the Normal distribution
used for the polygenic effects in the model (15).

We summarize the results by providing the following characteris-
tics: the statistical power of identifying each of the three QTL, the
average number of false positives (FP), the average distance be-
tween identified locus and the true QTL position and the average
value of [B; — .

Due to the strong correlation between neighboring loci, the
precision of QTL localization is rather limited. Therefore, when
counting true and false discoveries we use a 15-cM threshold dis-
tance from the true QTL. This means that a QTL is considered to
be detected if there is at least one discovery in its =15 cM neigh-
borhood. Every discovery which is not within a 15-cM distance
from the true QTL is treated as a false positive.
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Simulating polygenic gene expressions

We present the results of the simulation study, where we simu-
lated polygenic gene expressions for n=200 backcross progenies
and p=1500 polygenes, distributed across 10 chromosomes and
spaced every 1 cM on each of these chromosomes. The matrix
Xuxp of backcross genotypes at all p locations is simulated using
the procedure described in Section Genetic Model. The expression
traits are simulated according to the model:

YR = Xk 4+ XRpF

where k € {1,...,p} denotes both the expression trait’s index and
the X matrix column’s index, Y* is the n x 1 vector with values of
the k™ expression trait, y* = (3%,...,7§) € RP is the vector of the
polygenic effects for k™ trait, X* is is the k™ column of X, ¥ € Ris
the cis-effect for k™ trait and ¢* contains environmental noise val-
ues for k™ trait.

All random variables and random vectors are independent
and come from the following distributions

1 ~ N(0,0.007%), 9% ~ N(1pu¥,0.01%Ipp),
B¥ ~ N(0.5,0.1%), € ~ N(0, ).

As can be seen in the “Expected Values of the Single Marker
Test Statistics” in the Appendix Section, the persistence of hot-
spots depends on the number of traits whose polygenic effects
are mostly positive or mostly negative. For k™ trait, the percent-
age of polygenic effects which have the same sign as their
expected value x* is equal to (D("%) where @ is the cumulative
distribution function of the standard normal distribution and *
is the standard deviation of the polygenic distribution. In our sim-
ulations, we chose the parameters of the polygenic distribution
so that E|u| =0007,/2~0.0056 and (1) ~ 9(0.56) ~ 0.71.
Thus, for the average trait, 71% of the polygenic effects will have
the same sign as their expected value and 29% will have the op-
posite sign. This value is selected such that the proportion of the
“opposite” sign polygenic effects is quite large but the hotspot
effects are still clearly visible. On the other hand, the distribution
of ¥ is selected such that around 98% of the simulated cis-eQTL
(e., eQTL located near the gene-of-origin) are more than five
times larger than E|u*|. This is motivated by real eQTL experi-
ments, which usually report many significant cis-eQTL.

Analysis of Drosophila data

We use the mixed model with a nonzero mean to analyze the
well-known Zeng et al. (2000) Drosophila data. The purpose of the
analysis was to identify QTL influencing the shape of the poste-
rior lobe of the male genital arch in Drosophila. Females from an
inbred line of Drosophila simulans were crossed to males of an in-
bred line of Drosophila mauritiana. The F; females were back-
crossed to each parental line to produce two populations. In our
analysis, we employ the mauritana backcross, obtained by cross-
ing to mauritiana males. The Drosophila parental lines are not ho-
mozygous throughout the respective founder genomes, but they
are fixed for different alleles at the 45 markers used in this analy-
sis, which are approximately uniformly spaced over two auto-
somes and the X chromosome. The size and shape variation of
the males’ posterior lobes (which are highly correlated) are quan-
tified by averaging over both sides of the morphometric descrip-
tor (PC1) based on elliptical Fourier and principal components
analyses.

The above data were extensively analyzed in Zeng et al. (2000)
and Bogdan et al. (2008) using different approaches based on the
fixed effects multiple regression models. Zeng et al. (2000) report
17 QTL, approximately uniformly distributed over these two
chromosomes, with two of the strongest QTL located close to the
centers of these chromosomes. They also observe that the results
of the multiple regression analysis substantially differ from the
results of the Composite Interval Mapping of Zeng (1994).
Moreover, Bogdan et al. (2008) show that the likelihoods of several
different multiple regression models are comparable and the
positions of identified QTL differ substantially, depending on the
number of assumed effects.

Here we report the analysis of these data with the single
marker tests, the Composite Interval Mapping of Zeng (1994) with
a window of 20 cM, and the stepwise selection procedure based
on the mixed model (3) proposed in this manuscript. The data in-
clude genotypes of 39 markers on 2 autosomes for n=491 indi-
viduals. Following Bogdan et al. (2008) we create m= 161 pseudo-
marker explanatory variables spaced every 2 cM. Values of these
pseudo-markers are calculated as the conditional expectations of
the corresponding genotypes, given the genotypes of observed
flanking markers, as in the regression IM of Haley and Knott
(1992).

