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Abstract

Harris County, Texas, is home to thousands of documented sources of environmental pollution. It is also highly vul-
nerable to impacts from natural hazards, including floods. Building on the Toxics Mobility Inventory (TMI), this
article discusses how the authors developed a Toxics Mobility Vulnerability Index (TMVI) and applied it to Harris
County to assess potential exposure risks to residents from the transfer of toxic materials during flood events. The TMI
concept was operationalized and standardized by combining multiple spatial data sets to simultaneously evaluate
various factors in the weather hazards—extant toxics—social vulnerability nexus (e.g., floodplain area, industrial
land use, social vulnerability measures). Findings indicated hot spots of vulnerability to hazard-induced toxics trans-
fer concentrated in Northeast Houston US Census tracts in Harris County. The main drivers of increased risk in these
areas include the proportion of the area that is impervious surface, consistently high social vulnerabilities, and poor
health. However, the most vulnerable areas also have overlapping exposure to both industrial land use and flood-
plains. Assessing the contribution of a set of industrial land use, social vulnerability, natural hazard, emergency
response, and topography variables in a single index on the same spatial scale (e.g., US Census tract) provides detailed
information for policy makers tasked with mitigating risk. Applying tools such as the TMVI to highly vulnerable urban
and coastal locations may help identify changes needed for preparedness and mitigation planning and highlight areas
where limited resources for investment- and policy-related remediation should be focused, both before and after
disasters.
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Introduction

The Comprehensive Environmental
Response, Compensation, and Lia-
bility Act (CERCLA) of 1980 au-
thorized the US Environmental
ProtectionAgency (US EPA) to iden-
tify, prioritize, and remediate sites
contaminated with hazardous waste
and required responsible parties to
conduct cleanup activities or provide

reimbursement for costs associated
with clean-up.1 Sites with confirmed
or potential hazardous releases are
screened and, if further investigation
is deemed necessary, placed on the
National Priorities List (NPL) of
Superfund sites.1 Currently, there
are more than 1,330 active and 50
proposed NPL Superfund sites in
the United States.2 Approximately
60 percent of NPL sites are at risk

for climate change-related disas-
ter events such as sea level rise,
flooding, storm surge, and wildfire.3

However, there are disparities
among residents who live near these
sites, areas known as environmen-
tal justice neighborhoods, in terms
of their awareness of environmental
hazards4 and their vulnerability to
the health impacts of toxic chemical
exposures.5

1Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, Texas, USA.
2Epidemiology Program, University of Delaware, Newark, Delaware, USA.
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The convergence of natural disasters
and environmental contamination
from anthropogenic sources height-
ens the potential for toxicant mo-
bility and transfer, as evidenced by
temporal changes in soil-borne con-
taminant concentrations associated
with flooding events such as Hurri-
canes Katrina and Harvey.6,7 In
2016, an estimated 53 million US
residents—16 percent of the total
population—lived within three miles
of a Superfund remediation site.8

Compared to the US population as
a whole, areas in close proximity to
Superfund remediation sites have
disproportionately larger propor-
tions of minority residents, individ-
uals who have not completed high
school, households with incomes
below the level of poverty, and lin-
guistically-isolated households.8

Minority and low-income popula-
tions are also inequitably exposed to
hazardous sites that are not included
in the NPL.9 For example, among
large polluters required to report the
quantity of both emissions and che-
micals sent to landfills as part of the
Toxic Release Inventory, the facili-
ties are disproportionately located in
low-income census tracts and there is
a high correlation between emission
intensity and the population density
of people of color.10

According to the US Global Climate
Change Research Program,11 ex-
treme climate- and weather-related
disaster events are expected to in-
crease in both frequency and inten-
sity. From 1980 to 2020, there were
273 billion-dollar disaster events in
the United States, with a total cost
of $1.79 trillion.12

The challenges associated with cur-
rent and projected weather- and cli-
mate-related disaster events differ by
geographic region, with coastal and

urban areas being especially prone.11

As a Gulf Coast state, Texas is
highly susceptible to hurricanes and
tropical storms, sea level rise, inland
flooding, stormwater inundation,
and other large-scale catastrophic
disaster events; 43 percent (114 of
273) of all billion-dollar disaster
events in the past 40 years have
occurred in Texas.12 Severe storms
were the most frequent billion-dollar
disaster type, accounting for 57 per-
cent of all events in Texas and 44
percent of all events nationally.12

