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Abstract

Cryo-electron tomography (cryo-ET) combined with subtomogram averaging (STA) is a unique 

technique in revealing macromolecule structures in their near-native state. However, due to the 

macromolecular structural heterogeneity, low signal-to-noise-ratio (SNR) and anisotropic 

resolution in the tomogram, macromolecule classification, a critical step of STA, remains a great 

challenge.

In this paper, we propose a novel convolution neural network, named 3D-Dilated-DenseNet, to 

improve the performance of macromolecule classification in STA. The proposed 3D-Dilated-

DenseNet is challenged by the synthetic dataset in the SHREC contest and the experimental 

dataset, and compared with the SHREC-CNN (the state-of-the-art CNN model in the SHREC 

contest) and the baseline 3D-DenseNet. The results showed that 3D-Dilated-DenseNet 

significantly outperformed 3D-DenseNet but 3D-DenseNet is well above SHREC-CNN. 

Moreover, in order to further demonstrate the validity of dilated convolution in the classification 

task, we visualized the feature map of 3D-Dilated-DenseNet and 3D-DenseNet. Dilated 

convolution extracts a much more representative feature map.
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1 Introduction

The cellular process is dominated by the interaction of groups of macromolecules. 

Understanding the native structures and spatial organizations of macromolecule inside single 

cells can help provide better insight into biological processes. To address this issue, cryo-

Electron Tomography (cryo-ET), with the ability to visualize macromolecular complexes in 

their native state at sub-molecular resolution, has become increasingly essential for 

structural biology [1]. In cryo-ET, a series of two-dimensional (2D) projection images of a 

frozen-hydrated biological sample is collected under the electron microscopy with different 

tilted angles. From such a series of tilted images, a 3D cellular tomogram with sub-

molecular resolution can be reconstructed [2] with a large number of macromolecules in the 

crowded cellular environment. To further obtain macromolecular 3D view with higher 

resolution, multiple copies (subtomograms) of the macromolecule of interest need to be 

extracted, classified, aligned [3] and averaged, which is named as subtomogram averaging 

(STA) [4]. However, due to the macromolecular structural heterogeneity, the anisotropic 

resolution caused by the missing wedge effect and the particularly poor signal-to-noise-ratio 

(SNR), macromolecule classification is still a great challenge in STA.

One pioneering classification method is template matching [5], where subtomograms are 

classified by comparing with established template images. However, the accuracy of 

template matching can be severely affected by the template image. Because the template 

image can misfit its targets when the template image and the targets are from different 

organisms or have different conformation. To overcome the limitations of using template 

images, a few template-free classification methods have been developed [6,7]. Most 

template-free methods use iterative clustering methods to group similar structures. Because 

the clustering of a large number of 3D volumes is very time-consuming and computationally 

intensive, template-free method is only suitable to small datasets with few structural classes.

Recently, with the blowout of deep learning, convolution neural network (CNN) has been 

applied to the macromolecule classification task [8, 9]. CNN classification methods 

recognize objects by extracting macromolecular visual shape information. Extracting 

discriminative features is the key to guaranteeing model classification performance. 

However, due to the high level of noise and complex cellular environment, it is challenging 

for CNN models to extract accurate visual shape information. Moreover, in traditional CNN 

architecture, with each convolution layer directly connected, the current convolution layer 

only feed in features from its adjacent previous layer. Because different depth convolution 

layer extracts image feature of different level, the lack of reusing features from other 

preceding convolution layer further limits the accuracy in macromolecule classification.

In this article, we focus on improving classification performance by designing a CNN model 

(Dilated-DenseNet) that highly utilizes the image multi-level features. We enhance the 

utilization of image multi-level features by following two ways: 1) Use dense connection to 

enhance feature reuse during the forward propagation. 2) Adapt dilated convolution in dense 

connection block to enrich feature map multi-level information. For the convenience of 

further discussion, here we denote this adapted block as dilated-dense block. In our dilated-

dense block, with dense connection, each convolution layer accepts features extracted from 
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all preceding convolution layers. And by gradually increasing the dilated ration of dilated 

convolution layers, the dilated convolution layer performs convolution with an increasingly 

larger gap on the image to get multi-level information.