Data and codes availability

All data and simulation codes used in this article are available at
https://github.com/JonasWallin/PolyMixed.

Results
Graphical comparison of different procedures

A graphical comparison of different methods, when applied to
the analysis of the trait simulated according to the model (3) is
presented in Figure 4. The three QTL are denoted as QTL1, QTL2,
and QTL3, respectively. In the upper left panel, we can see that
the regular single marker test analysis identifies QTL1 and QTL2
but misses QTL3, the effect of which is opposite to the summary
polygenic effect. This analysis also generates two significant
ghost QTL on chromosomes 1 and 10. Moreover, the upper-
middle panel shows that the number of ghost QTL increases to
five (red vertical lines) when the data are analyzed with the step-
wise selection procedure based on the fixed effects model. This
phenomenon is due to the reduction of the variance of the resid-
ual error obtained when replacing the simple regression model
with the multiple regression. In the middle left panel, we see that
the single marker tests within the mixed-effects model (3) with u
fixed at 0 identify only QTL2, but they also do not detect any false
QTL. After reducing the residual variance by the stepwise selec-
tion strategy, the mixed-effects model with u=0 also detects
QTL1 but still misses QTL3 and generates a ghost QTL on chro-
mosome 1. The red vertical lines in the lowest panel illustrate
that the stepwise selection strategy based on our proposed model
(3) with u # 0 allows all three QTL to be identified and does not
generate any false QTL. The lower panel also shows the impor-
tance of using a proper selection strategy. On the left graph, we
can see that the single marker test analysis within model (3)
misses QTL1, while the middle graph shows that conditioning
only on QTL2 and QTL3 generates a ghost QTL at the shoulder of
QTL1. The right graph shows that the ghost QTL disappears when
conditioning on all three QTL that are properly identified by our
stepwise procedure. Comparing upper, middle, and lower panels,
we can also see that the mixed effects models allow for a higher
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Figure 4 Results of QTL mapping for a trait simulated according to model (15) with n=200. The upper, middle and lower panels show the results of the
analysis with the classical fixed effect model, the mixed model with 4 = 0 and the mixed model (3), respectively. In each of these panels, the graph on
the left represents the results of the single marker tests, while the remaining panels present the results of the respective stepwise selection procedures.
The red vertical lines mark the positions of markers selected by these procedures. The middle graphs show the plots of t-statistics when conditioning
on QTL identified on other chromosomes. The right graphs show the plots of t-test statistics conditioned on all identified QTL.

precision of QTL localization as compared to the fixed effects
model (narrower peaks on the trajectories of t-statistics).

Power and the number of false positives

Table 1 provides the results of the comparison between different
methods of QTL mapping for the data simulated according to the
model (15). We provide the statistical power of identifying each
QTL, the average number of false positives (FP), and the false dis-
covery rate (FDR). Moreover, in brackets we provide the average
difference between the estimated and the true QTL position and
the average value of 1B: — Bil.

Table 1 illustrates that indeed the model selection procedure
based on the regular multiple regression model yields a large
number of ghost QTL and that this number increases with the
sample size. Moreover, it is hardly possible to identify QTL3 using
this procedure, the effect of which is opposite to the summary ef-
fect of polygenes. The number of ghost QTL is reduced when in-
cluding as covariates first several principle components (PCs) of
the X matrix. However, to reduce FDR below 0.2 one needs to in-
clude 10 PCs, which for n=200 leads to a substantial decrease of
power of identifying QTL2. All approaches based on the mixed
model eliminate almost all ghost QTL. However, methods based
on the models which assume that x=0 have a substantially
smaller power than the procedure based on the model (3), with
u # 0. Specifically, all methods which assume that p=0 have a
small power of identifying QTL3. Similarly, as in the case of the
fixed effects models, adding PCs to the mixed model with u=0
leads to a reduction of the power to identify QTL2 and improves
the power to identify QTL3. The performance of both methods
which use 10 PCs substantially improves with the sample size.
The method based on the mixed model offers better control over

the number of false positives, which comes at the expense of
power loss.

One may also observe that the mixed-effects models offer a
substantially higher precision of QTL localization when com-
pared to the classical fixed-effects models. The precision of these
classical models can be improved by including several of the first
PCs of X. However, even then, the estimated locations are less
precise than the ones provided by the mixed model approach
(particularly for n=400).

Table 2 provides analysis results when the polygenic effects
are spaced every 1 cM and the search for QTL is performed using
markers spaced every 5 cM. In this case, we observe that proce-
dures based on the mixed model with p=0 suffer from a loss of
power and precision of QTL effects estimation. As can be seen,
the procedure based on the mixed model with pu# 0 is not af-
fected by using sparsely spaced markers; this suggests that uni-
formly spaced markers can efficiently capture the polygenic
effects even when the distance between these markers is rela-
tively large.

