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Introduction

SCA-PRKCG Clinico-Genetic Diagnosis

description from a German multi-center cohort, including standardized 3D MR
imaging. Methods: This cross-sectional study prospectively obtained neurologi-
cal, neuropsychological, and brain imaging data in 33 PRKCG variant carriers.
Protein modeling was added as a classification criterion in variants of uncertain
significance (VUS). Results: Our sample included 25 cases confirmed as SCA-
PRKCG (14 variants, thereof seven novel variants) and eight carriers of variants
assigned as VUS (four variants) or benign/likely benign (two variants). Pheno-
type in SCA-PRKCG included slowly progressive ataxia (onset at 4-50 years),
preceded in some by early-onset nonprogressive symptoms. Ataxia was often
combined with action myoclonus, dystonia, or mild cognitive-affective distur-
bance. Inspection of brain MRI revealed nonprogressive cerebellar atrophy. As a
novel finding, a previously not described T2 hyperintense dentate nucleus was
seen in all SCA-PRKCG cases but in none of the controls. Interpretation: In
this largest cohort to date, SCA-PRKCG was characterized as a slowly progres-
sive cerebellar syndrome with some clinical and imaging features suggestive of a
developmental disorder. The observed non-ataxia movement disorders and cog-
nitive-affective disturbance may well be attributed to cerebellar pathology. Pro-
tein modeling emerged as a valuable diagnostic tool for variant classification
and the newly described T2 hyperintense dentate sign could serve as a support-
ive diagnostic marker of SCA-PRKCG.

guidelines®>** is challenging. Some of the proposed crite-

ria do not apply to this rare disorder: There is no estab-

Spinocerebellar ataxias (SCAs) denote rare autosomal-
dominant progressive ataxias and the most frequently
diagnosed genotypes harbor trinucleotide-repeat expan-
sions."” In 2000, the first of now more than 20 conven-
tional mutation SCA genotypes was identified in the
protein kinase C gamma (PRKCG) gene3’4 (MIM 176980)
and termed SCA 14> or more recently SCA-PRKCG.® Its
prevalence estimates are continually rising and range from
<1% to <6% in ataxia cohorts after repeat expansion
SCAs have been excluded.” "

The neuron-specific gamma isoform of PRKC is most
abundantly expressed in cerebellar Purkinje cells."” Tt reg-
ulates their dendritic growth and calcium permeability
and the elimination of climbing fiber synapses.'®'” It is
yet unclear how different variants affect protein localiza-
tion, aggregation, and kinase activity.'®'® Histopathologi-
cal reports in variants at residue H101 describe selective
Purkinje cell loss in the cerebellar cortex without atrophy
in neocortex or deep cerebellar nuclei.?*?!

SCA-PRKCG diagnosis relies on genetic testing, how-
ever, the classification of variants according to current

lished model of pathogenicity (criterion PS3) and mostly
private mutations render population frequencies/novelty
less informative (criterion PS4). Segregation analysis (sup-
porting criterion PP1) is valuable but difficult to pursue
outside the research context. Thus, novel PRKCG variants
are often classified as of uncertain significance (VUS) and
must be interpreted against clinical findings**. Conversely,
informative phenotype description critically depends on
correct genetic case ascertainment. Previous clinical
descriptions (comprehensive list in Table S1) suggest a
rather unspecific mildly progressive cerebellar ataxia of
variable age of onset, in some cases with additional symp-
toms usually considered of extra-cerebellar etiology.

To improve the clinicogenetic diagnosis of SCA-
PRKCG, this observational study investigates the SCA-
PRKCG phenotype in a multicenter cohort of PRKCG
variant carriers with prospective and standardized data
that is available to the clinician in an ataxia patient work-
up: clinical exam, brain structural MRI, and neuropsycho-
logic and neuro-ophthalmologic testing.”> We add protein
modeling as a supporting PP3-criterion in the
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classification of pathogenic genetic variants and we
explore phenotypic differences to nonconfirmed cases.

Instrumental gait analysis,”® MR spectroscopy,” and
detailed visual testing®® from subcohorts are reported
elsewhere.

Methods

The study included symptomatic subjects carrying a
PRKCG variant considered of either pathogenic or uncer-
tain significance, with referrals from five German univer-
sity ataxia clinics. Exclusion criteria were any other
disease involving the central nervous system, history of
severe head trauma, severe psychiatric comorbidity, or
contraindication for MRI investigation. A matched group
of control subjects was included for the analysis of neu-
ropsychology and brain imaging. Controls were assessed
with identical protocol and had no history of neurologic
or psychiatric disease, head trauma, no abnormal findings
in neurological examination or contraindication for MRI
investigation.

Subjects were investigated at one or both of the coordi-
nating and neuroimaging centers (Berlin and Jiilich). The
study was approved by their respective Institutional
Review Boards. Written informed consent was obtained
from all participants.

