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Abstract

Somatic copy number alterations (SCNAs) serve as hallmarks of tumorigenesis and often result in deviations from one-to-one allelic ratios
at heterozygous loci, leading to allelic imbalance (AI). The Cancer Genome Atlas (TCGA) reports SCNAs identified using a circular binary
segmentation algorithm, providing segment mean copy number estimates from single-nucleotide polymorphism DNA microarray total
intensities (log R ratio), but not allele-specific intensities (“B allele” frequencies) that inform of AI. Our approach provides more sensitive
identification of SCNAs by modeling the “B allele” frequencies jointly, thereby bolstering the catalog of chromosomal alterations in this
widely utilized resource. Here we present AI summaries for all 33 tumor sites in TCGA, including those induced by SCNAs and copy-
neutral loss-of-heterozygosity (cnLOH). We identified AI in 94% of the tumors, higher than in previous reports. Recurrent events included
deletions of 17p, 9q, 3p, amplifications of 8q, 1q, 7p, as well as mixed event types on 8p and 13q. We also observed both site-specific
and pan-cancer (spanning 17p) cnLOH, patterns which have not been comprehensively characterized. The identification of such cnLOH
events elucidates tumor suppressors and multi-hit pathways to carcinogenesis. We also contrast the landscapes inferred from AI- and total
intensity-derived SCNAs and propose an automated procedure to improve and adjust SCNAs in TCGA for cases where high levels of
aneuploidy obscured baseline intensity identification. Our findings support the exploration of additional methods for robust automated
inference procedures and to aid empirical discoveries across TCGA.
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Introduction
Chromosomal instability resulting in somatic copy number alter-
ations (SCNAs), including whole chromosomal or whole-arm
gains and losses, impacts large regions in the genome that might
encompass known oncogenes and tumor suppressor genes. Such
genomic instability events serve as hallmarks of tumorigenesis
(Negrini et al. 2010) by resulting in the rapid accumulation of ad-
ditional and possibly driver mutations. Previous studies have
identified the presence of chromosomal SCNAs that are charac-
teristic to specific tumor types and subtypes (Ried et al. 2012;
Hoadley et al. 2014; Taylor et al. 2018). Consequences of chromo-
somal alterations include altered responses to therapeutic regi-
mens, gene expression modulations favoring increased cell
proliferation and reduced expression of immune markers (van
Jaarsveld and Kops 2016; Hutchinson 2017). Therefore, the accu-
rate detection, genome-wide characterization, and cataloging of
such alterations may help better elucidate their roles in tumor
initiation or progression through correlative analyses with epide-
miological variables or clinical outcomes.

The Cancer Genome Atlas (TCGA) provides a large repository
of tumor specimens across multiple tissue types and varied

clinicopathological features, thus facilitating several pan-cancer
studies of cancer aneuploidy and tumor-specific copy-number

signatures, such as those derived from single-nucleotide poly-

morphism (SNP) genotyping array platforms (Zack et al. 2013;
Hoadley et al. 2014; Taylor et al. 2018). However, studies of chro-

mosomal SCNAs are challenging owing to the difficulty in acquir-

ing high cellularity tumor specimens as well as limitations in
automated computational approaches for the detection of these

changes. Further, unique challenges compound the automated

detection of chromosome arm-level SCNAs from SNP arrays. First,
the samples often derive from a mixture of cells from tumors and

those which are “pathologically normal,” thereby necessitating

algorithms with increased sensitivity to identify “subtle” genomic
alterations in bulk samples of intermediate or modest cellularity.

Second, most SCNA detection methods report genomic regions of

copy number alterations and their segment mean copy number
estimates, the characterization of which heavily relies on accurate

identification of non-aberrant regions of the genome to establish a

baseline signal intensity representative of neutral copy number;
however, tumor samples exhibiting high levels of genomic instabil-

ity pose a challenge for such analyses.
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To overcome these challenges, we sought to identify regions in
the genome that exhibit allelic imbalance (AI), a deviation from
the expected 1:1 ratio at germline heterozygous loci, a natural
consequence of SCNAs such as duplications, deletions and copy-
neutral loss-of-heterozygosity (cnLOH), using a haplotype-aware
statistical method (hapLOH), that is suitable for detecting
megabase-scale alterations (Vattathil and Scheet 2013). Outputs
from SNP DNA microarrays include the following two measure-
ments per marker: the “B allele” frequency (BAF), representing
the proportion of the arbitrarily-labeled “B allele” at a locus; and
the log R ratio (LRR), the total intensity of (both) allelic probes at
the locus. In contrast to methods that utilize LRR to identify
regions of SCNAs, hapLOH utilizes the BAF to identify regions of
AI, followed by a BAF and LRR threshold-based characterization
of the identified events. In addition to being a more sensitive ap-
proach that identifies additional SCNAs (Figure 1A), a BAF-based
method for AI detection also provides a relatively unexplored,
yet informative, class of chromosomal alterations—cnLOH
(Figure 1B). These represent regions of zero net copy number
change but an extreme alteration in the ratio of alleles (i.e.
change of germline heterozygous loci AB to AA or BB). The land-
scape of large cnLOH regions remains largely unknown due to
the lack of sensitive algorithms for their automated detection.
Recent pan-cancer investigations have identified evidence of fo-
cal LOH events accompanying mutations in genes involved in
DNA damage repair pathways (Knijnenburg et al. 2018), as well as
those accompanying polymorphisms in essential genes that re-
sult in cancer cell-specific vulnerabilities (Nichols et al. 2020).
However, very few studies have described the vital role of
large, chromosome-arm level cnLOH in the development of
hematologic malignancies (O’Keefe et al. 2010; Stirewalt et al.
2014; Schwartz and Papenhausen 2017), gastrointestinal tumors
(Lourenço et al. 2014), and colorectal cancer (Melcher et al. 2011).
Therefore, it is crucial to identify and understand the landscape
of these cnLOH events across tumor sites to better understand
their role in the complex mechanisms of tumorigenesis such as
those contributing to the multi-hit pathogenesis of tumors.