Table 3 provides the results of different methods where the
polygenic effects are scattered around the chromosome with the
average spacing of 5 cM. For n=200, the presence of the sparse
and relatively large polygenic effects leads to some power loss of
major QTL detection for all considered methods. The methods
based on the mixed models lose more power when compared to
the methods based on the classical fixed-effects models.
However, methods based on the fixed effects models return a
large number of false positives. As shown in Figure 5, these false
positives are not correlated with large polygenic effects so they
indeed represent ghost QTL. For n=400, the power of the mixed
models substantially increases.
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Table 1 Statistical properties of different methods as applied to the analysis of data generated according to the model (15)

n Model Powerl Power2 Power3 FP FDR
200 fixed 0.86 0.92 0.06 4.38 0.69
[2.99, 0.18] [3.26, 0.30] [3.83, 0.08]
fixed 0.88 0.85 0.26 3.67 0.63
PC=3 [2.55,0.13] [2.95, 0.24] [2.80, 0.10]
fixed 0.91 0.56 0.46 0.5 0.17
PC=10 [1.49, 0.09] [1.86, 0.13] [1.92,0.13]
mixed 0.89 0.78 0.78 0.04 0.01
n#0 [1.13, 0.06] [1.92, 0.08] [1.99, 0.08]
mixed 0.71 0.52 0.04 0.01 0.00
n=0 [0.46, 0.05] [0.87, 0.06] [0.85, 0.06]
mixed 0.71 0.45 0.10 0.02 0.01
PC=3 [1.14, 0.12] [1.60, 0.22] [1.10, 0.17]
mix 0.77 0.34 0.28 0.04 0.02
PC=10 [1.17,0.09] [1.40, 0.17] [1.28,0.17]
400 fixed 1 1 0.36 11.0 0.81
[2.62,0.12] [1.91, 0.23] [1.53,0.18]
fixed 0.99 0.95 0.57 6.73 0.71
PC=3 [1.49, 0.10] [1.65, 0.17] [1.31,0.12]
fixed 1.00 0.92 0.93 0.83 0.19
PC=10 [0.68, 0.07] [1.06, 0.08] [1.00, 0.08]
mixed 0.99 0.98 0.98 0.05 0.01
n#0 [0.46, 0.05] [0.87, 0.06] [0.85, 0.06]
mixed 0.98 0.86 0.26 0.01 0.00
n=0 [0.52, 0.08] [0.86, 0.12] [0.54, 0.04]
mixed 0.98 0.80 0.41 0.02 0.01
PC=3 [0.50, 0.07] [0.84, 0.11] [0.67, 0.6]
mixed 0.99 0.81 0.82 0.06 0.02
PC=10 [0.51, 0.07] [0.79, 0.07] [0.77,0.07]

We report Power, average number of false positives (FP) and false discovery rate (FDR). The square brackets report a mean distance to a simulated QTL and a mean
value of |B; — B;|. A fixed effects model and a mixed model with =0 are additionally supplemented with the first 3 or 10 PCs of the incidence matrix X.

Table 2 Statistical properties of different methods as applied to the analysis of data generated according to the model (15) when the
markers are spaced every 5 cM.

n Model Powerl Power2 Power3 FP FDR
200 fixed 0.92 0.94 0.11 6.58 0.76
[2.68,0.16] [4.04,0.27] [3.67,0.13]
fixed 0.93 0.85 0.31 4.52 0.66
PC=3 [2.07,0.12] [3.83,0.2] [3.51,0.1]
fixed 0.92 0.55 0.48 0.74 0.24
PC=10 [0.93,0.09] [3.22,0.1] [3.17,0.09]
mixed 0.91 0.80 0.80 0.08 0.02
p#0 [0.67,0.06] [3.17,0.07] [3.29,0.07]
mixed 0.59 0.37 0.01 0.004 0.002
u=0 [0.59,0.12] [2.95,0.19] [2.46,0.11]
mixed 0.64 0.37 0.07 0.03 0.02
PC=3 [0.72,0.11] [3.03,0.18] [2.96,0.13]
mixed 0.73 0.29 0.23 0.07 0.03
PC=10 [0.72,0.09] [2.86,0.13] [2.83,0.13]
400 fixed 1 0.99 0.39 11.98 0.82
[1.63,0.12] [3.37,0.18] [2.94,0.19]
fixed 0.999 0.95 0.59 7.70 0.73
PC=3 [1,0.1] [3.16,0.14] [2.77,0.12]
fixed 1 0.89 0.90 1.03 0.23
PC=10 [0.41,0.07] [2.7,0.08] [2.68,0.08]
mixed 0.999 0.98 0.98 0.10 0.02
p#0 [0.17,0.06] [2.61,0.07] [2.68,0.06]
mixed 0.93 0.65 0.07 0.006 0.002
u=0 [0.14,0.07] [2.51,0.08] [2.32,0.04]
mixed 0.95 0.65 0.24 0.03 0.008
PC=3 [0.13,0.07] [2.59,0.08] [2.43,0.05]
mixed 0.98 0.66 0.68 0.08 0.02
PC=10 [0.14,0.06] [2.47,0.06] [2.54,0.06]