In order to verify the effectiveness of the above two ways for classification task, we designed 

a 3D-DenseNet [10], a 3D-Dilated-DenseNet and compared these two models with the state-

of-the-art CNN method (SHREC-CNN) of SHREC, a public macromolecule classification 

contest [9], on synthetic data [9] and experimental data [11,12]. Our synthetic data is 

SHREC dataset [9] which contains twelve macromolecular classes and is classified by 

SHREC into four sizes: tiny, small, medium and large. Our experimental data is extracted 

from EMPIAR [11,12] with seven categories of macromolecules. The results on both 

synthetic data and experimental data show that 3D-Dilated-DenseNet outperforms the 3D-

DenseNet but 3D-DenseNet is well above SHREC-CNN. On synthetic data, 3D-Dilated-

Dense network can improve the classification accuracy by an average of 2.3% for all the 

categories of the macromolecules. On experimental data, the 3D-Dilated-Dense network can 

improve the classification accuracy by an average of 2.1%. Moreover, in order to further 

demonstrate the validity of 3D-Dilated-DenseNet, we visualized the feature map of 3D-

Dilated-DenseNet and the result shows that our model can extract more representative 

features.

The remaining of the paper is organized as follows. Section 2 presents the theory and 

implementation of our new CNN model 3D-Dilated-DenseNet. Section 3 shows dataset 

description, experiment details and classification performance of 3D-Dilated-DenseNet by 

comparing with widely used methods. Section 4 presents the conclusions.

2 Method

2.1 3D-Dilated-DenseNet architecture

Figure 1A shows the architecture of our 3D-Dilated-DenseNet, the network mainly consists 

of three parts: dilated dense block (Section 2.2), transition block, and the final global 

average pooling (GAP) layer. Each block comprises several layers which is a composite 

operations such as convolution (Conv), average pooling (AvgPooling), batch normalization 

(BN), or rectified linear units (ReLU).

For a given input subtomogram, represented as a 3D array of ℝn × n × n, after the first shallow 

Conv, the extracted features are used as input for the following dilated dense block. In 

dilated dense block, we denote the input of block as x0, the composite function and output of 

layer l (l=1,…,4) as Hl(·) and xl. With dense shortcuts interconnect between each layer, the 

layer l receives the feature maps from its all preceding layers (x1, …, xl−1), and we denote 

the input of layer l as : xl = Hl(x0, x1, …, xl−1). Let each layer outputs k feature maps, so the 

input feature map of the current l layer is k0 + k × (l−1) where k0 is the number of block 

input feature map. Thus the whole block contains L×k0+k×L(L−1)/2 feature maps. Such 

large number of feature maps can cause enormous memory consumption. In order to reduce 

model memory requirement, the layer is designed with a feature map compress module. So 

the composite function of layer (Fig. 1B) includes two consecutive convolution operations: 

1) a 1x1x1 convolution operation which is used to compress the the number of input feature 
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map, and 2) a 3x3x3 dilated convolution which is used to extract image multi-level 

information. The detailed information of dilated dense block which focuses on dilated 

convolution is shown in the next section.

Because dense connection is not available between size changed feature maps, all feature 

maps in dilated dense block maintain the same spatial resolution. If these high spatial 

resolution feature maps go through the entire network without down-sampling, the 

computation consumption in following block is huge. So we design a transition block 

between two dilated dense blocks to reduce the size of feature maps. Due to the number of 

input feature map of transition block is L × k0 + k × L(L − 1)/2, the transition block is also 

defined with a feature map compress module. Therefore, transition block includes following 

operations: batch normalization (BN) followed by a 1×1×1 convolution (Conv) and average 

pooling layer.

After a series of convolution and down-sampling block, the given input subtomogram is 

represented as a patch of highly abstract feature maps for final classification. Usually, fully 

connection (FC) is used to map the final feature maps to a categorical vector which shows 

the probabilities assigned to each class. In order to increase the non-linearly, traditional 

CNN always contains multiple FC layers. However, FC covers most of the parameters of the 

network which can easily cause model overfitting. To reduce model parameter and avoid 

overfitting, GAP is introduced to replace the first FC layer [13]. The GAP does average 

pooling to the whole feature map, so all feature maps become a 1D vector. Then the last FC 

layer with fewer parameters maps these 1D vectors to get the category vector.