In addition to the natural hazard
vulnerabilities associated with its
coastal location, Texas is home to the
nation’s largest petrochemical com-
plex, located along the Houston Ship
Channel.13 Hazard vulnerabilities and
industrial density interact synergisti-
cally with a highly socially vulnerable
population that lives and works in
coastal Texas.14–16 These social vul-
nerabilities (e.g., poverty, disability,
isolation, overcrowding, limited pro-
ficiency in the official or dominant
language) limit an individual’s or
group’s ability to respond to, cope
with, and recover from a disaster.17

Severe storms and associated flood-
ing are among the most deadly and
destructive natural hazards affecting
the United States, accounting for
more than 80 fatalities and nearly
$8 billion in damages in an average
year.18 Flooding is also a leading
contributor to the spread of toxic
materials across communities, in-
cluding toxicants such as chemicals
from current or former hazardous
land uses.19 During a flood event,
water can facilitate contaminant
transport and fate, moving toxicants
from places where they have been
concentrated (e.g., industrial facili-
ties) and transferring them to other
areas, including residential neigh-
borhoods, where they can have del-

eterious effects on residents’ health
and their environment.

Floodwaters do not respect zoning
boundaries, property lines, or differ-
ences in land-use designation, espe-
cially when present in large volumes
or moving at high velocity. Flood
mitigation measures, if they exist at
all, are frequently inadequate to pre-
vent the spread of toxics.20 This
is especially dangerous when resi-
dential neighborhoods, recreational
areas, or watersheds exist in close
proximity to industrial or otherwise
hazardous sites. A flood event that
disperses toxicants in residential
areas can have complex and long-
lasting negative public health conse-
quences, such as increasing the risk
of waterborne disease outbreaks21 or
the incidence of chronic conditions
like cancer and asthma.22 Social and
epidemiological vulnerability factors,
such as income or access to health
care, can amplify these effects.23

Due to the rising costs of disaster
events associated with weather and
climate, the US Government Ac-
countability Office (GAO) issued
recommendations for concerted plan-
ning and investment to address cli-
mate change-related risks and build
resilience.3 The Federal Emergency
Management Agency (FEMA) devel-
oped a geographic information sys-
tems (GIS) based tool that provides
layers for community resilience indi-
cators such as infrastructure locations
and historic hazard data.24 In 2019,
Teron, Louis-Charles, andNibbs, et al.
developed a Toxics Mobility In-
ventory (TMI) that uses GIS analysis
to guide planning and remediation
activities for contaminated sites to
promote community resilience.25 In
both cases, GIS is used to inform de-
cision making by facilitating the in-
tegration of spatial datasets with
different data types and scales.
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The TMI provides a framework of
categories involved in a nexus of risk
defined by weather hazards, extant
toxics, and social vulnerability and
estimates the potential multiplicative
effects resulting from their spatial
relationships over time, allowing for
both spatial and temporal analy-
sis and forecasting.26 The TMI’s
test case for measuring the threat of
transferral of hazardous substances
is limited to existing Superfund sites
(with a two-mile buffer) layered
with choropleth maps showing indi-
vidual race (“percentage of people of
color”) and income (“annual house-
hold income at or below $25,000”).
Therefore, the TMI needs further
testing to: 1.) identify the most rele-
vant variables from its broad list of
example indicators, 2.) identify tools
for overlay and integration of those
variables, and 3.) utilize its capabilities
within existing advanced digital ana-
lytical tools.

To address these gaps, GIS and
Toxicological Prioritization Index
(ToxPi) software27 was used with the
TMI to integrate multiple datasets
and measure the relative individual

and combined effects on vulnerabil-
ity of variables across the hazards-
toxics-social nexus (e.g., floodplain
area, industrial land use, social vul-
nerability measures) and their spatial
heterogeneity across US Census
tracts. A Toxics Mobility Vulner-
ability Index (TMVI) was developed
and applied to Harris County, Texas,
to assess the risk to residents from the
transfer of toxic materials during a
flood event. The TMVI uses publicly
available data to provide a new per-
spective for both researchers and
policy makers tasked with preparing
for and mitigating complex and
overlapping risks.