We report Power, average number of false positives (FP) and false discovery rate (FDR). The square brackets report a mean distance to a simulated QTL and a mean
value of |B; — B;|. A fixed effects model and a mixed model with u =0 are additionally supplemented with the first 3 or 10 PCs of the incidence matrix X. The
polygenic effects are uniformly distributed at the distance of 1 cM but the search is performed over markers spaced 5 cM.
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Table 3 Statistical properties of different methods as applied to the analysis of data generated according to the model (15) but with the
polygenic variables simulated according to the mixture distribution (16)

n Model Powerl Power2 Power3 FP FDR
200 fixed 0.807 0.886 0.162 6.365 0.762
[3.49,0.16] [3.92,0.27] [3.26,0.11]

fixed 0.782 0.248 4.778 0.718
PC=3 [2.8,0.14] [3.74,0.25] [3.04,0.14]
fixed 0.775 0.404 1.8 0.497
PC=10 [2.2,0.11] [2.73,0.19] [2.57,0.18]
fixed 0.472 0.257 0.291 0.044 0.03
[1.07,0.11] [2.14,0.19] [1.68,0.19]
mixed 0.416 0.242 0.029 0.028 0.026
uw=0 [1.12,0.17] [2.21,0.29] [0.93,0.26]
mixed 0.419 0.199 0.047 0.034 0.037
PC=3 [1.1,0.16] [2.04,0.3] [1.23,0.28]
mixed 0.453 0.134 0.118 0.047 0.044
PC=10 [1.17,0.14] [1.7,0.29] [1.32,0.29]
400 fixed 0.99 0.985 0.507 11.802 0.814
[2.34,0.11] [2.45,0.18] [1.82,0.13]
fixed 0.984 0.912 0.565 8.601 0.761
PC=3 [2,0.11] [2.28,0.17] [1.93,0.13]
fixed 0.985 0.733 0.776 3.684 0.566
PC=10 [1.17,0.1] [1.55,0.11] [1.44,0.11]
mixed 0.89 0.605 0.666 0.095 0.029
n#0 [0.52,0.07] [1.03,0.09] [0.96,0.09]
mixed 0.83 0.557 0.201 0.061 0.023
uw=0 [0.54,0.08] [0.98,0.16] [0.65,0.11]
mixed 0.847 0.504 0.288 0.084 0.03
PC=3 [0.54,0.08] [0.86,0.15] [0.72,0.11]
mixed 0.885 0.418 0.467 0.1 0.034
PC=10 [0.61,0.07] [0.88,0.13] [0.83,0.12]

We report Power, average number of false positives (FP) and false discovery rate (FDR). The square brackets report a mean distance to a simulated QTL and a mean
value of |B; — Bj|. A fixed effects model and a mixed model with u = 0 are additionally supplemented with the first 3 or 10 PCs of the incidence matrix X.

Table 4 illustrates that our proposed methodology can effi-
ciently handle the situation when the dense polygenic effects
have a double exponential distribution, known for substantially
heavier tails than normal distribution. Our model selection strat-
egy based on a mixed-effect model with a nonzero mean still con-
trols FDR well and offers a superior power and precise
localization of major QTL.

Table 5 reports results of the analysis for a trait that is influ-
enced only by a few moderately sized QTL and has no polygenic
background:

Y, = 0.35X; 151 + 0.35X;.825 — 0.35X; 1575 + 1. (17)

Here, we can see that the analysis based on the proper fixed
effects model obtains the highest QTL detection power. However,
this comes at the expense of an inflated number of false posi-
tives. This larger number of false positives is the result of a rela-
tively large variance of the QTL positions estimators, which
sometimes fall out of our assumed detection window of * 15 cM
around the true location. For n=200, we observe a substantial
power loss when the data are analyzed by the mixed model or/
and when the model is supplemented by PCs. When n=400, the
results of both methods based on the mixed model compare very
well with the fixed effects model, having a slightly lower power
and a slightly smaller number of false positives. However, the de-
teriorating effect of including unnecessary PCs remains quite
strong even for n=400.

Simulated hotspots

In Figure 6, we see the results of the simulated eQTL analysis,
where for each of 1500 genetic loci we simulate polygenic expres-
sion levels according to the procedure described in “Simulating

Polygenic Gene Expressions” Section. The test statistics for the as-
sociation between k™ trait (Y*) and j* marker (X)) are calculated
based on the following multiple regression model:

Y* = By X + 1nBo + ue Xt + e (18)

where ¢ ~ N(0,¢%]). In the case when j=k, the first and the third
term collapse into one term and our t-test is reduced to the regu-
lar single marker test for the presence of the cis-effect at X*.
When j # k, our t-test for a QTL at j™ position is conditional on
the presence of the cis-effect, i.e., it tests if the inclusion of the j*
marker improves the simple regression model with X* as the ex-
planatory variable.