2.2 Dilated dense block

In order to obtain feature map with representative shape information from the object of 

interest, we introduce dilated convolution [14] in the dilated dense block. Figure 2 shows a 

2D dilated convolution example. By enlarging a small k×k kernel filter to k+(k−1)(r−1) 

where r is dilation ratio, the size of receptive field is increase to the same size. Thus, with 

enlarged receptive field of the convolution layer, the model can extract multi-level 

information of subtomogram. And with the stack of convolution layers, the multi-level 

features can be integrated to present macromolecular shape with less noise.

However, when stack dilated convolution layer with same dilation rate, adjacent pixels in the 

output feature map are computed from completely separate sets of units in the input, which 

can easily cause grid artifacts [15]. To solve this problem, we design our dilated convolution 

layers by following hybrid dilated convolution rule (HDC) [15]. First, the dilated ration of 

stacked dilated convolution cannot have a common divisor greater than 1. In each dilated 

dense block, we choose 2 and 3 as dilated ration. Second, the dilated ration should be 

designed as a zigzag structure such as [1, 2, 5, 1, 2, 5]. We put the dilated convolution layer 

at the mid of block.

2.3 Visualization of image regions responsible for classification

To prove that the dilated convolution layer can extract feature map with clearly respond 

regions from our interest object, we visualize the class activation mapping (CAM) [16] 

image by global average pooling (GAP). For GAP, the input is the feature map extracted 
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from last convolution layer, and the output is a 1D average vector of each feature map. In a 

trained CNN model with GAP module followed by FC layer and softmax classification 

layer, the FC layer has learned a weight matrix that maps the 1D average vector to a 

category vector. With the computation of softmax classifier, the category vector can show 

the probability of the input image assigned to each class. For a predicted class that has the 

highest probability in the category vector, it is easy to get its corresponding weight vector 

from weight matrix. In the weight vector, each value represents the contribution of its 

corresponding feature map to classification. Therefore, we can get the class activation 

mapping image by using a weighted summation of feature map extracted from the last 

convolution layer and the weight value learned from FC layer.

Here, we denote the kth feature map of the last convolution layer as fk(x, y, z). After fk(x, y, 
z) goes through the GAP block, each fk(x, y, z) are computed as x, y, zfk x, y, z  that is 

denoted as Fk. From the linear layer followed by GAP, we can get a weight matrix w which 

shows the contribution of each feature to every category. Inputting an image, predicted with 

c class, we can get wc. Each item of wc records the contribution of last convolution feature 

map to c class. Then we can compute the class active mapping CAMc by

CAMc x, y, z =
k

wk
cfk x, y, z (1)

Due to the fact that CAMc is the weighted sum of feature maps extracted from last 

convolution. The size of CAMc(x, y, z) is generally smaller than origin input image. In order 

to conveniently observe the extracted features with the input image as a reference, we then 

up-sample the CAMc(x, y, z) to get an image with same size as input data.

3 Experiments and results

3.1 Data

The synthetic subtomogram data is extracted from SHREC dataset [9], consisting of ten 

512*512*512 tomograms and the corresponding ground truth tables. Each tomogram is with 

1nm/1voxel resolution and contains ~2500 macromolecules of 12 categories. All 

macromolecules are uniformly distributed in tomograms with random rotation. And the 

ground truth table records the location, Euler angle and category for each macromolecule. 

These 12 macromolecules have various size and have been classified by SHREC to tiny, 

small, medium and large size. Tab. 1 shows the protein data bank (PDB) identification of the 

12 macromolecules and their size category.

