
CON C I S E R E V I EW

Neural crest-like stem cells for tissue regeneration

Jennifer Soto1 | Xili Ding2 | Aijun Wang3,4,5 | Song Li1,6

1Department of Bioengineering, University

of California Los Angeles, Los Angeles,

California

2Key Laboratory for Biomechanics and

Mechanobiology of Ministry of Education,

Beijing Advanced Innovation Center for

Biomedical Engineering, School of Biological

Science and Medical Engineering, Beihang

University, Beijing 100083, People's Republic

of China

3Department of Surgery, School of Medicine,

University of California Davis, Sacramento,

California

4Institute for Pediatric Regenerative Medicine,

Shriners Hospitals for Children, Sacramento,

California

5Department of Biomedical Engineering,

University of California Davis, Davis, California

6Department of Medicine, University of

California Los Angeles, Los Angeles,

California

Correspondence

Song Li, PhD, University of California Los

Angeles, 410 Westwood Plaza, 5121

Engineering V, Los Angeles, CA 90095.

Email: songli@ucla.edu

Funding information

National Natural Science Foundation of China,

Grant/Award Number: 32000968; UCLA Eli

and Edythe Broad Center of Regenerative

Medicine and Stem Cell Research Innovation

Award; National Institutes of Health, Grant/

Award Numbers: R56DE029157, HL121450

Abstract

Neural crest stem cells (NCSCs) are a transient population of cells that arise during

early vertebrate development and harbor stem cell properties, such as self-renewal

and multipotency. These cells form at the interface of non-neuronal ectoderm and

neural tube and undergo extensive migration whereupon they contribute to a diverse

array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the

peripheral nervous system. Neural crest-like stem cells (NCLSCs) can be derived from

pluripotent stem cells, placental tissues, adult tissues, and somatic cell repro-

gramming. NCLSCs have a differentiation capability similar to NCSCs, and possess

great potential for regenerative medicine applications. In this review, we present

recent developments on the various approaches to derive NCLSCs and the therapeu-

tic application of these cells for tissue regeneration.
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1 | INTRODUCTION

Neural crest stem cells (NCSCs) are a transient, multipotent cell popu-

lation that originates along the border of the neural plate during early

vertebrate development.1,2 Various signaling molecules, including

Wnt, fibroblast growth factor (FGF), bone morphogenic protein

(BMP), Notch and retinoic acid (RA), derived from the non-neural

ectoderm, neuroepithelium and underlying mesoderm, activate a cas-

cade of transcription factors that dictate where these cells will form

and further develop.3 These cells undergo an epithelial-to-

mesenchymal transition, which allows them to acquire a mesenchymal

phenotype upon detaching from their neighboring cells and

delaminating from the dorsal neuroepithelium.4 Such an event induces
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these cells to migrate extensively within the developing embryo

whereupon they experience various environmental cues. Accumula-

tive evidence indicates that some cells lose plasticity and confer a fate

during or even before migration, although a subpopulation of migra-

tory cells appear to retain their multipotency.5-8 After settling in their

final sites of differentiation, these cells proceed to give rise to wide

array of cell types and tissues, including bone, cartilage, melanocytes,

fibroblasts, and smooth muscle cells (SMCs), in addition to neurons

and glial cells.2-4 As NCSCs are responsible for generating a diverse

population of cells and tissues, dysregulation of neural crest

(NC) development, cell migration, and differentiation can lead to a

broad spectrum of human congenital disorders, including cardiovascu-

lar defects, melanoma, craniofacial defects, and neuroblastoma, collec-

tively known as neurocristopathies.9,10 Therefore, NCSCs can be used

to generate a variety of specific cell types for disease modeling. Fur-

thermore, the multipotency of NCSC differentiation makes NCSCs a

valuable cell source for tissue regeneration.

In the past, NCSC isolation was limited to embryonic tissues.

NCSCs generally express markers such as Sox10, Slug, Snail, Twist, AP-

2α, p75NTR, and HNK1. Sox10 is critical for neurogenesis and mainte-

nance of multipotency,11-13 whereas Sox17 functions in the develop-

ment of definitive endoderm and vasculogenesis.14,15 Sox9,16-18

Slug,19,20 Snail,21-23 and Twist24,25 are all found closely related to NC

and neural tube development. AP-2α is required for NC induction and

expressed among actively migrating NCSCs.26-28 p75NTR and HNK1 can

be utilized to identify migratory NCSCs, albeit HNK1 only labels a small

proportion of migrating human NCSCs.28,29 Recently, the development

of pluripotent stem cells (PSCs), especially induced pluripotent stem

cells (iPSCs) has enabled the derivation of human neural crest-like stem

cells (NCLSCs), providing an opportunity to not only better understand

human development, but also an unlimited cell source for patient-

specific disease modeling and therapy. In addition, significant progress

has been made in identifying and isolating NCLSCs from fetal, perinatal,

and adult tissues that can potentially serve as viable cell sources for tis-

sue regeneration. In this review, we will present recent findings on

available sources of NCLSCs, and discuss their potential application for

tissue engineering and regenerative medicine (Figure 1).