Materials and Methods

Data for five variables corresponding
to the TMI categories were selected
for the TMVI, including three spatial
attributes (measured as percent of
land area) and two sets of population
vulnerability factors (social vulnera-
bility and underlying health con-
cerns, measured via “flag scores” and
prevalence, respectively) (Table 1).
Data were gathered from multiple

locations and calculated using GIS
software to derive comparable
measures for each of 786 US Census
tracts in Harris County. US Census
tracts were selected as the unit of
analysis because they are the smal-
lest geographic unit at which many
of the data are available. Whenever
possible, 2016 data were used, in-
cluding for the delineation of the
tracts. The following sections de-
scribe each variable in greater detail,
along with the procedure used
to combine them into the overall
TMVI.

Spatial Data

The extent of legacy and current
pollution in industrial areas of Harris
County has been well documen-
ted.25,28,29 Industrial zones are in-
cluded in the TMVI as a primary
source for toxicmaterials thatmay be
transferred throughout a US Census
block by floodwaters during a flood
event. To calculate the proportion
of each census tract designated for
industrial land use, a parcel-scale
land use shape file was downloaded
from the Harris County Appraisal

Table 1. Categories and Example Indicators for the Toxics Mobility Inventory (TMI) and Selected Variables
for the Toxics Mobility Vulnerability Index (TMVI)

Category (TMI)a Example Indicator (TMI)a Selected Variable (TMVI)b

Toxic Sites Prevalence of legacy pollution in coastal communities Industrial land (% land area)

Profile of toxins (behavior)

Social Population density of coastal community Social Vulnerability Index (SVI) “flag score”

% of population with health insurance

% of population living below poverty line

Climate Change Exposure to tropical storms 100-year floodplain (% land area)

Flood plain status

Emergency Response Protective gear and equipment Health outcomes (prevalence of underlying health concerns)

Hazmat training & planning

Topography Impermeable surface cover Impermeable surface (% land area)

Combined sewer overflow potential

aTeron and colleagues’ suggestions for Toxics Mobility Inventory (TMI), drawn verbatim from Teron et al., Table 2, p. 229.25
bAuthors’ selections for variables to include in the Toxics Mobility Vulnerability Index (TMVI).
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District and parcels designated as
industrial were isolated to create a
simplified industrial land use layer
for the entire county.30 This indus-
trial land use layer was combined
with a layer delineating the county’s
786 US Census tracts and used to
calculate the proportion of industrial
land in each US Census tract.

Floodplains are areas that have been
designated to be at increased risk
for flooding, especially during ex-
treme weather events.31 Although
floodplains can be delineated for
any number of return period flood
events, the most commonly used
is the 100-year floodplain, which
demarcates the area within a com-
munity that ostensibly has a 1 per-
cent chance of flooding in a given
year. Since flooding may play an
important role in the transport and
fate of toxics across a community,
the proportion of each US Census
tract in the 100-year floodplain was
derived from a FEMA floodplain
shape file for Harris County32 com-
bined with the US Census tract shape
file.

While natural areas and green in-
frastructure can attenuate and filter
floodwater, impervious surfaces (e.g.,
asphalt, concrete, roofing materials)
have the opposite effect, preventing
the absorption of floodwater and in-
tensifying flooding.33 Some imper-
vious surfaces may also be sources
of pollutants, for example, from the
accumulation of leaked automobile
fluids on a typical parking lot.34,35

The extent of impervious surface
area is derived from a national Land
Use/Land Cover raster file. After
extracting the data for Harris
County, green and natural land
cover categories (including decid-
uous forest, evergreen forest, mixed
forest, shrub/scrub, herbaceous
hay/pasture, cultivated crops, woody

wetlands, and emergent herbaceous
wetlands) are isolated and converted
to a polygon shape file. When com-
bined with the layer, the proportion
of each US Census tract that is in
green or natural space, as well as
its inverse—the proportion covered
by impervious surfaces—can be
calculated.