According to the ground truth table, we extract subtomograms of size 32 × 32 × 32 with the 

macromolecules located in center. From Fig. 3A we can see the SNR of these subtomograms 

is low. In order to provide a noise-free subtomogram as a reference for CAM [16] images, 

we generated the corresponding ground truth using their PDB information. We first 

download each macromolecules structures from PDB, then generate a corresponding density 

map by IMOD [17]. Finally, we create an empty volume of 512 × 512 × 512 and put each 

macromolecule density map into the volume according to the location and Euler angle 

recorded in the ground truth table (Fig. 3B).
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The experimental data are extracted from EMPIAR [11,12], which is a public resource for 

electron microscopy images. Seven cryo-ET single particle datasets are downloaded as the 

experiment data6. Each dataset on EMPIAR is an aligned 2D tilt series and only contains 

purified macromolecule of one category. The categories of these macromolecule are rabbit 

muscle aldolase, glutamate dehydrogenase, DNAB helicase-helicase, T20S proteasome, 

apoferritin, hemagglutinin, and insulin-bound insulin receptor. To obtain subtomograms, we 

first reconstruct the tilt series by IMOD and get the 3D tomogram. Then we manually picked 

up 400 macromolecules for each category.

3.2 Training details

In this work, our 3D-DenseNet and 3D-Dilated-DenseNet is implemented with Pytorch. 

During training, the weights of convolution layer and fully connected layer in both networks 

are initialed by the Xavier algorithm [18]. In particular, we set the parameters to random 

values uniformly drawn form [−a, a], where a = 6
nin + nout

, nin and nout denotes size of input 

and output channel. For batch normalization layer, y is set to 1, b is set to 0, all biases are set 

to 0. The number of feature map output from each convolution layer in dense or dilated 

dense block (growth rate) is set to 12.

All our network is trained for 30 epochs on 2 GTX 1080TI GPUs with batch size of 64. With 

the limit memory of GPUs, our network only contains three dilated dense blocks. In fact, 

users can add more dilated dense blocks according to their GPU memory. According to the 

training experience, we used Adam [19] as the optimizer and the learning rate is set at 0.1 

and scaled down by a factor of 0.1 after every 10 epochs. In order to get efficient training, 

we adapted various techniques mentioned in the [20] including learning rate warmup 

strategy, and linear scaling learning rate strategy.

3.3 The performance of 3D-Dilated-DenseNet on synthetic data

In order to compare the classification performance of 3D-DenseNet and 3D-Dilated-

DenseNet with the state-of-the-art method on SHREC contest (SHREC-CNN), we chose the 

same test data and F1 metric as SHREC contest. The computation of F1 metric is given by 

Eq.2 which shows the balance of recall and precision.

F1 = 2 * precision * recall
precision + recall = 2TP

2TP + FN + FP (2)

In Eq.2. TP means true positive, FN means false negative and FP means false positive.

Tab. 2 shows the classification performance of above three models on each macromolecule. 

We counted number of TP(true positive), FN(false negative) and FP(false positive) of each 

macromolecule and got corresponding F1 score of each category. Judging from the result, 

we find that the 3D-Dilated-DenseNet performs better than 3D-DenseNet, but 3D-DenseNet 

performs better than SHREC-CNN. Second, we find the classification performance has high 

relationship to macromolecule size. Here, we analyze the average F1 value of each model on 

6The EMPIAR indexes of these datasets are 10131, 10133, 10135, 10143, 10169, 10172 and 10173
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macromolecules according to tiny, small, medium and large size (Fig. 4A). The F1 value in 

Fig. 4A and B is the average of macromolecules F1 scores from same size category. 

According to Fig. 4A, for all networks, the classification of large size macromolecules has 

the best performance. Especially, for 3D-DenseNet and 3D-Dilated-DenseNet, the F1 value 

is close to 1. As the size of macromolecule becomes smaller, the model gets poorer 

performance. This result is actually valid since that compared to smaller macromolecules 

larger ones can preserve more shape (or structure) information during pooling operations 

and get better classification results. Furthermore, with the decreasing of macromolecule size, 

the performance gap between 3D-DenseNet and 3D-Dilated-DenseNet becomes larger. In 

Tab. 2, compared with 3D-DenseNet, 3D-Dilated-DenseNet averagely increased 

macromolecule classification by: 3.7% on large size, 5.3% on medium size, and 6.8% on 

small size respectively.