The red points in the two first panels mark the positions with
coordinates i and j such that the t-test for the association be-
tween j™ expression and i™ locus is significant when using the
multiple testing correction provided in (9) at the genome-wide
type I error rate of « = 0.05/1500. This error rate is based on the
Bonferroni multiple testing correction, which takes into account
that 1500 traits are simultaneously analyzed in one experiment.
The total family-wise error rate (overall traits and all tested loca-
tions) is below 0.05.

In the left panel, we can clearly see the diagonal line corre-
sponding to locations of 1500 cis-effects, but we also see some
ghost hotspots, i.e. the vertical lines, which are most clearly visi-
ble on chromosomes 4 and 9. These ghost hotspots result from
using the same incidence matrix Xy, for mapping all expression
traits, which causes ghost QTL to appear in similar positions for
all these traits. In the right panel of Figure 6, the red curve repre-
sents the theoretical approximation to the t-test statistics abso-
lute values population means, calculated in “Expected Values of
the Single Marker Test Statistics” in the Appendix Section. This
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Table 4 Statistical properties of different methods as applied to the analysis of data generated according to the model (15) but with
Laplace distribution of the polygenic variables

n Model Powerl Power2 Power3 FP FDR
200 fixed 0.865 0.931 0.073 5.84 0.742
[3.29,0.16] [3.5,0.29] [2.4,0.11]
fixed 0.898 0.829 0.272 4.027 0.651

PC=3 [2.56,0.13] [3.03,0.23] [2.51,0.12]
fixed 0.921 0.577 0.498 0.736 0.233
PC=10 [1.64,0.09] [2.22,0.12] [2,0.11]
mixed 0.883 0.741 0.753 0.044 0.015
p#0 [1.28,0.07] [2.09,0.08] [1.95,0.07]
mixed 0.652 0.451 0.027 0.013 0.008
u=0 [1.11,0.13] [1.75,0.22] [0.81,0.18]
mixed 0.653 0.393 0.083 0.021 0.012
PC=3 [1.11,0.12] [1.73,0.22] [1.3,0.17]
mixed 0.756 0.284 0.233 0.036 0.019
PC=10 [1.23,0.09] [1.71,0.17] [1.45,0.16]
400 fixed 0.992 0.992 0.347 11.32 0.819
[2.2,0.12] [2.06,0.21] [1.71,0.18]
fixed 0.991 0.951 0.593 7.384 0.728
PC=3 [1.58,0.1] [1.59,0.16] [1.27,0.12]
fixed 0.999 0.943 0.94 1.179 0.249
PC=10 [0.79,0.07] [1.05,0.08] [1.04,0.08]
mixed 1 0.987 0.986 0.048 0.012
p#0 [0.56,0.05] [0.88,0.06] [0.92,0.06]
mixed 0.982 0.882 0.251 0.006 0.002
u=0 [0.61,0.07] [0.87,0.11] [0.52,0.04]
mixed 0.983 0.803 0.411 0.026 0.008
PC=3 [0.58,0.07] [0.85,0.11] [0.63,0.06]
mixed 0.998 0.814 0.815 0.057 0.015
PC=10 [0.57,0.06] [0.83,0.07] [0.82,0.07]

We report Power, average number of false positives (FP) and false discovery rate (FDR). The square brackets report a mean distance to a simulated QTL and a mean
value of |B; — Bi|. A fixed effects model and a mixed model with u =0 are additionally supplemented with the first 3 or 10 PCs of the incidence matrix X.

Table 5 Statistical properties of different methods as applied to the analysis of data generated according to the model (17), with no
polygenic background

n Model Powerl Power2 Power3 FP FDR
200 fixed 0.80 0.80 0.82 0.18 0.06
[1.83,0.05] [2.91, 0.05] [3.37, 0.06]
fixed 0.73 0.59 0.60 0.14 0.07
PC=3 [1.99, 0.06] [2.80, 0.07] [3.02, 0.07]
fixed 0.59 0.20 0.22 0.1 0.09
PC=10 [1.70, 0.07] [2.01, 0.17] [2.54, 0.18]
mixed 0.62 0.46 0.49 0.04 0.02
pn#0 [1.66, 0.06] [2.53,0.07] [2.83,0.07]
mixed 0.63 0.47 0.48 0.03 0.02
n=0 [1.56, 0.67] [2.41, 0.07] [2.75, 0.07]
mixed 0.57 0.34 0.35 0.03 0.02
PC=3 [1.57,0.07] [2.38, 0.10] [2.72,0.10]
mixed 0.50 0.14 0.16 0.05 0.06
PC=10 [1.46, 0.10] [1.75,0.21] [2.53,0.22]
400 fixed 1.00 0.99 0.98 0.08 0.02
[0.96, 0.05] [1.72,0.04] [1.73, 0.04]
fixed 1.00 0.96 0.97 0.05 0.02
PC=3 [1.09, 0.04] [1.68, 0.05] [1.61, 0.05]
fixed 0.98 0.66 0.67 0.06 0.02
PC=10 [1.10, 0.05] [1.46, 0.06] [1.35, 0.06]
mixed 0.98 0.95 0.95 0.02 0.01
pn#0 [1.02, 0.04] [1.72,0.04] [1.72,0.04]
mixed 0.99 0.95 0.95 0.02 0.01
n=0 [1.01, 0.04] [1.70, 0.04] [1.66, 0.04]
mixed 0.93 0.87 0.87 0.03 0.01
PC=3 [1.03, 0.04] [1.59, 0.05] [1.58, 0.04]
mixed 0.93 0.56 0.55 0.02 0.01
PC=10 [1.00, 0.04] [1.34, 0.08] [1.31, 0.08]