In this study, we analyzed 11,074 tumor–normal pairs across
33 tumor sites in the TCGA cohort to utilize BAF as well as LRR
metrics from SNP genotyping arrays to identify genome-wide pat-
terns of AI. Using a more sensitive approach, we were able to sup-
plement the cohort with additional subtle chromosome-arm
level SCNAs, resolve potentially conflicting cases based on prior
results, and characterize the previously unknown pan-cancer
landscape of chromosomal cnLOH events.

Materials and methods
Dataset
The Level 1 raw CEL files from Affymetrix Genome-Wide Human
SNP Array 6.0 profiling of 11,074 paired tumor-normal samples
across 33 cancer sites in TCGA were downloaded from the
Genomic Data Commons data portal, along with available clini-
cal annotations. The cohort comprised a majority of primary
tumors (n¼ 10,680), with a few metastatic specimens (n¼ 394;
SKCM accounting for 368 of these samples). SNP metrics includ-
ing genotypes, BAF, and LRR were obtained from the Birdsuite
software (Korn et al. 2008).

Pan-cancer AI profiles using hapLOH
For each tumor sample, the corresponding control sample (blood
or tumor adjacent normal tissue) was paired and statistical re-
construction of haplotypes was performed using MaCH (Li et al.

2010). The human genome build hg19 (GRCh37) was used as the
reference. The phased genotypes as well as the BAFs were sup-
plied as inputs to run hapLOH (Vattathil and Scheet 2013) using
default parameters. Briefly, hapLOH applies a hidden Markov
model to identify regions of the genome where observed BAFs at
germline heterozygous markers tend toward (resemble) one of
the parental haplotypes; the identified regions exhibit evidence of
AI in the DNA, because BAFs should bear no resemblance to ei-
ther germline haplotype if there has been no relative gain or loss
of one of the inherited chromosomes in any of the cells from
which the DNA was derived. The resulting regions of allelic AI
were then characterized based on the extent of BAF and LRR devi-
ations for each event region. Regions with LRR deviation >0.05
were classified as gains, whereas those with LRR deviations below
�0.05 were classified as losses. Of note, AI events with LRR �0.08
and <2 Mb in length were excluded as likely inherited duplica-
tions. The remaining events were characterized as cnLOH if me-
dian BAF deviations were >0.1. These thresholds are set to
identify AI events for which we are confident of the underlying
specific alterations (gains, losses, and cnLOH) generating the AI.
The others, i.e. those we were unable to confidently characterize
into these different types, were deemed to be too subtle, e.g. due
to low mutant cell fraction, for this annotation and are labeled as
“Subtle”/“Unclassifiable.” The AI events spanning more than 70%
of the chromosome arm were considered chromosomal-arm level
events, whereas the remaining were retained as focal events. For
each tumor sample, the percent of its genome under AI was used
as a measure of its genomic AI burden.

To attempt a modest technical validation of our results from
applying hapLOH to SNP arrays, we applied our method, as imple-
mented in San Lucas et al. (2016), to 223 whole-exome sequencing
(WES) datasets from 100 lung squamous (LUSC) and 123 pancreatic
adenocarcinoma (PAAD) patients, downloaded from the Genomic
Data Commons, on which SNP array data had also been generated
and analyzed. Briefly, from the .bam files, genotypes were called at
variable sites in the 1000 Genomes Project using GATK (DePristo
et al. 2011), generating .vcf files. Haplotypes were then estimated
with MaCH (Li et al. 2010) using these samples as an internal refer-
ence, and regions of AI were determined using the hapLOHseq al-
gorithm (San Lucas et al. 2016). For this comparison, we tabulated
genes (n¼ 17,738) spanned by an AI event identified by the two
technologies. Median proportions of genes covered by an array-
based AI that were identified also by WES were 0.93 for LUSC and
0.94 for PAAD. The proportion of genes spanned by a WES-called
AI that were also identified as within an AI event by arrays was
0.91 for LUSC and 0.94 for PAAD. The overall high concordance ob-
served between the two technologies served as a form of validation
of the results presented here.

TCGA pan-cancer copy number profiles
The processed chromosome arm-level copy number event files
were downloaded from Broad GDAC Firehose. The latest analysis
version at the time of download was dated January 28, 2016. The
broad_values_by_arm.txt files under each TCGA study were then
processed into bed formatted files using the specified amplifica-
tion/deletion threshold of 0.1. These results were compared with
the AI-derived copy number events identified by hapLOH for the
same individuals.