Also, we test the convergence speed of 3D-DenseNet and 3D-Dilated-DenseNet, we find 

that dilated convolution does not affect 3D-Dilated-DenseNet convergence. Here, we 

analyze the performance of a series of 3D-DenseNet and 3D-Dilated-DenseNet which are 

trained up 30 epochs at intervals of 5. Figure 4B shows the relationship of epoch number and 

network performance on tiny size macromolecules. According to Fig. 4B, although in the 

first 13 epoch, the convergence speed of 3D-Dilated-DenseNet is slow, at epoch 15, both 

models reaches stability and the performance of 3D-Dilated-DenseNet is better than 3D-

DenseNet.

3.4 Visualization the class active mapping of 3D-Dilated-DenseNet

In order to demonstrate the effectiveness of dilated convolution in improving classification 

performance, we visualize the feature map extracted from 3D-DenseNet and 3D-Dilated-

DenseNet. Generally, there are two ways to assess feature map validity: 1) showing correct 

spatial information, in particular, the area which contains macromolecule in the tomogram, 

and 2) presenting object distinguishable shape information. Because the raw input image has 

high level noise, we further compare the CAM image of 3D-DenseNet and 3D-Dilated-

DenseNet with the ground-truth. In Fig. 5, each row shows one macromolecule with the 

input image, ground truth, CAM image of 3D-DenseNet and 3D-Dilated-DenseNet. Because 

the subtomogram data is 3D, we only show the center slice. Here, we explain the image 

content of each data that is presented in Fig. 5. In the input image, the cluster black regions 

present macromolecule, and this region is located generally in the center. Oppositely, in 

ground truth data, the black regions represent background and white regions represent 

macromolecule. In the CAM image of 3D-DenseNet and 3D-Dilated-DenseNet, the 

response region is presented with bright pixel and the pixel value reveals the contribution of 

the corresponding region of input data to classification. The higher the pixel value, the more 

contribution to classification.

Judging from Fig. 5, we can find that compared with the CAM image of 3D-DenseNet, the 

CAM image of 3D-Dilated-DenseNet shows more representative shape information of 

macromolecule. First, 3D-Dilated-DenseNet CAM shows less response to subtomogram 

background region. Second, the high response region of 3D-Dilated-DenseNet CAM is more 

consistent with the macromolecule region in input data. Moreover, the high response region 
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of 3D-Dilated-DenseNet contains clear boundaries that can help network easily distinguish 

macromolecule region and background region which also arouse slight response.

3.5 The performance of 3D-Dilated-DenseNet on experimental data

We also test the classification performance of 3D-DenseNet and 3D-Dilated-DenseNet on 

experimental data with F1 metric (Tab. 3). Compared with synthetic data, the experimental 

data has higher SNR. Therefore, the classification performance on experimental data is 

better than that on synthetic data. Because we do not know the PDB id of each 

macromolecule in experimental data, we cannot compute the relationship of particle size to 

model performance.

Judging from the Tab. 3, we can find that the F1 score of category DNAB helicase-helicase, 

apoferritin is the same, both equal to 1, which means that for these two category 

macromolecules, the balance between precision and recall is the same. However, for 

macromolecule of other categories, 3D-Dilated-DenseNet outperforms 3D-DenseNet. 

Overall, 3D-Dilated-DenseNet improved by 2.1% compared with 3D-DenseNet. Thus, 

dilated convolution do have a promotion for macromolecule classification task.

4 Conclusion

As a significant step in STA procedure, macromolecule classification is important for 

obtaining macromolecular structure view with sub-molecular resolution. In this work, we 

focus on improving classification performance of the CNN-based method (3D-Dilated-

DenseNet). By adapting dense connection and dilated convolution, we enhance the ability of 

the network to utilize image multi-level features. In order to verify the effectiveness of dense 

connection and dilated convolution in improving classification, we implement 3D-DenseNet, 

3D-Dilated-DenseNet and compared these two models with the SHREC-CNN (the state-of-

the-art model on SHREC contest) on the SHREC dataset and the experimental dataset. The 

results show that 3D-Dilated-DenseNet significantly outperforms 3D-DenseNet but 3D-

DenseNet is still well above the SHREC-CNN. To further demonstrate the validity of dilated 

convolution in the classification task, we visualized the feature map of 3D-DenseNet and 

3D-Dilated-DenseNet. The results show that the dilated convolution can help network 

extract a much more representative feature map. Although our model has significant 

improvements in the macromolecule classification task. The small-sized macromolecule is 

still a bottleneck for our method. And due to the lack of suitable labeled experimental data, 

we have not fully explored the 3D-Dilated-DenseNet performance on experimental data 

according to macromolecule sizes. In future works, we will focus on improving 

classification performance on small size macromolecule and explore the method 

performance with abundant cryo-ET tomogram experimental data.