Population Vulnerability

Characteristics related to social vul-
nerability may exacerbate both the
immediate and long-term impacts
of flooding and the transfer of toxic
materials. Therefore, in addition to
spatial data, data were acquired for a
set of 15 individual variables orga-
nized in four themes (socioeconomic
status, household composition and
disability, minority status and lan-
guage, and housing and transporta-
tion) that make up the Centers for
Disease Control and Prevention’s
(CDC) Social Vulnerability Index
(SVI).17,36 A shape file containing
SVI data at the US Census tract scale
for the year 2016 was downloaded
from the SVI website for the state of
Texas and then clipped to the Harris
County study area.37

As with social vulnerability charac-
teristics, the prevalence of chronic
diseases and lower self-reported
physical andmental health status and
access to health care can exacerbate
the impacts of flood-transferred
toxics. Prevalence data were obtained
to characterize overall health from
the CDC for 13 key health outcomes,
including the incidence of high blood
pressure, cancer, asthma, coronary
heart disease, chronic obstructive
pulmonary disease, diabetes, high
cholesterol, kidney disease, obesity,
stroke, poor mental health, poor
physical health, and lack of health
insurance.38 Data tables containing
this information at the US Census
tract scale for the largest cities within

Harris County are downloaded in
.csv format from the CDC’s Disease
and Health Promotion Data &
Indicators website38 and spatially
joined to the US Census tract shape
file to facilitate combination with the
other data.

ToxPi

Once the data are derived, cleaned,
and spatially assigned to US Census
tracts using GIS software, the entire
dataset is input into the ToxPi pro-
gram, developed by researchers at
North Carolina State University
and Texas A&M University.26,39–42

ToxPi is then utilized to generate a
TMVI score for each US Census tract
as well as a corresponding “pie” that
displays the relative values of each of
the five TMVI variables. ToxPi cal-
culations normalize the input data
for each variable, using the relative
score for each tract to determine the
size of the “slice” and the rank in
relation to the other tracts, produc-
ing a pie and rank for each census
tract. The higher the overall score,
that is, the higher its average relative
score for each input variable, the
larger the pie and the higher its
rank. Thus, tracts with higher scores
(larger pies) can be seen as more
vulnerable to the transfer of toxics
during a flood event than those with
lower scores. The relative size of in-
dividual slices provides similar in-
formation regarding the relative
effect of the corresponding vari-
able on vulnerability in a given US
Census tract.

ToxPi software also allows the
weighting of variables. For this anal-
ysis, each of the five variables is given
equal weight relative to the others,
such that each counts for 1/5 of
the total TMVI score. The three
spatial variables—industrial land
area, floodplain area, and impervi-
ous surface area—are each given full
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weight (1/5 of the pie) due to their
role as primary source of toxic ma-
terials and the role they play related
to the potential volume and velocity
of water. The individual factors in
the compound variables, however,
are weighted to reflect that the com-
pound variable is made up of multi-
ple, equally contributing elements so
that each compound variable (slice)
retains a total weight of 1/5 of the
total pie. For example, since the SVI
is comprised of four themes that
together constitute a set of key in-
dicators of the social vulnerability
status of a population, the ToxPi
calculation for each of these themes is
calculated separately, but weighted at
1/20 (5% or 1/4 of the 1/5 share), so
that the total influence of the social
vulnerability variable remains at 1/5
of the ToxPi score.

The health outcomes variable is com-
posed of 13 separate factors corre-
sponding to the prevalence of 13 key
health concerns among the resident
population of the US Census tracts.
To ensure that the health outcomes
category is equally weighted, each
of the health outcomes is weighted
at 1/65 (*1.5%; 1/13 of the 1/5
share). Thus, the health outcomes, as
a whole, count for 1/5 of the total
TMVI score, even while the indi-
vidual variables are assessed and
calculated separately.

ToxPi*GIS

The TMVI results were also input
into the online ToxPi*GIS program
(http://gistoxpi.jigsy.com), which en-
ables the geolocation of the pies on
top of their corresponding US Cen-
sus tract. This dynamic platform
allows for a simultaneous and inter-
active visualization of a GIS-linked
choropleth map showing the total
TMVI score for each tract and the
corresponding ToxPi pies.