We report Power, average number of false positives (FP), and false discovery rate (FDR). The square brackets report a mean distance to a simulated QTL and a mean
value of |B; — B;|. A fixed effects model and a mixed model with u =0 are additionally supplemented with the first 3 or 10 PCs of the incidence matrix X.
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curve almost completely coincides with the curve representing
the empirical means of these statistics over 1500 simulated traits.
Additionally, the blue curve represents the empirical 75% quan-
tile of the t-test statistics absolute values distribution along the
whole genome. When comparing the theoretically derived curves
from the right panel to the graphical representation of hotspots
in the left panel, we observe that the theoretically calculated
means successfully predict the position of hotspots, which are
most clearly visible when the 75% quantile line approaches the
threshold corrected for multiple testing. The middle panel illus-
trates that all ghost hotspots are completely eliminated when an-
alyzing the same data set with the stepwise procedure based on
the mixed model (3).

Drosophila data

Figure 7 illustrates the results of the analysis for the Drosophila
data of Zeng et al. (2000) with different methods of QTL mapping.
The left panel displays the absolute values of the single marker t-
statistics systematically exceeding the critical value over both

chromosomes. These results suggest a strong polygenic
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Figure 5 The comparison between the magnitudes of the falsely detected
ghost QTL (red diamonds) and the respective values of the simulated
polygenic effects (y, blue points). The X axis represents the indices of
genome locations in the sequence sorted according to the magnitude of
the polygenic effects.

background of the analyzed trait. In the middle plot, we observe
that the CIM suggests a strong QTL close to the left end of chro-
mosome 1 and four or five suggestive QTL, roughly uniformly dis-
tributed over chromosome 2. Other results of the analysis of
these data are reported in Zeng et al. (2000) and Bogdan et al.
(2008), which use different strategies for fitting the fixed effects
multiple regression model and suggest 17 QTL, roughly uniformly
distributed over these two chromosomes. The right panel illus-
trates the results of the analysis of these data with the mixed
model (3) and attributes all 72% heritability for this trait to the
polygenic background. We believe that this is a reasonable way of
summarizing these data, taking into account the lack of replica-
bility of identified QTL positions by different methods based on
the fixed-effects model. It seems that for these data a precise lo-
calization of so many QTL is practically impossible, simply be-
cause of the limited sample size and the strong correlation
between genotypes at neighboring loci.

Discussion

In the genetics of natural populations, it is well understood that
population stratification, usually resulting from a differential se-
lection of the polygenic background, may lead to many false dis-
coveries when the gene mapping is performed using
oversimplified statistical models. In the literature on genetics of
human populations, this problem is often addressed by the appli-
cation of mixed models (see Kang et al. 2010) or by considering
covariates describing the genome-wide ancestries of different
individuals (see Redden et al. 2006). In this article, we argue that
the polygenic background may also lead to ghost QTL in well-
controlled experimental populations. Since the locations of the
ghost QTL depend mainly on the structure of the sample geno-
type matrix, this problem might be even more pronounced in the
experiments based on fixed genotype design matrices, as it some-
times happens in recombinant inbred lines QTL mapping. In this
case, the ghost QTL might have a tendency to occur at the same
positions for independent replicates of a QTL mapping experi-
ment and may lead to incorrect biological conclusions. We also
argue that the polygenic background might be one of the reasons
for identifying genome regions that seem to be associated with
the multitude of traits mapped using the same genotype data, as
in the case of eQTL mapping experiments.

The complexity of quantitative traits inheritance is far from a
new concept, and is well documented in both animal and plant
breeding/genetics literature. It has also been strongly suggested
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Figure 6 Two left panels represent the results of the analysis of the simulated eQTL data with the conditional single marker tests based on the model
(18) (left) and the stepwise selection strategy based on the model (3) (middle). Values on the y-axis and x-axis correspond to the indices of the e-traits
and the markers, respectively. Red points mark the positions which are significant at the Genome Wise Type I Error Rate (GWER) of 0.05/1500. In the last
panel, we present means of the absolute values of t-test statistics over all 1500 traits (black line) and the theoretical expected values calculated
according to the formula (19) in the Appendix (red line). In most positions, these curves coincide completely. The blue line represents 75% quantiles of
the t-test statistics absolute values distribution along the genome. The horizontal lines correspond to the Genome Wide adjusted thresholds of Dupuis
and Siegmund (1999) for GWER control at the levels 0.05 and 0.05/1500. The larger threshold uses the Bonferroni correction to adjust to the number of

traits.
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Figure 7 Results of the analysis of the Drosophila data of Zeng et al. (2000) with different methods of QTL mapping. Left panel represents single marker t-
tests. The middle panel provides the results of the Composite Interval Mapping of Zeng (1994), where the t-statistics are calculated after conditioning
over all markers beyond the * 20 cM window. The right panel represents the results of the single marker tests in the mixed model (3).