Identification of putative problematic calls in
TCGA
hapLOH leverages statistically estimated haplotypes to identify
high-confidence megabase-scale chromosomal alterations.
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Figure 1 Examples highlighting the utility of BAF in the identification of chromosomal alterations. Through this investigation, we aim to supplement
the SCNAs in TCGA with AI inferred from BAF patterns, a complementary data element to the LRR, from which existing calls are made, to identify
additional chromosomal alterations. Shown here are two motivating examples from pancreatic adenocarcinoma (PAAD). The tumor samples are
annotated with chromosomal arm-level events downloaded from BROAD GDAC Firehose along with the BAF and LRR values at markers profiled across
the genome for that individual. Below these panels are the event probabilities inferred from hapLOH using the BAF patterns, as well as classified event
calls from hapLOH using a threshold-based approach from BAF and LRR deviations, for the identified event boundaries (see Materials and methods).
Although all hapLOH events are shown, only chromosomal-arm level events were used for the comparison to SCNAs identified in TCGA. The events
calls from hapLOH as well as the chromosomal arm-level events reported by TCGA have been colored based on the type of chromosomal alteration
(red: gain, blue: loss). (A) A PAAD tumor exhibiting overall concordance between the two call sets, with additional cnLOH events such as those on
chromosome 22 and arm 20p, identified by hapLOH. In such cases, our approach of a BAF-derived AI estimator supplements the database with
additional, potentially impactful, chromosomal alterations. (B) A PAAD sample with discordant calls between the two approaches. The incorporation of
deviations in BAF suggests a misestimation of the normal region. The SCNAs reported in TCGA do not align with BAF deviations. However, hapLOH
identifies regions based on BAF-derived AI. We apply an automated adjustment approach (see Materials and methods) for such discordant cases, the
result of which is shown in the bottom-most panel. The SCNAs, after adjustment, align with deviations in BAF and thereby are concordant with
hapLOH event calls. Through this approach, we address differences between the call sets and suggest methods to adjust specific cases with potentially
problematic calls to enhance the database with more accurate SCNAs.
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While a large fraction of the identified events span whole chro-
mosomes or chromosome arms, events that span relatively
shorter segments of a chromosome arm are also picked up by
the algorithm. Therefore, for this portion of the analysis,
AI events identified by hapLOH in each tumor sample were
reassessed at a chromosome-arm level. To do so, we summed
up the length of all events identified on a chromosome arm; if
at least 70% of the chromosome arm exhibited evidence of AI,
we considered it as a positive call for that chromosome arm.
The event classification for each identified chromosome arm
call was determined by the largest individual event identified
on that chromosome arm by hapLOH. For the purpose of SCNA
comparisons, cnLOH events and subtle unclassified events
were excluded from this analysis. For every marker genotyped
in the array, the presence (or absence) of an event spanning the
marker in both TCGA- and hapLOH-derived event calls was
annotated as 1 (or 0), respectively. A Pearson correlation coeffi-
cient was computed from all markers. Samples with a negative
correlation were identified as discordant and potentially
problematic.

Automated adjustment of potentially problematic
calls in TCGA
For each of the negatively correlated tumor samples identified
through the procedure described above, the normal region, as de-
termined by hapLOH, was identified. Events reported by TCGA
within these normal regions as well as those that were identified
as normal by both methods were identified. A new weighted

median copy number was calculated from these events, weighted

by the length of the event. The original calls made by TCGA were

recalibrated using this newly determined normal copy number.

Using the same specifications as before, i.e. an amplification/de-

letion threshold of 0.1, the new set of chromosome-arm event

calls was reclassified. A correlation between these adjusted

TCGA SCNA calls and hapLOH-derived SCNAs was calculated in

a manner explained in the previous section.

Data availability
The authors affirm that all data necessary for confirming the

conclusions of this article are represented fully within the article,

its tables, figures, and Supplementary Material.
Supplementary material is available at figshare DOI: https://

doi.org/10.25386/genetics.13238948.

Results
Tumor genomes often exhibit high genomic instability, rendering

automated identification of copy number changes challenging

due to limited normal regions in the genomes which serve as a

baseline for comparison. Here, we applied a sensitive haplotype-

based technique to identify the landscape of chromosomal copy

number changes (e.g. gain, loss) as well as previously uncharac-

terized chromosomal cnLOH events through a survey of paired

tumor–normal specimens from 11,074 cases across 33 tumor

types in TCGA (Table 1).

Table 1 Summary of AI profiles identified across 33 tumor sites in TCGA

Tumor site TCGA

abbreviation

Number of

samples

Number of

samples with AI

Samples

with AI (%)

Genomic burden

(median)

Adrenocortical carcinoma ACC 90 90 100.00 0.6326
Bladder urothelial carcinoma BLCA 411 408 99.27 0.5300
Breast invasive carcinoma BRCA 1101 1093 99.27 0.4366
Cervical squamous cell carcinoma

and endocervical adenocarcinoma
CESC 303 301 99.34 0.3444

Cholangiocarcinoma CHOL 36 34 94.44 0.3842
Colon adenocarcinoma COAD 462 455 98.48 0.3656
Lymphoid neoplasm diffuse large