Acknowledgments

This research is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences Grant 
(No. XDA19020400), the National Key Research and Development Program of China (No. 2017YFE0103900 and 
2017YFA0504702), Beijing Municipal Natural Science Foundation Grant (No. L182053), the NSFC projects Grant 
(No. U1611263, U1611261 and 61672493), Special Program for Applied Research on Super Computation of the 
NSFC-Guangdong Joint Fund (the second phase). This work is supported in part by U.S. National Institutes of 
Health (NIH) grant P41 GM103712. This work is supported by U.S. National Science Foundation (NSF) grant 

Gao et al. Page 8

Bioinform Res Appl. Author manuscript; available in PMC 2021 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DBI-1949629. XZ is supported by a fellowship from Carnegie Mellon University’s Center for Machine Learning 
and Health. And SG is supported by Postgraduate Study Abroad Program of National Construction on High-level 
Universities funded by China Scholarship Council.

References

1. Grünewald K, Medalia O, Gross A, Steven AC, Baumeister W: Prospects of electron 
cryotomography to visualize macromolecular complexes inside cellular compartments: implications 
of crowding. Biophysical chemistry 100(1-3) (2002) 577–591

2. Han R, Wan X, Wang Z, Hao Y, Zhang J, Chen Y, Gao X, Liu Z, Ren F, Sun F, et al.: Autom: a 
novel automatic platform for electron tomography reconstruction. Journal of structural biology 
199(3) (2017) 196–208 [PubMed: 28756247] 

3. Han R, Wang L, Liu Z, Sun F, Zhang F: A novel fully automatic scheme for fiducial marker-based 
alignment in electron tomography. Journal of structural biology 192(3) (2015) 403–417 [PubMed: 
26433028] 

4. Wan W, Briggs J: Cryo-electron tomography and subtomogram averaging. In: Methods in 
enzymology. Volume 579. Elsevier (2016) 329–367 [PubMed: 27572733] 

5. Ortiz JO, Förster F, Kürner J, Linaroudis AA, Baumeister W: Mapping 70s ribosomes in intact cells 
by cryoelectron tomography and pattern recognition. Journal of structural biology 156(2) (2006) 
334–341 [PubMed: 16857386] 

6. Bartesaghi A, Sprechmann P, Liu J, Randall G, Sapiro G, Subramaniam S: Classification and 3d 
averaging with missing wedge correction in biological electron tomography. Journal of structural 
biology 162(3) (2008) 436–450 [PubMed: 18440828] 

7. Xu M, Beck M, Alber F: High-throughput subtomogram alignment and classification by fourier 
space constrained fast volumetric matching. Journal of structural biology 178(2) (2012) 152–164 
[PubMed: 22420977] 

8. Che C, Lin R, Zeng X, Elmaaroufi K, Galeotti J, Xu M: Improved deep learning-based 
macromolecules structure classification from electron cryotomograms. Machine vision and 
applications 29(8) (2018) 1227–1236 [PubMed: 31511756] 

9. Gubins I, van der Schot G, Veltkamp RC, Förster F, Du X, Zeng X, Zhu Z, Chang L, Xu M, Moebel 
E, et al. SHREC’19 Track (2019)

10. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ: Densely connected convolutional networks. 
In: Proceedings of the IEEE conference on computer vision and pattern recognition. (2017) 4700–
4708

11. Noble AJ, Dandey VP, Wei H, Brasch J, Chase J, Acharya P, Tan YZ, Zhang Z, Kim LY, Scapin G, 
et al.: Routine single particle cryoem sample and grid characterization by tomography. Elife 7 
(2018) e34257 [PubMed: 29809143] 

12. Noble AJ, Wei H, Dandey VP, Zhang Z, Tan YZ, Potter CS, Carragher B: Reducing effects of 
particle adsorption to the air–water interface in cryo-em. Nature methods 15(10) (2018) 793–795 
[PubMed: 30250056] 