that many of the quantitative traits, including gene-expression
levels, are subject to the polygenic adaptation (Price et al. 2008;
Fraser et al. 2010, 2011; Turchin et al. 2012), which forms the basis
for the models used in our simulation study. The polygenic inher-
itance of the expression levels can be explained by the fact that
the expression of a given gene is usually activated by the tran-
scription factors produced by other genes. Thus, it depends not
only on the genotype of its own cis-regulatory elements, but also
on the genotypes of cis-regulatory elements of the multitude of
other genes involved in a genetic pathway.

In this article, we demonstrate that the ghost QTL and the
ghost hotspots that arise due to the polygenic background can be
eliminated by the application of the mixed models with the non-
zero mean of the random effects. The model used in this paper
assumes that the intensity of the polygenic effects remains con-
stant over the whole genome. This methodology can be naturally
extended by allowing p and t to be smooth functions of location,
which can be estimated for example by using the latent Gaussian
process. We consider this as an interesting topic for a further re-
search. Similarly, our simulations suggest that for large sample
sizes the nonzero mean effect can be partly captured by the in-
clusion of the relatively large number of Principal Components of
the genotype matrix. We leave the quantitative description of
this phenomenon as an interesting topic for further research.

We believe that our research brings a new perspective to the
discussion started in Amrhein et al. (2019) on the role of statistical
significance in reporting the results of medical or biological re-
search. Generally speaking, different measures of statistical sig-
nificance (p-values, t-statistics, likelihood ratio tests, estimated
signal to noise ratio) provide some indication of the strength of
the signal in the data in relation to technical or biological noise.
The results reported in this article clearly illustrate that such
measures of statistical significance become meaningful only
when using appropriate statistical modeling. When statistical
tests are performed based on seemingly intuitive but oversimpli-
fied statistical models, they may easily lead both to false discov-
eries and the neglect of important biological effects. Therefore, in
our opinion, more effort should be devoted to the development of
appropriate statistical methodology, capable of capturing the
main aspects of the investigated biological phenomena.

We all know that even when the appropriate model is used
statistical significance does not necessarily mean scientific im-
portance, particularly when the sample size is very large.
However, statistically nonsignificant results indicate that the

observed effect is hardly distinguishable from the noise and the
data do not support scientific discovery. In this context, it is im-
portant to note the importance of the multiple testing correction.
If a multiple testing correction is not used, then many false dis-
coveries can be observed simply due to the random fluctuations
of data. Because of this, we placed a substantial effort into the de-
velopment of an efficient multiple testing correction for our step-
wise procedure to localize QTL. We focused on experiment-wise
error rate control and used the classical nominal level of 0.05.
This nominal level still allows for false discoveries in approxi-
mately 1 out 20 replications of the experiment and may still be
too liberal to prevent incorrect biological conclusions if the nega-
tive results are not published. Therefore, we believe that our pro-
posed experiment-wise error rate should not be exceeded.

Our proposed method for the multiple testing correction is
based on the experimentally supported mathematical models
postulating the exponential decay of the correlation between
marker genotypes in experimental crosses. This element needs to
be substantially modified when extending our mixed model ap-
proach for localizing genes in human admixture populations; a
topic of our ongoing research. In this situation, one can consider
model selection criteria aimed at the control of the experiment-
wise error rate or the False Discovery Rate, like the modified ver-
sions of the Bayesian Information Criterion (mBIC, Bogdan et al.
2004, 2008; Frommlet et al. 2012, 2016; Szulc et al. 2017, Sorted L-
One Penalized Estimator (SLOPE, Bogdan et al. 2015; Brzyski et al.
2017, 2019), or the new adaptive version of SLOPE (ABSLOPE) pro-
posed in Jiang et al. (2019), which can handle the missing data
and can be easily expanded to incorporate local polygenic effects.

In conclusion, we definitely do not advocate the abandonment
of statistical significance but opt for using common sense when
interpreting statistically significant results. We also believe that
more effort should be devoted to selection, or development of ad-
equate statistical models and methods, where the statistical sig-
nificance measure (not always a p-value) is a proper indication of
the strength of biological signal relative to noise in the data.
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Appendix

Expected values of the single marker test
statistics

Here we provide mathematical formulas used to approximate the
expected values of the single marker t-test statistics represented
in the lower left panel in Figure 6.