B-cell lymphoma
DLBC 48 47 97.92 0.2011

Esophageal carcinoma ESCA 186 184 98.92 0.6446
Glioblastoma multiforme GBM 545 539 98.90 0.2088
Head and neck squamous cell carcinoma HNSC 527 526 99.81 0.4324
Kidney chromophobe KICH 66 64 96.97 0.4115
Kidney renal clear cell carcinoma KIRC 529 521 98.49 0.1731
Kidney renal papillary cell carcinoma KIRP 288 281 97.57 0.1996
Acute myeloid leukemia LAML 200 106 53.00 0.0014
Brain lower grade glioma LGG 527 517 98.10 0.1317
Liver hepatocellular carcinoma LIHC 377 369 97.88 0.3194
Lung adenocarcinoma LUAD 517 514 99.42 0.5539
Lung squamous cell carcinoma LUSC 502 495 98.61 0.5921
Mesothelioma MESO 87 85 97.70 0.2800
Ovarian serous cystadenocarcinoma OV 595 592 99.50 0.6202
Pancreatic adenocarcinoma PAAD 185 170 91.89 0.2627
Pheochromocytoma and paraganglioma PCPG 183 179 97.81 0.1543
Prostate adenocarcinoma PRAD 496 465 93.75 0.0910
Rectum adenocarcinoma READ 168 167 99.40 0.5100
Sarcoma SARC 261 253 96.93 0.4069
Skin cutaneous melanoma SKCM 472 469 99.36 0.4263
Stomach adenocarcinoma STAD 442 436 98.64 0.4303
Testicular germ cell tumors TGCT 156 156 100.00 0.6504
Thyroid carcinoma THCA 509 195 38.31 0.0000
Thymoma THYM 124 85 68.55 0.0263
Uterine corpus endometrial carcinoma UCEC 546 481 88.10 0.1174
Uterine carcinosarcoma UCS 55 55 100.00 0.5941
Uveal melanoma UVM 80 79 98.75 0.1628
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Pan-cancer AI burden
Our method identified at least one AI event in 10,411 cases (94%),
with a median genomic AI burden (defined as the percentage of a
sample’s genome exhibiting AI) of 32%. We further assessed the
patterns of genomic AI burden for each tumor site independently,
to account for the site-specific molecular complexities and varia-
tion in number of samples across tumor types, displayed in
Figure 2 and Table 1. We use the abbreviations, as designated by

TCGA, to describe our findings across all tumor types. Testicular
(TGCT), esophageal (ESCA), adrenocortical (ACC), and ovarian
(OV) tumors exhibited high overall genomic AI burdens, with
medians for each exceeding 60%. Uterine (UCS) and lung (LUSC,
LUAD) tumors also exhibited high genomic AI burden, with
medians of over 50%. At the low end of the burden spectrum
were thyroid tumors (THCA), acute myeloid leukemia (LAML),
thymoma (THYM), and prostate tumors (PRAD), all of which
exhibited a median genomic AI burden below 10%. Each event

Figure 2 The distribution of genomic AI burden across 33 tumor sites in TCGA. We identified regions of AI across 11,074 tumor samples across 33 tumor
sites in TCGA. Boxplots representing the distribution of overall genomic AI burden, defined as a percent of the genome exhibiting evidence of AI, are
shown for each tumor site. The distribution of genomic burdens for each event type is also shown (red: gain, blue: loss, green: cnLOH, gray: subtle,
unclassifiable events). The tumors are ordered by their median overall genomic burden.
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type also showed varied patterns for genomic burdens across tu-
mor types. TGCT, UCS, ESCA, and OV showed highest median ge-
nomic burdens for gains, whereas ACC, KICH, OV, LUSC, and UCS
showed high rates of genomic burdens for losses. The different
tumor sites also exhibited different patterns of enrichment of the
three event types. While some cancers, such as KICH and ACC,
showed pronounced and preferential enrichment of loss events,
tumors such as KIRP and TGCT showed high gain burdens
(Supplementary Figure S1). The relative abundance of cnLOH was
overall lesser than gains and losses, and spanned smaller propor-
tions of the genome; the highest rates of cnLOH genomic burdens
were observed in TGCT, ESCA, LUSC, UCS, and OV.

Landscape of chromosome arm-level copy
number changes across tumor sites
As our method is tuned for the detection of megabase-scale chro-
mosomal changes such as those that span an entire chromosome
or chromosome arm, we examined in greater depth chromo-
somal arm events across the 33 tumor types (Figure 3). At the
arm level, our method identified 121,645 events in 10,004 tumor
samples, of which 32,925 were gains and 57,161 were losses
(Supplementary Table S1). Among these, the most common pan-
cancer chromosome arm event occurred on 17p (Figure 3).
Although 17p events were common among multiple tumor sites
including ACC, KICH, COAD, LUAD, LUSC, PAAD, ESCA, and
BRCA, some tumor sites did not show an enrichment for AI on
17p, such as GBM, KIRC, THCA, UVM, and PRAD (Figure 3).
Among cases that showed copy number changes on 17p, most
comprised loss events; KIRP was the only tumor site that showed

an abundance of 17p gains. Events on 8p and 3p were also preva-
lent across multiple tumor sites (Figure 3). While most cancer
types showed a loss of 8p, LAML and UVM exhibited predomi-
nantly gain events; STAD, UCEC, and COAD showed mixed event
types on 8p (Figure 3). Specifically in PRAD, 8p loss events were
predominant with the rest of the genome being relatively stable,
showing limited events in the rest of the genome such as 8q gain
and 18q loss. As with 17p events, loss of 3p occurred across many
tumor sites (Figure 3). Particularly in KIRC, 3p loss seemed to be
the predominant chromosomal event, with the rest of the ge-
nome showing very limited evidence for chromosomal instability
(Figure 3). Loss of 3p was also prevalent in UVM, LUAD, LUSC,
HNSC, CHOL, and CESC (Figure 3). Amplification of 8q was the
most frequent pan-cancer gain event, showing high occurrence
in multiple tumor sites including UVM, LAML, COAD, HNSC,
STAD, UCEC, SKCM, and LIHC (Figure 3). The second most preva-
lent amplification was identified on chromosome 7p, particularly
in KIRP, DLBC, COAD, GBM, SKCM, and STAD. Amplification of 1q
was also observed across many tumor sites; LUAD, LIHC, CESC,
UCEC, SKCM, and THYM showed relatively high occurrences of
1q gain (Figure 3). Similarly, an amplification of 20q seemed to be
prevalent in gastrointestinal tumors COAD, READ, and STAD.
(Figure 3). In contrast, chromosome arms 2p and 2q were the
least altered across tumor types; a predominant loss of 2p and 2q
was observed only in ACC and KICH datasets, both of which con-
sisted of very few cases.