Results

The mean TMVI score for Harris
County is 0.359 (median: 0.348),
which is the average of the normal-
ized input variables (Table 2). This
serves as a baseline for understanding
the contributions to vulnerability of
individual variables created from the
five datasets, normalized to facilitate
comparison and indexing at the US
Census tract. Since the unit of anal-
ysis is theUSCensus tract, an average
score below 0.5 indicates that more
tracts have lower TMVI scores than
those that have higher scores and that
individual variable averages are more
often low than high (Table 2).

Industrial land use is relatively con-
centrated in Harris County and is the
primary source for transferable toxic
materials. The TMVI score of 0.126

(median: 0.064) is lower than the
overall score. While these potentially
toxic parcels are only a small pro-
portion of the total land area of a
typical Harris County census tract
(mean: 7.4%; median: 3.7%), they
are concentrated in a relatively few
tracts, with 60 out of 786 tracts in
Harris County having more than 25
percent industrial land use. However,
even this relatively concentrated land
use pattern leaves low levels of in-
dustrial land use spread throughout
Harris County (Figure 1) and the risk
of toxics transfer is therefore present
in many locations.

The average TMVI score for flood-
plain area is 0.188 (median: 0.096).
As with industrial land use, the
100-year floodplain is relatively
concentrated—in this case, following
the river and bayou network—but
spread throughout Harris County.
Given the low-lying topography and
abundance of tributaries, nearly 20
percent of the average Harris County
US Census tract is located within the
floodplain, and in more than 80
tracts more than 50 percent of the
land is designated as being in the
floodplain. This places many areas at
increased risk for the transfer of toxic
materials, especially when industrial
land uses are located in proximity to
other land uses like recreation areas
or residential housing inside the

Table 2. Toxics Mobility Vulnerability Index (TMVI) Variables and Descriptive Statistics for Harris County, Texas

TMVI (Normalized Values) Non-Normalized

Variable Mean Median Std. Dev. Weight Mean Median Std. Dev.

Industrial land area (%) 0.126 0.064 0.163 20% 7.4% 3.7% 9.6%

Floodplain area (%) 0.188 0.096 0.231 20% 18.8% 9.7% 23.1%

Impermeable surface area (%) 0.895 0.982 0.177 20% 90.1% 98.3% 16.7%

Social vulnerability (“flag score”) 0.162 0.091 0.204 20% 1.78 1.00 2.24

Health outcomes (prevalence) 0.466 0.548 0.296 20% n/a n/a n/a

Overall TMVI 0.359 0.348 0.112 100% n/a n/a n/a
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floodplain. Because floodplains and
industrial land areas frequently
overlap, these combined risks can
add to a US Census tract’s overall
vulnerability.

The mean TMVI score for the im-
pervious surface area variable is 0.895
(median: 0.982). Impervious surfaces
can facilitate the transfer of toxics
across a landscape by helping to
speed floodwaters and leading to
sheet flow, as well as by preventing
attenuation and filtering of the
floodwaters and anything they are
carrying. Impervious surfaces cover
an average of 90.1 percent of Harris
County US Census tracts, which is
not surprising given the region’s
history of rapid and often poorly
regulated development.

Social vulnerably and poor health
have been shown to exacerbate the
acute and chronic effects of hazards
like flooding and the spread of toxic
materials on population health.5 So-
cial vulnerability has a low mean

TMVI score, 0.162 (median: 0.091),
indicating it is highly concentrated
and inequitably distributed in Harris
County. For example, only 100 tracts
have five or more flags, while 309
have no flags at all. The average
composite health outcomes variable
score is 0.466 (median: 0.548), sug-
gesting a somewhat more diffuse
pattern of negative underlying health
factors across Harris County. Overall
prevalence of negative health out-
comes is higher in the northern,
southern, and eastern sections of
Houston, which may indicate in-
creased vulnerability when tracts in
these areas align with high concen-
trations of the other TMVI variables.
Often overlooked when considering
natural hazards risk, underlying
health conditions canbe criticalmod-
erating factors when exposure to
toxic materials makes a natural di-
saster a compound disaster.