All PRKCG variants were re-evaluated by a geneticist
(P. B.), first, according to current guidelines put forward
by the American College of Medical Genetics and Geno-
mics.”*> Minor allele frequency above 1% derived from
published databases was set as stand-alone evidence for
“benign” variants. Second, a refined approach was applied
that included results of protein modeling as a supporting
criterion. This modeling evaluated the protein-specific
functional impact of a given variant (A. G.). Multitem-
plate homology modeling using the SwissModel web-
server’”” was generated that covered the full PRKCG
protein except for residues 0-35 (see Data S1). Within
this model, two zinc-binding cavities are formed by resi-
dues C49, C52, C77, and H74 (1st zinc-binding site) and
C85, C35, C69, and H36 (2nd zinc-binding site).

The onset of ataxia was defined as onset of permanent
gait ataxia. The clinical assessment comprised a structured
medical history (including questions to capture history of
seizures, myoclonus, dystonia, tremor, spasticity, cognitive
or affective disturbance, pain, impairment of mobility and
hand function), clinical examination, and application of
clinical ratings of ataxia (SARA’, range 0-40) and nona-
taxia symptoms (INAS®', range 0-16). Comprehensive
neuropsychological tests were applied (description and
reference in Data S1) and validated screening for affective
disturbance®® (HADS) or cognitive impairment33 (Dem-
Tect) performed using published cut-offs.

T. Schmitz-Hbsch et al.

The afferent visual pathway was assessed by functional
testing (visual acuity) and retinal imaging (optical coher-
ence tomography).

Brain MRI included 3D T1- and T2-weighted sequences
obtained at 3T (Magnetom Trio system, Siemens Healthi-
neers, Germany).

Electrophysiology results and previously obtained rou-
tine brain MRI for longitudinal assessment were made
available by patients and not part of the prospective pro-
tocol.

Further detail on methods is provided in Data S1.

Data processing and statistical analysis

PRKCG variants were checked against published reports
and ordered by location to detect possible feature clusters
(Tables 1 and 2, Table S1). Missing information was han-
dled per item as indicated. Neuropsychological test results
in confirmed SCA-PRKCG were compared to results
obtained in healthy controls matched for age, sex, educa-
tion levels according to the International Standard of Edu-
cation™ and handedness according to Edinburgh
Handedness Inventory.”®> Between-group comparisons used
t-tests or Wilcoxon rank-sum test as indicated in Table 4.
In the case of between-group difference in test results, cor-
relations with ataxia ratings (SARA) and depression score
(HADS-D) were performed and, if significant, additional
effects of age explored via partial correlations. Spearman
or Pearson test was used as indicated in Table 5.

Results of visual pathway assessment (H. Z., T. O.) and
brain MRI (M. Sch., S. G.) were each independently
inspected and interpreted by two experienced raters.
Interpretation of imaging results included a comparison
to healthy controls with groups matched for age and sex.
The results of electrophysiological testing were reviewed
by examiners of the respective centers.

Results

Genetic findings

We investigated 33 subjects (22 families) with 20 PRKCG
variants, thereof 11 novel variants (Fig. 1).

All participants were of Caucasian ethnicity. The
genetic re-evaluation according to current guidelines sug-
gested (likely) pathogenicity in only 6/20 variants and
(likely) benign variants in 2/20, whereas VUS was
assigned in 12/20 (this included nine novel variants and
three variants with suggested pathogenicity in previous
reports (p. C77S, p. H116P, p. 1173S, see Table S1). Of
note, five novel variants were in residues previously pub-
lished as disease-causing (p. A24S, p. G123A, p. G131S, p.
C150Y, p. M256]).
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Table 2. Individual findings of selected outcomes in all 33 carriers of PRKCG variants, including four subjects with (likely) benign variants and four

PRKCG variant Disease onset

Clinical rating  Nonataxia movement disorder

Possible pyramidal

Variant
classification disease Increased
including protein ~ Age at  duration INAS tone/plantar
Domain modeling results onset (y) SARA count Myoclonus Dystonia Tremor  extensor  Hyperreflexia
N-terminal Likely pathogenic 30 23 10 2 no yes no no yes
Likely pathogenic 26 16 7.25 2 yes yes no no no
Likely pathogenic 35 20 8 2 no no no no yes
Likely pathogenic 30 21 7 1 yes no no no no
Regulatory domain C1 Likely pathogenic 37 17 155 2 no yes no no no
Pathogenic 13 20 7 1 yes no no no yes
Pathogenic 48 14 25 2 yes no no no no
Pathogenic 50 15 6 3 no no no no no
Pathogenic 33 4 8 0 no no no no no
Pathogenic 48 4 15 2 no no no no yes
Benign 40 27 155 5 no no no no no
Benign 38 9 2 3 no yes no no no
Likely pathogenic 20 34 115 5 no no no no no
Likely pathogenic 36 34 12 2 no no no no no
Likely pathogenic 43 19 10 3 no no no no yes
Likely pathogenic 47 11 12 2 yes yes no no no
Likely pathogenic 20 1 4.5 0 no no yes no no
Likely pathogenic 4 41 13 0 no no no no no
Pathogenic 45 11 12 2 no yes no no no
Pathogenic 50 3 5 0 yes no no no no
Likely pathogenic 31 35 12.25 2 no no no no no
Likely pathogenic 37 34 1 5 yes no no no no
Pathogenic 1M 46 1 2 yes yes yes no no
Pathogenic 29 2 7 2 no no no no no
Pathogenic 41 8 12.25 2 yes yes yes no no
Pathogenic 26 3 3 0 yes no no no no
Likely pathogenic 20 29 5 1 no yes no no no
Regulatory domain C2  VUS 44 9 7 0 no no yes no no
Likely benign no ataxia n.a. 2 6 yes no yes no no
Likely benign n.a. 0 3 no no no no no
VUS 49 8 7.5 3 no yes no yes no
Kinase domain VUS 46 6 125 1 no no no no no
C-terminal VUS 47 4 7 2 no no yes no no