Tumor sites could broadly be classified into two categories,
based on the distribution of chromosomal arm events across the
genome. Tumor sites such as UVM, THCA, KIRC, LGG, LAML, and

Figure 3 Pan-cancer patterns of chromosomal arm-level AI. We identified AI events that spanned over 70% of the genome as chromosome-arm level
events (see Materials and methods). The distribution of these events across all non-acrocentric autosomal chromosome arms (n¼ 39) is shown for the 33
tumor sites studied. The chromosome arms are sorted by their overall frequency of event occurrence across all tumor sites. For each tumor site, a
stacked bar plot of the number of tumor samples with event type-specific chromosome-arm level events is shown for all 39 chromosome arms
investigated. The stacked bar plot is colored by event type (red: gain, blue: loss, green: cnLOH, gray: subtle, unclassifiable events). Specifically, a deeper
investigation of the pan-cancer patterns of cnLOH events (green) was also performed (see Figure 4).
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PRAD showed a significant enrichment of at most a single or very
few chromosome arm events with the remaining parts of the ge-
nome being stable (Figure 3). For example, three tumor sites
showed single-arm events that dominated the AI profile in those
tumors such as 22q loss in THCA, 3p loss in KIRC, and 8p loss in
PRAD tumors. LGG tumors showed a significant enrichment of 1p
and 19q loss events, consistent with the known phenotype of 1p/
19q codeletion in LGGs. In contrast to LGGs, the other class of

brain tumors, GBMs, exhibited a different AI profile. In GBM
tumors, the frequent events included the loss of chromosome 10
and gain of chromosome 7 (Figure 3). LAML tumors, although
from a small dataset, showed high prevalence of chromosome 8
gains and to a lesser extent chromosome 7 loss events (Figure 3).
UVM tumors also seemed to exhibit relatively few chromosomal
arm events that spanned losses of chromosome 3 and 6q, and
gains of chromosome 8 and 6p. PCPG also showed few

Figure 4 Landscape of chromosomal arm-level cnLOH across TCGA. The AI-based approach implemented here allowed for the identification of the
previously unexplored landscape of cnLOH patterns across all tumor sites in TCGA. Shown here are bar plots representing the proportion of samples
exhibiting cnLOH events across chromosome arms in the genome, for each tumor site. Enriched pan-cancer cnLOH events as well as site-specific
cnLOH events are highlighted within the respective tumor site plots.
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chromosome arms under AI, the most frequent being loss events
on 1p and 3q. In contrast to these tumor sites that showed lower
overall AI burden, which was often accompanied by the enrich-
ment of a single or few chromosome arm events, tumor sites
such as LUAD, LUSC, BRCA, ESCA, ACC, TGCT, STAD, SKCM, and
SARC showed genome-wide AI patterns involving multiple chro-
mosome arms. Tumor sites could also be classified based on the
enrichment of a specific event type among the AI events
detected. For example, KIRP tumors seemed to be primarily
driven by gain events across the genome. In contrast, tumor sites
such as KICH, PCPG, STAD, and PAAD showed genome-wide en-
richment of losses (Figure 3, Supplementary Figure S1). These
results aid in understanding the role of different chromosomal
changes and burdens in driving the development of different tu-
mor types, based on their sites of origin.

cnLOH patterns across tumor sites
We analyzed TCGA tumor samples to identify deviations in the
expected 1:1 allelic ratios at germline heterozygous loci, a by-
product of which is accurate detection of regions of cnLOH that
result in allelic ratios of 2:0 or 0:2 in the cells with the chromo-
somal mutation. Standard methods that rely on identifying copy
number changes from LRR (total allele) intensities will miss this
particular class of chromosomal alterations. Our AI annotation
of the 33 tumor sites in TCGA that includes cnLOH status, which,
to date, has not been comprehensively characterized. Our meth-
ods identified 20,454 cnLOH arm-level events across 5,222 cases
in TCGA (Supplementary Table S1). Figure 4 shows the distribu-
tion of chromosome arm-level cnLOH across the genome for
each tumor site. Among these, TGCT and ESCA showed the high-
est rates of cnLOH (by burden and arms; Figures 1 and 4).
Chromosome 17 showed the highest rates of cnLOH across tumor
sites (Figure 4). Chromosome arm 3p, 6p, and 2p also showed
high rates of cnLOH events across tumor sites (Figure 4).