The highest overall TMVI scores are
concentrated in census tracts sur-
rounding central Houston, especially

in the northern and eastern sections
of the city. Eight of the 10 most
vulnerable tracts in all of Harris
County are located in these areas. In
the most vulnerable US Census
tracts, impervious surface area is
ubiquitous, appearing as a large
“slice” in all of the TMVI “pies”
(Figure 2). Floodplain area is also
present in all of these most highly
vulnerable tracts, though to a greater
degree in some than in others. High
concentrations of industrial land
area make several of these US Census
tracts particularly vulnerable. The
population characteristics captured
in the social vulnerability and health
outcome variables are found in all
10 tracts. Therefore, even in tracts
that do not contain a large propor-
tion of industrial land uses, the
combination of threats from other
variables means that areas without
large industrial land use slices remain
at significant risk due to their high
social vulnerability, poor health sta-
tus, and exposure to the 100-year
floodplain.

Discussion

The TMVI advances the TMI by
presenting a set of indices for mea-
suring the threat of toxic materials
transfer during flood events. These
indices can be overlaid using digital
tools to visualize the TMVI, including
the relative importance of contribut-
ing factors and the heterogeneity of
risk. When applied to Harris County
to assess the potential threat of haz-
ardous substance transfer during flood
events, the TMVI demonstrates the
variability of vulnerability by US
Census tract. Although impervious
surfaces are ubiquitous, more socially
vulnerableUSCensus tracts inHarris
County are more highly threatened
by industrial land uses and flooding.
These exposures are potentially ex-
acerbated by the higher prevalence

Figure 1. Location of industrial land use in Harris County, Texas
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of negative public health conditions
in these same US Census tracts, such
as obesity.

The TVMI also allows researchers,
decision makers, and policy makers
to better understand the dynamics
of complex exposures, identifying
locations that are particularly vul-
nerable as well as influential variables
(and combinations thereof) upon
which planning and public health
interventions can be based. The
overall mean TMVI score of Harris
County, considered to be relatively
vulnerable based on a number of
separate measures (e.g., percent
floodplain, concentration of indus-
try, high levels of social inequity),
could be compared in future studies
to the overall mean scores of other
US jurisdictions to give a sense of
relative vulnerability, a potentially
useful indicator for researchers and
state or federal policy makers. With
the capability to spatially locate areas
with the highest relative risk for

toxicant transferral during flooding
and to calculate contribution of vari-
ous factors to those risks, both resi-
dents and governmental authorities
can better target solutions to address
such conditions.

For example, new policies that
encourage investments in infra-
structure and incentives related to
increasing open space would benefit
Harris County by lessening runoff
amounts, offering open space to im-
prove the physical health of com-
munity members, and providing
natural remediation to industrial
runoff. A sprawling landscape, which
includes a high proportion of im-
pervious surface, is an important
driver of the increased frequency and
severity of flooding in the region.43

In Harris County, pervious surface
area and green infrastructure (GI) is
heavily concentrated in about a
dozen large census tracts in the outer,
mostly undeveloped (also known
as greenfield) areas, where it covers

over 70 percent of the land mass. By
contrast, pervious surface area is
relatively rare in the central city; 564
of the 786 tracts in the county con-
tain less than 10 percent, and 155 of
those contain essentially no green
space. Put simply, US Census tracts
in Harris County contain an average
of 9.9 percent green space, compared
to 18.8 percent floodplain.

It has been widely recognized that
socially vulnerable populations have
less capacity to withstand, absorb,
and recover from the physical im-
pacts (e.g., displacement, property
loss) associated with natural disasters
like flooding. However, when flood-
ing may involve toxicant transferral,
the challenges of estimating relative
risk become even more critical to ad-
dress due to the highly inequitable
distribution of toxic sites in environ-
mental justice communities and the
increasing frequency and severity of
natural disasters that beget com-
pound disasters due to anthropogenic

Figure 2. ToxPi visualization for the 10 Harris County census tracts most vulnerable to the transfer of toxicmaterials during a flood event, according to
the Toxics Mobility Vulnerability Index (TMVI).
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processes.5 The limited capacity and
funding of the US emergency pre-
paredness and response system ne-
cessitates new tools be developed and
used by both researchers and practi-
tioners to prioritize mitigation in-
vestments in areas, and among
individuals, at the highest risk across
the hazards-toxics-social nexus.
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