Subjects are ordered by location of variant (same order as Table 1).
PRKCG protein kinase C gamma; VUS variant of uncertain significance.
n.a. not assessed.

yes/no refers to symptom, sign or abnormal finding present:

MRI cerebellar atrophy rated by inspection as (0) none, (1) mild, (2) moderate and (3) severe.

*MRI results: only report of routine MRI available.

When protein modeling and evaluation of clinical find-
ings from this and previous reports were considered in
the second step of variant classification, a genetic diagno-
sis of SCA-PRKCG was assigned to 14/20 variants (25
subjects/16 families), including seven novel likely patho-
genic variants (Table 1, Fig. 1). All these variants were
located in the N-terminal or Cl regulatory domain.

Results of structural modeling clearly supported a

778

pathogenic relevance in five variants classified as VUS by
current guidelines, as they were likely to impose critical
changes at zinc-binding sites. In two other variants, possi-
bly deleterious conformational changes were assigned due
to changes in local structural properties (p. G123A) or
change from hydrophobic to polar residue (p. I1173S). In
three other VUS and two benign/likely benign variants,
no relevant effects were predicted on protein structure or

© 2021 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association
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Table 2. Continued

SCA-PRKCG Clinico-Genetic Diagnosis

Cognitive/psychiatric
Possible peripheral screening Nerve conduction studies abnormal Brain MRI findings
T2

Areflexia (a) Tibial nerve Central motor hyperintense
or mild Muscle HADS HADS Peripheral somatosensory-  conduction  Cerebellar Brainstem dentate
pallhypesthesia (p) atrophy DemTect depression anxiety — nerve  evoked potentials time atrophy atrophy nucleus
no no 14 1 3 no no no 2 no yes

no no 18 7 3 no no no 1 no yes

no no 11 1 3 yes no n.a. 2 no yes

no no 17 4 6 no no n.a. 1 no yes
a no 13 7 4 no yes n.a. 1 no yes

no no 18 9 4 no no no 2 no yes

no no 17 9 12 yes yes no 2 no yes
a, p no 13 4 5 yes yes n.a. 1 no yes

no no 18 9 6 n.a. n.a. n.a. 2 no yes

no no 7 12 4 n.a. n.a. n.a. 1 no yes

. p yes 12 2 3 n.a. n.a. n.a. 1 no yes
a, p no 13 0 1 n.a. n.a. n.a. 1 no yes

p yes 14 7 5 no no n.a. 2 no yes

no yes 14 7 4 no yes no 2 no yes

no no 12 6 1 n.a. n.a. n.a. 2 no yes

no no 13 8 10 yes no no 2 no yes

no no 14 3 n.a. no no no 2 no yes

no no 12 4 11 yes yes no 1 no yes

no yes 14 9 8 yes n.a. n.a. 3 no yes

no no 15 1N 12 n.a. n.a. n.a. 2 no yes

no no 15 n.a. n.a. n.a. n.a. n.a. 2 no yes

p yes n.a. n.a. n.a. no n.a. n.a. 2 no yes

no no 15 12 2 n.a. n.a. n.a. 2 no yes
no no 10 3 6 yes no n.a. 1 no yes
p no 12 4 4 no n.a. n.a. 2 no yes
no no 18 9 6 n.a. n.a. n.a. 1 no yes
no no 14 10 10 yes no n.a. 2 no yes
no no n.a. n.a. n.a. n.a. n.a. n.a. 3 no yes
a yes n.a. n.a. n.a. n.a. n.a. n.a. 0 no n.a.
p yes n.a. n.a. n.a. n.a. n.a. n.a. 0 no n.a.
no no 13 n.a. n.a. no yes no n.a.* n.a.* n.a.*
no no 13 6 3 yes yes no 2 yes no
no no 9 6 4 n.a. n.a. n.a. 2 yes no

function, whereas the two N-terminal variants were not
covered by the model. Four remaining VUS were located
in the C2 regulatory, kinase, or C-terminal domain. Two
variants were classified as (likely) benign despite one (p.
C69C) located within the mutational hotspot/1% zinc-
binding site.