We interrogated in greater depth the chromosome arm-level
cnLOH that showed enrichment within specific tumor sites
(Figure 4). For example, LGG tumors showed a pronounced pres-
ence of cnLOH on 17p (21.6% of tumors, Figure 4), an observation
that would be completely missed in copy number detection
approaches that use LRR intensities only. In addition, cases that
exhibited 17p cnLOH in LGGs (n¼ 114) were found to be mutually
exclusive to cases that exhibited the 1p/19q codeletion (n¼ 160).
Copy neutral LOH of 17p was also prevalent in ESCA (22%), LUSC
(20.1%), OV (18.5%), and HNSC tumors (17.8%) (Figure 4). These
tumor sites also showed evidence for cnLOH events on the q arm
of chromosome 17 (BRCA1, NF1). 6p also showed high rates of
cnLOH, particularly in CESC tumors (14.8% of tumors). In UCS,
amidst high rates of cnLOH across the genome, 11p (WT1) cnLOH
events were pronounced (23.6% of tumors). We also observed tu-
mor sites with multiple cnLOH events across the genomes, i.e.
without having any visually observable specificity for particular
chromosome arm events. In addition to TGCT and ESCA, men-
tioned above, READ, LUAD, SKCM, and STAD exhibited cnLOH
across the genome. These results suggest the importance of in-
vestigating cnLOH events to better understand their role in onco-
genesis and determine the molecular mechanisms leading to
these chromosomal alterations across all tumor sites.

Recalibration of TCGA copy number profiles
Our AI analysis provides a set of potential SCNAs based on data
orthogonal to existing LRR-based SCNA calls. We sought to inter-
rogate these sets of calls for consistency to potentially aid auto-
mated algorithms for SCNA identification. We assessed

concordance in AI- and TCGA-identified SCNAs for 10,680 tumor
samples, among which a Pearson correlation could be calculated
for 9364 samples (Supplementary Table S2). Overall, 7577 showed
putative consistency (positive correlation) between the two sets
(Supplementary Table S2). For 1787 cases, a surprising negative
correlation existed between the calls. A closer inspection of these
revealed a strong negative correlation (Pearson correlation,
�0.74) between the overall genomic burden of AI and the concor-
dance of the two call sets, i.e. samples that exhibited high overall
AI burdens tended to show patterns of discordance between the
two calls sets. This trend was consistent across all tumor sites
(Supplementary Figure S2). Inspection of Supplementary Figure
S3 supports our conclusions of a set of poorly calibrated samples.
The overall distribution of concordance (correlation) statistics
exhibited varying patterns across the 33 tumor types assessed.
Tumor types, such as ESCA, LUAD, LUSC, BLCA, and TGCT,
exhibited either bimodal or sufficiently high dispersion such that
observed correlations spanned the range (�1,1). In contrast, tu-
mor types such as GBM, KIRC, and LGG, showed a tight peak
closer to a correlation of 1 with a longer tail of less prevalent val-
ues (including those that were discordant).

We identified a subset of 1653 cases that exhibited a negative
correlation between the two call sets as well as a high overall ge-
nomic AI burden (�50% of the genome). These cases are listed in
Supplementary Table S3. Figure 5 displays the proportion of these
discordant samples across tumor sites. The highest proportions
of negatively correlated samples were observed in TGCT (64.7%)
and ACC (54.4%) consisting of a total of 150 and 90 profiled cases,
respectively. Per above, this is consistent with the distribution of
correlation statistics computed for each cancer site
(Supplementary Figure S3). Both TGCT and ACC exhibit bimodal-
ity in the distributions of correlation values with a “lower” mode
clearly centered below zero. This plot helps distinguish between
a genuinely surprising level of negative correlations from what
might be expected due to a long tail of a unimodal distribution;
clearly the former is indicated for some of the cancer sites. For
UCS, there is also an apparent mass of cases below zero, i.e. a
high proportion of discordant calls (37%) out of a total of 50 cases
profiled. Although these sites were relatively modest in size, we
also observed high levels of discordance, affecting about a quar-
ter of the samples, in larger cohorts such as ESCA (30.4%), READ
(27.8%), OV (27.6%), BLCA (26.2%), and LUAD and LUSC (24%)
(Supplementary Table S2). In contrast, we did not identify any
discordant calls in LAML (n¼ 191). Other tumor sites that exhib-
ited very low percent of discordant call sets were THCA (1.2%),
LGG (1.2%), PRAD (1.2%), and DLBC (2.1%) (Supplementary Table
S2).

Within this set of samples for which our AI calls were discor-
dant from TCGA SCNAs, we suspected a potential cause was that
the level of aneuploidy was sufficiently high such that it was dif-
ficult to auto-detect the baseline LRR in identifying the SCNAs.
Under the assumption that normal copy number regions will not
typically exhibit AI, we sought to bolster the TCGA SCNA calls in
this discordant set by re-establishing the baseline LRR regions
and recalibrating the SCNA values. After adjusting the calls, a
positive concordance was achieved in 1224 (of 1653) samples.
The performance of our automated adjustment appeared to vary
by tumor site (Figure 5, Supplementary Table S2). For example, in
tumor sites such as LGG, THCA, PCPG, and THYM, our approach
successfully adjusted all discordant cases to achieve a positive
correlation (Supplementary Table S2). ACC and MESO also
achieved high rates of adjustment of over 90% of the potentially
problematic cases (Supplementary Table S2). Across tumor sites,
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after performing the automated adjustment, the percent of nega-
tively correlated samples that remained was drastically lower.
For example, the percent of negatively correlated samples re-
duced from 54.4% to 4.4% in ACC, 23.1% to 6.6% in SARC, 21.2%
to 5.1% in SKCM, and 20.9% to 4.1% in COAD. However, even after
adjustment, some tumor sites showed an appreciable number of
discordant samples. For example, TGCT showed negative correla-
tion in 14% cases after adjustment; similarly ESCA, UCS, and OV
also showed rates of 9.8%, 9.2%, and 8.9%, respectively, after ad-
justment (Supplementary Table S2). Nonetheless, our approach

was able to significantly reduce the rates compared to the trends
observed before adjustment across all tumor sites.