13. Lin M, Chen Q, Yan S: Network in network. arXiv preprint arXiv:1312.4400 (2013)

14. Yu F, Koltun V: Multi-scale context aggregation by dilated convolutions. arXiv preprint 
arXiv:1511.07122 (2015)

15. Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell G: Understanding convolution for 
semantic segmentation. In: 2018 IEEE winter conference on applications of computer vision 
(WACV), IEEE (2018) 1451–1460

16. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A: Learning deep features for discriminative 
localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 
(2016) 2921–2929

17. Kremer JR, Mastronarde DN, McIntosh JR: Computer visualization of three-dimensional image 
data using imod. Journal of structural biology 116(1) (1996) 71–76 [PubMed: 8742726] 

18. Glorot X, Bengio Y: Understanding the difficulty of training deep feedforward neural networks. In: 
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 
(2010) 249–256

Gao et al. Page 9

Bioinform Res Appl. Author manuscript; available in PMC 2021 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Kingma DP, Ba J: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 
(2014)

20. He T, Zhang Z, Zhang H, Zhang Z, Xie J, Li M: Bag of tricks for image classification with 
convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition. (2019) 558–567

Gao et al. Page 10

Bioinform Res Appl. Author manuscript; available in PMC 2021 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The architecture of 3D-Dilated-DenseNet. (A) The model framework of 3D-Dilated-

DenseNet. (B) The composite function of each layer in dilated dense block. (C) The 

composite function of transition block in 3D-Dilated-DenseNet.
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Fig. 2. 
A 2D example of dilated convolution layers with 3 x 3 kernel, and the dilated ration is 1, 2, 

3.
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Fig. 3. 
The example of synthetic data. (A) The middle slice of one 512 x 512 x 512 tomogram. The 

right 32 x 32 slices are the consecutive slices of a subtomogram with PDB ID 4d8q. The 

number of right corner are their slice index. (B) Ground truth corresponding to Fig.(A).
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Fig. 4. 
Dilated-DenseNet performance on synthetic data. (A) Average F1 value on macromolecules 

according to different size of 3D-DenseNet and 3D-Dilated-DenseNet. (B) The relationship 

between F1 value and training epoch of 3D-DenseNet and 3D-Dilated-DenseNet.
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Fig. 5. 
Class active mapping image of 3D-DenseNet and 3D-Dilated-DenseNet. Each row 

represents one macromolecule. And the column images are raw input data, ground truth, 

CAM image of 3D-DenseNet and CAM image of 3D-Dilated-DenseNet
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Table 1.

The PDB ID and corresponding size of each macromolecule in synthetic data

Macromolecule Size PDB ID

Tiny 1s3x, 3qm1, 3gl1

Small 3d2f, 1u6g, 2cg9, 3h84

Medium 1qvr, 1bxn, 3cf3

Large 4b4t, 4d8q
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Table 2.

Each macromolecule classification F1 score on SHREC

model
pdb id

tiny small medium large

1s3x 3qm1 3gl1 3d2f 1u6g 2cg9 3h84 1qvr 1bxn 3cf3 4b4t 4d8q

SHREC 0.154 0.193 0.318 0.584 0.522 0.343 0.332 0.8 0.904 0.784 0.907 0.951

3D-DenseNet 0.522 0.519 0.644 0.712 0.580 0.504 0.563 0.795 0.958 0.807 1 0.997

3D-Dilated-DenseNet 0.684 0.485 0.675 0.778 0.652 0.565 0.635 0.855 0.971 0.846 1 0.997
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Table 3.

macromolecule classification F1 score on exprimental data

Model Particle Class

rabbit 
muscle 
aldolase

glutamate 
dehydrogenase

DNAB 
helicase-
helicase

T20S 
proteasome apoferritin hemagglutinin

insulin-
bound 
insulin 
receptor

3D-DenseNet 0.9231 0.9558 1.0 0.9339 1.0 0.9569 0.9958

3D-Dilated-
DenseNet 0.9915 0.9655 1.0 0.9917 1.0 0.9677 1.0
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