Family history was negative or not informative in only
3/25 SCA-PRKCG subjects — thereof one singular index

© 2021 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association

case — but in 3/4 VUS carriers and 2/4 carriers of
benign/likely benign PRKCG variants.

Phenotype in SCA-PRKCG

An excerpt of individual findings in 33 subjects (whether
confirmed SCA-PRKCG or benign/VUS) is presented in
Table 2, whereas Table 3 summarizes the SCA-PRKCG

779



SCA-PRKCG Clinico-Genetic Diagnosis

phenotype based on 25 subjects confirmed as SCA-
PRKCG as annotated in Table 2.

The confirmed SCA-PRKCG had a mean age of 38 (SD
13.4) years and a disease duration of 19 (SD 12.5) years.
Patients featured mild to moderate ataxia (SARA < 20) in
all but one patient (score 25) presenting with additional
myoclonus. Three patients reported permanent use of
walking aids and none were wheel-chair dependent. INAS
count indicated up to five nonataxia signs per patient
(none in five patients). Myoclonus involved trunk or
hands in most cases and stimulus sensitivity was observed
in one patient. Mild focal dystonia was often reported as
action-induced or task-specific. Although hyperreflexia
was noted in five and a sensation of leg stiffness was
reported by two subjects, no spasticity or extensor plantar
response was observed. Five subjects reported persistent
bone or muscle pain located in the legs or back that
increased with exertion without other identifiable cause.
Fasciculations or mild to moderate muscle atrophy
affected proximal or distal muscle groups with mild to
moderate weakness in three subjects.

There was clinical suspicion or subjective complaint of
mild cognitive dysfunction in almost half of the patients,
whereas DemTect indicated mild cognitive impairment in
only five subjects. Screening tests indicated dementia in
one subject but coincident with relevant depressive symp-
toms.

Neuropsychological test results indicated lower perfor-
mance compared to healthy controls in mainly two
domains: attentional functions and executive function
(Table 4). Results of SCA-PRKCG in respective tests were
unrelated to depressive symptoms (HADS-D) while an
association with ataxia severity (SARA) was seen for visu-
ospatial mental rotation and selective attention (Table 5).
When effects of age were taken into account using partial
correlations, the associations with ataxia scores were no
longer significant (Fig. S1).

Assessments of the visual pathway did not indicate
pathology of the optic nerve (see Thl et al.*® for detail).

Electroneurographic signs of mild axonal or mixed
neuropathy of single nerves were seen in some subjects
but did not qualify for a diagnosis of polyneuropathy. Of
note, findings were normal in three of four patients who
featured reduced vibration sense. Central motor conduc-
tion time was normal in all eight subjects with reports
available.

Symptom onset and progression

Due to cross-sectional study design, the information in
this section relies on patient report. The onset of gait
ataxia varied between 4 and 50 years of age (mean/SD 38/
13). In two very mildly affected subjects (SARA score 3

T. Schmitz-Hbsch et al.

and 7), one subjectively unaware of ataxia, limb ataxia of
the legs was more prominent than gait/stance ataxia. Dis-
ease manifestation coincided with giving birth to the 2nd
child in one subject.

Several subjects reported possible early manifestations:
minor difficulty with locomotor coordination since child-
hood (four patients, combination with early learning defi-
cits in one), childhood-onset, nonprogressive slurring of
speech (two patients), and reading—writing difficulties
(one patient).

The onset of dysarthria was mostly close to or even
coincident with the onset of gait ataxia, whereas (mild)
dysphagia started later in the disease course. The onset of
impaired hand coordination was on average >10 years
after the onset of gait ataxia. Early mild writing difficul-
ties before the onset of gait ataxia in one subject were
likely attributable to task-specific dystonia. The onset of
myoclonus remained unresolved as it often went unrecog-
nized by patients themselves.

Progression of ataxia was slow (SARA annual progres-
sion rate 0.99 £ 1.01 pt/year, estimated as SARA scores
by disease duration). In the subject with the most severe
ataxia (SARA 25), valproate 900mg/day almost completely
resolved the action-induced truncal myoclonus with sub-
sequent sustained SARA improvement by five points.
Results of earlier neuropsychological testing, available in
one patient, indicated only a mild decrease in tests of
attention and semantic verbal fluency over a period of
8 years but no impairment in semantic or verbal episodic
memory.

Brain imaging

There was no atrophy of cerebrum, brainstem, or cervical
spinal cord, but cerebellar atrophy was seen in all
SCA-PRKCG subjects (Table 2), particularly pronounced in
anterior lobe and upper vermis and including middle or
superior cerebellar peduncles in three and two subjects,
respectively.

A peculiar symmetrical hyperintensity of the dentate
nucleus on T2-weighted images was unequivocally seen in
all SCA-PRKCG subjects but none of the healthy controls.
It extended from the dentate nucleus toward the superior
cerebellar peduncle, whereas in healthy subjects the dentate
nucleus was generally hypointense, presenting only a cen-
tral clear-cut hyperintense spot in some cases resembling
dilated perivascular space. The T2-hyperintense signal of
the dentate nucleus had a hypointense correlate in T1-
weighted images (Fig. 2). The detection of the T2-hyperin-
tense dentate sign was improved by (para)coronar angula-
tion of images along the superior cerebellar peduncles.