Discussion
Acquired chromosomal alterations such as deletions, duplica-
tions, and cnLOH serve as hallmarks of tumorigenesis. Large
(megabase-scale) alterations span multiple heterozygous
markers and thus result in deviations from the expected one-to-
one allelic ratio, thereby leading to AI. The SCNA pipeline of the

Figure 5 Identification and adjustment of putative discordant samples between SCNAs inferred from hapLOH with those reported in TCGA. A total of
10,680 tumor samples were assessed for concordance between the two call sets (see Materials and methods). (A) The distribution of positively correlated
(dark green) and negatively correlated (black and red) samples for each tumor site is shown as a stacked bar plot. The negatively correlated samples are
further divided into two categories, based on their overall AI genomic burden, with cases showing at least 50% of their genome aberrant termed as high
AI (black), with the remaining cases annotated as low AI (red). Samples for which correlation was non-computable, based on the absence of at least one
event in each call set, are also shown (light green). These cases comprise a vast majority of samples that exhibited no evidence of SCNAs in either of the
call sets. (B) A stacked bar plot of the distribution of negatively correlated samples (high AI and low AI) as a percentage of the total number of samples
profiled for each tumor site is shown. (C) An automated adjusted procedure was applied on cases identified to be “negatively correlated, high AI” (black).
A stacked bar plot of the distribution of samples after applying the adjustment procedure is shown across all tumor sites, with the percent of adjusted
cases shown in gray. Tumor sites in all three panels are ordered by their overall percent of putative discordant samples.
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TCGA consortium reports genomic regions and their segment-
mean copy number estimates from SNP genotyping arrays.
However, detection and accurate identification of SCNAs in this
resource are limited by the strict reliance on summaries of total
intensities. Here we sought to address these limitations by
modeling the allele-specific intensities (BAFs), leveraging an ex-
pectation that the perturbations in the BAFs within most SCNAs
will occur in a manner consistent with the allelic patterns on the
inherited chromosomes, i.e. the haplotypes. Our haplotype-based
approach, by jointly modeling the BAFs, more powerfully detects
SCNAs that lead to patterns of AI as well as AI induced by cnLOH.
In this article, we provided a summary of these AI findings in
11,074 samples from all available tumor sites.

A recent study summarized pan-cancer chromosomal altera-
tions and correlated chromosomal arm aneuploidy to somatic
point mutations and expression of immune signaling genes
(Taylor et al. 2018). Chromosomal copy number events identified
in our present study corroborate their findings, such as the high
prevalence of loss events on 17p and 8p, as well as gains of 8q
across tumor sites. Similarly, both studies identified chromosome
2 as the least aberrant across tumor sites. Our AI burden-derived
estimates were also similar to the aneuploidy scores across TCGA
types (Taylor et al. 2018); however, we report higher burdens in
ESCA and OV. Another pan-cancer atlas of the TCGA tumor sites
identified specific clusters of tumors based on the extent of aneu-
ploidy and the type of events (Hoadley et al. 2018). We identified
similar patterns from our AI-derived chromosome arm-level
alterations. Both studies identified a subset of low burden sites
that included PRAD, THYM, LAML, and THCA. Our results also
identified the enrichment of 13q gain and chromosome 18 loss in
gastrointestinal tumors (COAD, READ, and STAD); in addition to
these events, we also observed high rates of gains on chromo-
some 20 in these tumors. Similarly, we identified the enrichment
of chromosome 7 gains and chromosome 10 losses in GBM
tumors. In comparison to both these previous studies (Hoadley
et al. 2018; Taylor et al. 2018), we also provide a complementary
landscape of pan-cancer cnLOH events that opens a window of
opportunities to investigate the importance of these cnLOH
events in tumorigenesis. A striking result observed in our study
was the recurrent cnLOH of 17p across multiple tumor sites.
Future studies investigating the differences between previously
reported pan-cancer 17p deletions and 17p cnLOH patterns
reported here, as well as their roles with respect to the presence
of TP53 variants or mutations, can aid in better understanding
the dynamics of tumors that exhibit multi-hit alterations. Based
on recent evidence (Liu et al. 2016), it is also plausible that these
pan-cancer 17p loss and cnLOH affect a combination of genes,
extending beyond the effects on the TP53 tumor suppressor gene.

Our study also showcased high rates of previously unknown
chromosomal alterations across multiple tumor sites. For exam-
ple, in KIRP tumors that were predominantly driven by gain
events, our findings aligned with previously identified high fre-
quency gains on chromosome 7 and 17, but we additionally iden-
tified a higher proportion of chromosome 16 gains than
previously reported (Cancer Genome Atlas Research Network
2016). Similarly in UCS tumors, we identified recurrent loss and
cnLOH events of 17p as well as novel recurrent cnLOH of 11p.
Given the prevalence of TP53 mutations in UCS (Cherniack et al.
2017), cnLOH of 17p may be part of somatic two-hit mechanisms
of mutagenesis in UCS tumors. In HNSC tumors, the highest rates
of chromosomal changes were previously reported on 8p and 3p
(Cancer Genome Atlas Network 2015). Our method not only iden-
tified these events but also detected high rates of 17p loss and

cnLOH events in these tumors. In this way, findings from our
study supplement the current database of chromosome-arm
SCNAs across multiple tumor sites, through the detection of ad-
ditional chromosomal alterations.