The t-test statistics are given by the formula:

_ By
s(Br)

jk

Whereﬁjk is the least squares estimator of fj 111 the model (18)
and s(Bj) is the estimated standard deviation of j,.

To predict the hotspots for single marker tests we rely on the
fact that for reasonably large sample sizes the expectation of the
absolute value of the t-test statistics can be approximated, using
the delta method (see Section 1.5 of Shao 1998), by:

EQBili)
VE(SBxX)

Recall that according to our polygenic model Y*is given as:

E(|Tje|1X) ~

YE = Xk 4 XRBE 4 €

where 1% ~ N(1pp®, t°Iyyy). Denote B = (X, 1,,X¥] as the incidence
matrix corresponding to model (18). The least squares estimator
of the vector of regression coefficients in (18) is given as

B = (B"B)'BTY,
and the covariance matrix of B is estimated by:

_1 RSS

Var(B|x] = (BB) ' =,
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where RSS = ||Y — BB||? is the residual sum of squares in the
model (18) and b is the rank of B (usually b=2if j=k and b=3
when j # k).

To derive the numerator of (19) note that B is a Normal random
vector with the expectation:

1P =E(B|X) = (B"B) BT (X*f* + Dyt),
and variance

¥B = Var(B]X) = (BTB) BT (12XXT + ¢2I)B(BTB) *
= 12(BTB)"'BTXXTB(BTB) ! + (BTB) '62.

Using the classical formula for the expectation of the folded
normal distribution we obtain:

~ B)2
BBl = /25 Zexp ( g;) "
B
A{~f)
11

where @ is the cdf of the standard Normal distribution. In order
to derive the expectation in the denominator of (19)

RSS
11n—b’ (1)

s (By) = ((B7B) ")
we need to derive E[RSS|X]. First, we note that
Y — BB = (I-P3)Y,

where the projection matrix Ps is given by Pg = B(BTB) 'B.
Second, since  Y|X,y~ N(X*B*+Xy,02), by Cochran’s
theorem (see Section 1.3 of Shao 1998), it follows that B |X, y ~
x*(n — b, %) where the non-centrality parameter § is given by

8 =E(Y|X,7) (I - Pp)E(Y[X,7)
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Thus,

E(RSS|X) = E(E(Rssp(, y)|X) = E((n —b)o? + 6|X)

= (n—b)o? + [B*, 1] [X*, DI (1 - Py)[X*, DJ[B*, ']
+ 22tr(X"(I - Pp)X).

Subsequently, E(sz(ﬁjk)\X) can be obtained by plugging
E(RSS|X) into the equation (21).

The red curve in Figure 6 is obtained by averaging the approxi-
mations to E(|Ty|[X) over all considered traits (ie. over
k€ {1,...,1500}).

Heritability in the model (1)

In this section, we derive the formula for the heritability in the
model (1), which was used to estimate the heritability in the
Drosophila data of Zeng et al. (2000). In this section, we use Y,
Z1,...,Zy and € to represent random variables (distributions) cor-
responding to the trait, genotypes of polygenic QTL and random
noise. We assume that the data for QTL mapping are obtained by
drawing independent samples from the joint distribution of
(Y, Z1,...,Zp,€).

According to model (1) the trait random variable Y is given by
the formula:

)4
Y=fo+> Zyj+e,
=

where e ~ N(0, 6?).
The heritability of the trait Y is provided by:

, _ genotypic variance  Var(} Zy)
" phenotypic variance = Var(}. Zy) + a2
2

—1— g
o Var(CZip) +a?

(23)

The trait heritability results from the genotypes of the poly-
genic QTL. The variance in the denominator of the right-hand
side of the formula for H? should be calculated with respect to
the joint distribution of the random vector Z = (Z1,...,Z,):

Varz(y Zm) = Y yiVar(Z) +2  ynCov(Z;,Z)

j>1

where Var(Z)) = 1 and Cov(Z;,Z;) = e~24i, where dj is the distance
(in Morgans) between j™ and I™ polygenic QTL, with the conven-
tion that dj = oo if the corresponding QTL are placed on different
chromosomes.

Thus, heritability of Y depends on specific values of all poly-
genic effects vy, .. .,v,, which, due to the relatively small size, can
not be estimated well. Therefore, in our model we assume that
the polygenic genetic effects y4,...,y, are independent random
variables from the normal N(u,?) distribution, and we approxi-
mate the genotypic variance by its expectation with respect to
the distribution of these polygenic effects;

genotypi/c\variance =E\Varz(3> Ziy)
=p(? +1%) + 212 Cov(Z;,Z)) .

j>1

Combining the above formulas, we obtain the following esti-
mate:
a2 7’

(2 + 1) + 22 2s1Cov(Z, 7))

When estimating the heritability for the Drosophila data of
Zeng et al. (2000) we replaced unknown genotypes of the poly-
genic QTL with the genotypes of densely spaced pseudo-markers,
that were used to estimate g, 7, and o.
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