Both, the cerebellar atrophy and T2-hyperintense den-
tate sign, were clearly observed also in two subjects with
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regulatory domain

C1
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kinase domain

NH2 | v

CYS1 CYS2 | v

COOH

C2 vi | C3/C4 |vs

aa 1 36 85 101 150 172 275 351 677 697
G23E R41P G360S
A24S F48del H174P S361G  F643L V692G
A24T C49Y A458T M6971-ex13
R26G G63V
c66Y M256T
H74Y
C77S
T82_E84del
A100K-101H G118D C131S
H101Q S119F C131R
H101Y S119P C131Y
H101R G123A V138E
H106P G123E H139Q
F113del G123R C142G
C114Y G123V C150Y
H116P Q127R C150F
G128D

Figure 1. Overview of all PRKCG variants published to date. Variants included in this case series are marked in bold, novel (likely) pathogenic
variants are marked in red. Variants of uncertain significance or likely benign variants of our cohort are marked in gray italic.

clinically incipient manifestation. Cerebellar atrophy even
preceded clinical manifestation by 8 years in one of the
three subjects with preceding routine clinical MRI avail-
able. By inspection, no obvious progression of atrophy
was seen over periods of 8 to 17 years (Fig. 3). Volume
loss could not be quantified since prior routine MRI was
not obtained in 3D and slicing did not allow a statement
on dentate signal alterations.

Clinical and imaging findings in VUS/(likely)
benign cases

The four subjects classified as VUS had nominally older
age (mean 46.5 years) and shorter disease duration (mean
6.8 years) than those confirmed as SCA-PRKCG. Nona-
taxia movement disorder was seen in three of four carri-
ers of VUS and disturbed memory was reported by two

(Table 2). Signs of spasticity were reported in one subject
(p- M256I) despite normal central motor conduction
times and slowed saccades and horizontal ophthalmopare-
sis were seen in another subject (p. P678A).

In one parent-offspring pair of a likely benign variant
(p. R213Q), no signs of ataxia were observed but myoclo-
nus, resting tremor, mild muscle atrophy, and weakness
in the index case. The other family carrying a benign vari-
ant (p. C69C) presented with slowly progressive ataxia,
areflexia, mild muscle atrophy (1), focal dystonia (1), and
moderate to severe sensory disturbance.

Structural brain MRI in carriers of VUS showed extrac-
erebellar pathology in three of four cases with brainstem
atrophy (p. R634H and p. P678A), whole-brain atrophy
(p.- M2561 and p. P678A), or hyperintense middle cerebel-
lar peduncle (p. R634H). Such features were not observed
in any SCA-PRKCG subject. Furthermore, no T2
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Table 3. Summary of clinical findings in 25 cases of confirmed SCA-PRKCG given as proportion (%) of sample with specific findings, ordered by
possible structural attribution.

Observed or reported

n = 25 unless

Structure System Sign (% of sample) stated otherwise
Cerebellum Cerebellar ataxia (SARA ratings > 0) Gait ataxia 25 (100)
Stance ataxia 21 (84)
Dysarthria 23 (92)
Limb ataxia 25 (100)
Cerebellar oculomotor signs Saccadic pursuit 25 (100)
Saccadic dysmetria 24 (96)
Gaze-evoked nystagmus 15 (60)
Non-ataxia movement disorder, Myoclonus 10 (40)
observed or reported Dystonia 8(32)
Tremor 3(12)
Other symptoms or signs of suspected Diplopia 11 (44)
cerebellar attribution Dysphagia 12 (48)
Mild cognitive impairment by clinical 11 (44)
suspicion or subjective complaint
Cognitive screening test positive 6 (25) (n=24)
Brainstem Brainstem oulomotor signs Ophthalmoparesis 0
Slowing of saccades 0
Retina/optic nerve  Symptoms or signs of retinal/optic Reduced visual acuity (monocular) 0 =13)
nerve involvement Optical coherence tomography 0 =13)
pRNFL reduction
Spinal tract Symptoms or signs of pyramidal Hyperreflexia 5 (20)
involvement Spasticity 0
Plantar extensor 0
Electrophysiology: CMCT abnormal 0 (n=18)
Symptoms or signs of spinal or Fasciculations 5 (20)
peripheral involvement Muscle atrophy 4 (16)
Pareses 3(12)
Reduced vibration sense (ankle) 4 (16) (n = 25)
Electrophysiology: mild neuropathy 8 (44) (n=18)
Electrophysiology: SSEP abnormal 5(33) (n=15)
Undefined Symptoms of unclear attribution Depression/anxiety screening test positive 11 (48) (n=23)
Depression/anxiety clinically relevant 5(22) (n=23)
Cramps or sensation of muscle stiffness 10 (40)
Pain in legs or lower back 5 (20)

unpexplained otherwise

CMCT, central motor conduction time; PRKCG, protein kinase C gamma; pRNFL, peripapillary retinal nerve fiber layer; SARA, scale for the assess-

ment and rating of ataxia; SSEP, somatosensory-evoked potentials; VUS, variant of uncertain significance.