It is noteworthy that cnLOH events we identified to be
enriched in our present investigation across multiple tumor sites
have been shown to be prognostically relevant in independent
studies. For example, we observed recurrent 17p cnLOH in LGGs
in addition to the well-known 1p/19q codeletion; cnLOH of 17p,
as well as its mutual exclusivity with 1p/19q codeletion, has been
previously shown to be a potential marker in independent
cohorts of gliomas (Idbaih et al. 2012; Suzuki et al. 2015;
Labussière et al. 2016). The predominant cnLOH on 17p also
implicates a role for TP53 in LGG which is consistent with the
clinical observations of gliomas in families exhibiting Li–
Fraumeni syndrome (Michaeli et al. 2019). Similarly, our finding
of 6p cnLOH in CESC tumors corroborates previous studies that
have identified LOH on 6p21.2 that correlated with recurrence of
cervical carcinoma after radiotherapy (Harima et al. 2000). This
suggests that cnLOH events presented in our study have the po-
tential to serve as prognostic markers for the detection or predic-
tion of recurrence across tumor sites. Although unlikely to act as
a driver mutation alone, with the possible exception of differen-
tial germline configurations, the high rates of cnLOH presented
here highlight the importance of the acquired mutation on the
preserved chromosome in a region of cnLOH. Thus, regions of
cnLOH warrant additional study to better assess the multiple
steps in tumor pathogenesis.

In addition to augmenting the TCGA with AI annotation, which
helps to address previously undetected SCNAs and cnLOH, our
results also allow for improving the accuracy of some of the existing
SCNA calls. Tumor samples that displayed conflicting TCGA SCNA
and AI profiles suggested incorrectly estimated “normal regions” for
obtaining baseline LRR signal intensities. These observations, with
the corresponding wide user base of the TCGA repository, motivated
us to develop an automated procedure to identify and adjust these
putative problematic cases. We list such samples as well as provide
results from a simple procedure to re-normalize the data for poten-
tially improved SCNA detection.

Through this study, we aimed to enrich the TCGA data re-
source by identifying large SCNAs of low mutant cell fractions,
explicitly targeting cnLOH, and offering adjusted SCNA calls that
improve the genomic landscape for several cancers. Additional
follow-up studies investigating the role of these newly identified
chromosomal alterations, especially cnLOH, will complement our
efforts and benefit the resource by contextualizing the clinical sig-
nificance of our findings. Assessments of clinical relevance of chro-
mosomal alterations are often challenging, given the large scale of
these events that may span many tumor suppressors and onco-
genes. However, recent reports (Davoli et al. 2017; Shukla et al. 2020;
Kou et al. 2020) have summarized the role of chromosomal altera-
tions in tumor evolution, immune evasion, metastasis, and drug re-
sponse in specific tumor types. Davoli et al. (2017) also identified
that combining aneuploidy with the tumor mutational load (TMB)
was a better predictor of survival after immunotherapy than either
biomarker alone. Results from our study provide opportunities for
future investigations assessing the relationship of chromosomal
alterations with known biomarkers such as PD-L1 and TMB and
emerging biomarkers such as homologous recombination deficiency
and associations with DNA damage repair pathways (Hoppe et al.
2018; Knijnenburg et al. 2018).

Although our methods to identify SCNAs and cnLOH, as well
as adjust previously identified SCNAs, provide or augment a
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useful resource for pan-cancer genomic investigations, they do

not come without limitations. First, our approach relies on devia-

tions in allelic ratios at germline heterozygous sites to identify

regions of AI. As such, we do not attempt here to identify balanced

SCNAs (e.g. both copies of a chromosome lost or gained in a propor-

tion of cells). Second, in line with the requirement of altered allelic

ratios, our approach is at least slightly better at detecting loss or

cnLOH events that results in a more severe change in allelic ratios

(i.e. 1:0 or 2:0), in comparison to gains (e.g. one copy gains that

results in a ratio of 1:2). Third, although our algorithm provides sen-

sitive identification of regions of AI, we currently implement a naive

threshold-based classification to annotate events as loss, gain, and

cnLOH. This results in detection of subtle events that robustly show

a signal for AI but are unclassifiable using our current LRR

threshold-based approach. Nonetheless, these additional events

supplement the current repository of copy number alterations, and

future computational methods to jointly utilize BAF and LRR in the

statistical estimation of AI might overcome this issue. Lastly, our

prototype methodology to systematically adjust mean segment

copy numbers will in some instances suffer from over-corrections,

as the procedure is applied genome-wide without appropriate tun-

ing. Conversely, the approach may under-correct in situations

where regions identified as normal by hapLOH contain both gains

and losses as identified by TCGA; in such cases, our approach will

not identify a deviant copy number from which to correct. However,

these limitations notwithstanding, our work highlights the impor-

tance of integrating multiple data types (BAF and LRR) for more ro-

bust automated inference procedures.
While we acknowledge further enhancements to what we

have presented here may be possible with greater statistical so-

phistication, results presented here have the potential to support

current methods and improve downstream analyses, including

clinical evaluations and identification of complex SCNA-derived

signatures. We hope that enhanced annotation of this widely

used and valuable public resource may support new hypotheses

of chromosomal instability in tumorigenesis.
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