hyperintense dentate sign was seen in two cases (only
report of routine MRI was available for p. M2561 carrier).
In both carriers of variant p. R213Q, brain MRI was
unremarkable without cerebellar atrophy. However, both
carriers of variant p. C69C and a singular carrier of VUS
(p- 1173S) had imaging findings compatible with SCA-
PRKCG, including the hyperintense T2 dentate sign.

Discussion

As a main result, we describe a refined variant classifica-
tion for the clinico-genetic diagnosis of SCA-PRKCG and
summarize the SCA-PRKCG phenotype from prospective

investigation of clinical, neuropsychological, and imaging
findings in the largest cohort to date. The novel brain
MRI finding of T2 hyperintense/T1 hypointense dentate
nuclei was shared by all confirmed SCA-PRKCG and may
serve as a supportive marker for PRKCG variant classifica-
tion.

Clinical findings support a variable combination of
three motor symptoms: (1) mild to moderate cerebellar
ataxia, (2) multifocal action myoclonus, and (3) task-
specific or cervical dystonia (including dystonic tremor).
The age of ataxia onset had a remarkably wide range
apparently unrelated to phenotype or progression. The
onset of ataxia related to childbirth in one of our subjects
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was also described in other PRKCG variants''”® and in

SCA-ATXN10% but possible mechanisms of aggravation
remain speculative. Long-standing mild or nonprogressive
symptoms of walking, speech, or learning dysfunction
were reported by 8/25 subjects and also noted in previous
reports,”'%*®* suggestive of an early developmental com-
ponent.

Action myoclonus in SCA-PRKCG may aggravate
ataxia or be even mistaken for ataxia in commonly used
motor coordination tests and obviously interfered with
SARA rating in one of our subjects. Such interference is
known from early-onset ataxias.*’ Further, history taking
for myoclonus required specific enquiry, for example, for
“muscle jerks at rest or action like you would sometimes
experience falling asleep,” as most subjects did not com-
plain of jerks spontaneously, even if clinically observed.

SCA-PRKCG Clinico-Genetic Diagnosis

Action as a trigger argues for a cortical origin,*' further
supported by the previous notion of negative myoclo-
nus,** response to valproate® and this first description of
stimulus-sensitivity in one patient. Dystonia was mild or
intermittent in our study though disabling predominant
myoclonus-dystonia has been described in SCA-PRKCG.*?
The observed head and upper limb tremor was difficult
to classify; classification in previous reports included
tremulous dystonia, rhythmic myoclonus, or segmental
myorhythmia (Table S1).

The nonataxia movement disorders observed in SCA-
PRKCG have been referred to as extracerebellar signs in
previous reports and are not (yet) considered part of the
clinical cerebellar syndrome.*> However, converging argu-
ments attribute them to cerebellar pathology. For myoclo-
nus, the coincidence with symptoms of ataxia has long

Table 4. Results of neuropsychological testing performed in 23 confirmed SCA-PRKCG (13 females; age 49 + 11 years) and 23 age- and sex-
matched controls (13 females; age 49 + 11 years) along with statistics for group comparison (t-test or *Wilcoxon rank-sum (WRS) test).

n
Domain Specific skill Test acronym SCA-PRKCG/control ~ Mean/median  SD/SE T/U*  P-value
Attention Selective attention TAP-Flexibility 22 783.5 2478 2.7 0.011
22 605.7 191.6
Inhibition TAP-Go/NoGo 22 550.1 58.7 27 0.010
23 506.3 48.2
Processing speed TAP-Alertness* 22 298.5 121 135% 0.007*
23 246 13.6
Executive functioning  Affinity of interference FWIT* 23 30.7 5 207* 0.207*
23 27.6 2.1
Interhemispheric motor inhibition ~ COMO* 23 4.6 0.7 122.5% 0.001*
23 0 0.7
Visuospatial mental rotation LPS 50 + subtest 7 23 11.8 4.3 -3.1 0.004
22 18.3 9
Language Vocabulary MWT-B* 23 28 1 213* 0.254%*
23 29 0.8
Phonemic verbal fluency RWT phon. * 23 21 1.2 242%* 0.802*
22 19.5 1.1
Semantic verbal fluency RWT sem. 23 24.6 5.7 -0.6 0.553
22 25.6 5.3
Memory Figural memory ROCFT learning* 23 18.5 1.5 192* 0.111*
23 23 1.3
ROCFT delayed* 23 18 1.5 211.5%  0.244*
23 22 1.5
Visual spatial working memory CBT* 23 10 0.3 207.5* 0.196*
23 10 0.4
Verbal episodic memory VLMT learning* 23 59 1.8 260%* 0.921*
23 57 1.6
VLMT delayed* 23 13 0.5 226* 0.391*
23 12 0.5
Verbal working memory Digit-span test* 23 11 0.3 185* 0.077*
23 12 0.5
Perception Emotional perception FEFA 22 42.5 33 -0.6 0.524
22 43.1 2.8

Groups did not differ regarding education according to the International Standard of Education or handedness according to Edinburgh Handed-
ness Inventory. For test descriptions and references see Table S1.
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Table 5. Correlation of neuropsychological test results — performed only for those tests that indicated group differences, see Table 4 — to ataxia
severity, depressive symptoms, and age, using Spearman’s rho or Pearson’s r as indicated with results.

Zero-order correlations SCA-PRKCG/control

Partial correlations SCA-PRKCG

Depression symptoms

Domain Test acronym Ataxia (SARA)

Ataxia (SARA) controlled

(HADS-D) Age for age

Attention TAP Flexibility p =043 P=0.044

TAP Go/NoGo p=033P=0.133

TAP Alertness p=0.20 P=0.380

Executive functioning COMO p=033P=0.129

LPS 50 + subtest 7 p = 0-.55 P = 0.008

p=0.01P=00950
- p=0.11P=0639
p=—-0.15P=0.509
- p=0.18P=0416
p=0-38 P=0.085
- p=0.08P=0710
p=0.03 P=0.909
- p =0-.04 P=0.849
p=021P=0358
- p=0.11P=0619

r=0.41P = 0.060
r=0.58 P = 0.004
r=064P=0001 -
r=0.64P=0.001
p=052P=0013 -
p=0.38P=0.071
p=0-07P=0755 -
p=034P=0110
r=—0.46P= 0026
r=—0.46 P =0.032

p=024P=0298

p=-0.21P=0.351

been described** For dystonia, an ataxia to dystonia con-
tinuum was suggested from animal models*’ related to
the irregularity of excitatory outflow from deep cerebellar
nuclei impacting on cerebral cortical functions.***” Con-
SCA-PRKCG
changes in intracortical inhibition similar to those
reported in cortical myoclonus or DYT-TOR1A/DYT1
carriers and clinical signs of reduced interhemispheric
motor inhibition (contralateral movement test, Table 4)
were observed in our study. In sum, nonataxia movement
disorders in SCA-PRKCG may be related to a distinct
cerebellar pathology that SCA-PRKCG possibly shares
with other movement disorders: a pure Purkinje cell dys-
function/loss in coincidence with structurally intact but
disinhibited deep cerebellar nuclei. This pattern is in line
with a recent histopathological report of SCA-PRKCG (p.
H101Q).*!

Aside from hyperreflexia, there were no other signs of
pyramidal affection and motor-evoked potentials were
normal as in all previous reports (one previous report of
abnormal central motor conduction times*® was found

. . . 36
sistently, a previous series”™  revealed

unremarkable later-on, personal communication D. T.).
The etiology of muscle atrophy/pareses, fasciculations,
mild sensory symptoms, and pain remains unclear. Elec-
trophysiological findings here and in other studies do not
support large-fiber neuropathy as a feature of SCA-
PRKCG (severe axonal neuropathy has hitherto been
described in only one singular index case (p. A458T)").
PRKCG expression in dorsal horn and nucleus gracilis*
may be of relevance and requires further investigations of
spinal structures in SCA-PRKCG.

The results of neuropsychological testing were compati-
ble with previously described cognitive features of cerebel-
lar pathology.” Longitudinal data of neuropsychological
testing available in one of our subjects indicated mild
progression of cognitive dysfunction, in line with few

784

previous descriptions.””">* Few reports of overt dementia
were all in SCA-PRKCG with long-standing disease
(Table S1) or probable comorbidity. In one report,
marked cognitive decline coincided with hearing loss, dia-
betes, and epilepsy, suggestive of other pathology.” A role
of (physiologically weak) neocortical expression of mutant
PRKCG is not excluded, but dementia of rather subcorti-
cal type, normal structural MRI, MR spectroscopy,”’ and
histopathology of cerebral cortex’* argue against it.

Standardized structural brain MRI confirmed pure
cerebellar atrophy, predominantly of vermis and anterior
lobe. This may precede clinical manifestation and disclose
carrier status in premanifest stages as in other SCAs.”*
Atrophy was nonprogressive in serial MRI of three cases
spanning up to 17 years and may thus be interpreted as a
maldevelopmental or early degenerative change that
occurs independent of the manifestation or progression of
ataxia. Of note, cerebellar (cortical) atrophy in absence of
ataxia has been reported in other movement disor-
ders.”>”® The clinical manifestation of SCA-PRKCG may
thus be more related to dysfunctional cerebellar signaling
than to cerebellar structural change, whereas the early
developmental or even congenital cerebellar atrophy/hy-
poplasia may explain early nonprogressive subtle clinical
signs. Both hypotheses await further exploration in longi-
tudinal, histopathological, and functional studies.

The finding of symmetrically T2 hyperintense/T1
hypointense dentate nuclei was consistently seen in all 25
SCA-PRKCG cases irrespective of time since onset. We
were unable to relate this finding to previous reports, as
these displayed only sagittal view images. This sign was
not seen in any of our healthy controls in whom a physi-
ological decrease of T2 signal in the dentate nucleus is
expected throughout the lifespan.”” Brain T2 hyperinten-
sity with corresponding T1 hypointensity has been pro-
posed to indicate myelin degradation.”® In SCA-PRKCG,
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Figure 2. Example of MRI findings, specifically T2 signal of the dentate nuclei, in (A) a healthy subject aged 54 years and (B) a subject with SCA-
PRKCG aged 53 years with 23 years since disease onset. As seen in all confirmed SCA-PRKCG of our cohort, there was a peculiar homogeneous
T2 hyperintensity of the dentate nucleus (arrow head coronar image) that was not seen in any of the age- and gender-matched control subjects.
This hyperintensity had a hypointense correlate in T1-weighted images. Further, as in all SCA-PRKCG, the patient featured cerebellar atrophy
most pronounced in upper vermis (arrow sagittal image) and anterior lobe (arrow axial image).

the extension of this signal along the superior cerebellar
peduncles suggests that this may also affect the dentato-
thalamic efferents. The T2 hyperintense dentate sign was
not observed in two VUS carriers who showed instead
clinical and imaging features not seen in any confirmed
SCA-PRKCG case. However, it was present in two related
carriers of a benign variant (p. C69C) and in one VUS
carrier (p. I173S). As all three shared a phenotype com-
patible with SCA-PRKCG this would rather support
pathogenicity in the latter and should stimulate further
(e.g., intronic) genetic investigation of PRKCG in the
other family. Specificity and histopathological correlates
of this novel sign are yet unknown. There have been
reports of altered dentate signals in T2 weighted or FLAIR
sequences in different movement disorders, usually as part
of a more widespread pattern of imaging abnormalities.”®
Signal alterations confined to the dentate nucleus have
recently been described in few genetic (ataxia) movement
disorders ®*°* but have not been systematically investi-
gated and T2 hyperintensity of the dentate nucleus is cur-
rently not considered a characteristic imaging finding in
neurodegenerative ataxia.®>®* Although it is possibly not
specific, our results suggest the T2 hyperintense dentate

sign as a supporting criterion for PRKCG variant classifi-
cation in cases with typical phenotype. Its absence, as well
as the presence of atypical clinical findings (e.g., brain-
stem or pyramidal affection, early cognitive decline, reti-
nal atrophy), or extracerebellar pathology on brain MRI
may contribute to exclude PRKCG variants as causative.
This should then stimulate further investigation into
alternative causes or even genetic comorbidity.

The wvalidity of this clinicogenetic description is
strengthened by the use of standardized phenotype assess-
ment applied in a prospective manner and a standardized
refined procedure of variant classification. This is
expected to reduce reporting bias for phenotypic features
often seen with retrospective studies and to reduce mis-
classifications of pathogenicity. Some previous descrip-
tions of SCA-PRKCG were published before the
consensus guidelines on variant interpretation, the appli-
cation of which, in fact, led to re-assignment as VUS in
some (Table 1). All (likely) pathogenic variants in this
study were within N-terminal or C1 regulatory domain.
Conclusions on the (rarer) kinase domain mutations
could thus only rely on literature review (Table S1) which
did not convincingly reveal distinctive features.'® The
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Figure 3. Evolution of MRI findings over eight (A), 12 (B) and 17 (C) years in three clinically manifest confirmed SCA-PRKCG subjects who made
prior clinical MR imaging available (age at second scan 57 (A), 37 (B) and 56 (C) years). Most recent imaging is presented on the right hand
columns, previous MRI presented on the left for each case. In case B, the first scan was obtained for other symptoms than ataxia, that is, in the

premanifest stage.

comprehensive variant classification proposed here clearly
increased diagnostic yield by inclusion of protein model-
ing results. Their interpretation weighs the structural and
functional consequences of each variant on PRKCG func-
tion. Such a protein-specific approach can be considered
more specific than generic pathogenicity prediction tools
that are largely based on evolutionary conservation. Segre-
gation analysis may have added certainty but we decided
to systematically not consider such information, as its
unavailability reflects the prevalent clinical reality. Clearly,
most valid claims of pathogenicity would require func-
tional study in a valid disease model, which has not yet
been established for SCA-PRKCG. Thus, this refined clas-
sification approach may be generalizable to assign
pathogenicity to missense variants in the case of other
very rare, multi-allelic adult-onset disorders, in a gene
with low tolerance to variability and in the absence of
reliable biomarkers, functional models, or a highly specific
phenotype. It should be noted, that the interpretation of
both, genetic variants and protein modeling results,
requires relevant expertise but would be feasible in the
context of emerging research networks for rare diseases.
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