Generally speaking, NCSCs are a cell population in NC-derived

tissues during embryonic development, whereas all other sources of

NCSCs, including those derived from PSCs in vitro and those isolated

from placental and adult tissues, should be defined as NCLSCs. How-

ever, previous studies have interchangeably utilized NCSC to describe

NCLSC derived from PSCs and adult tissues, and some NCLSCs have

been named differently based on their tissue origin. Furthermore,

there is also an argument that some adult NCLSCs are remnants of

NCSCs arising during the development. To clearly distinguish all of

these NCSCs and NCLSCs, single cell RNA sequencing, in addition to

lineage tracing, needs to be performed to classify the cells based on

genetic profile, which has not been done in a vast majority of previous

studies. Therefore, when presenting results from specific studies, we

generally use NCSC or NCLSC as we define it, but sometimes utilize

the term as defined by the authors of the study to accommodate their

hypothesis and viewpoint and to avoid confusion and controversy.

1.1 | Embryonic, fetal, and placental tissue-derived
NCLSCs for tissue regeneration

NCSCs have been identified and isolated from various embryonic and

fetal tissues,30 including the trunk neural tube, sciatic nerve, dorsal

root ganglia (DRG), gut, heart, and branchial arches. These NCSCs can

self-renew and differentiate in vitro and in vivo into distinct NC

derivatives,30 such as neurons, glia, myofibroblasts, osteocytes, and

SMCs. Recently, a new method to culture premigratory NCSCs as

“crestospheres” was developed, which enabled the maintenance of

these cells in vitro for an extended period of time without the loss of

their stem-cell characteristics.31,32 Early studies using postmigratory

NCSCs isolated from distinct regions within the embryo revealed that

spatially distinct NCSCs displayed cell intrinsic differences that regu-

lated their developmental potential in vivo,33,34 suggesting that for tis-

sue regeneration strategies, postmigratory NCSCs should be isolated

from locations that match where these cells will be utilized

therapeutically.

The boundary cap located at the dorsal root entry zone has also

served as a source of embryonic NCSCs,35 which have shown poten-

tial as a therapy for pancreatic and neurodegenerative disorders.

Boundary cap NCSCs (bNCSCs) cotransplanted with mouse or human

pancreatic islets were found to enhance beta cell proliferation and

improve islet graft reinnervation and revascularization in diabetic

mice, possibly restoring neural-islet interactions that consequently

improved islet engraftment and function after transplantation.36-38

Furthermore, in an in vitro coculture system, bNCSCs partially

prevented the cell death of human insulin producing cells in response

to pro-inflammatory cytokines, suggesting a potential mechanism by

which bNCSCs offer a protective effect that improves islet transplan-

tation and thus, in combination with pancreatic islets, may serve as

attractive cell source to treat patients with type 1 diabetes.39 Addi-

tionally, bNCSCs have demonstrated beneficial effects on nerve

regeneration. Transplantation of bNCSCs to the site of a dorsal root

avulsion injury resulted in cell migration and neuronal differentiation

in the host spinal cord as well as differentiation into glia that associ-

ated with regenerating sensory axons in the peripheral nervous

Significance statement

Neural crest stem cells (NCSCs) are a transient population of

cells that arise during early vertebrate development and har-

bor stem cell-like properties. The multipotency of NCSCs

enables the generation of a diverse population of cells,

thereby making NCSCs a valuable cell source for tissue

regeneration, disease modeling, and drug discovery.

Although NCSC isolation was initially limited to embryonic

tissues, neural crest-like stem cells can be derived from plu-

ripotent stem cells, placental tissues, adult tissues, and

somatic cell reprogramming, providing viable cell sources for

tissue engineering and regenerative medicine.
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system.40,41 These bNCSCs not only improved the survival of motor

neuron precursors following transplantation into the spinal cord of

adult mice,42 but also prevented the loss of spinal cord neurons and

glial activation in acutely injured spinal cord slice cultures through the

secretion of brain-derived neurotrophic factor (BDNF),43 suggesting

these cells exhibit neuroprotective, anti-apoptotic, glia-inhibitory, and

neurotrophic effects that may aid in neuroregenerative therapies.

Extraembryonic placental tissues, including early or later gestation

chorionic villus tissues, are a unique cell source, yielding robust pla-

cental mesenchymal stem/stromal cells (PMSCs) well-suited for autol-

ogous or allogeneic cell therapy and tissue engineering. Interestingly,

PMSCs express NCSC transcription factor markers including Sox9,

Sox10, Sox17, Slug, Snail, and Twist,44,45 suggesting PMSCs may be

NC-derived and a type of NCLSC. The uniformity of expression of

these transcription factors in PMSC cultures may reflect the develop-

mental origins of these cells and could serve as predictors of some

related functional properties. PMSCs were found to also express stem

cell-related intracellular structural proteins Nestin, neurofilament

medium, and S100β that are often associated with neural lineage phe-

notypes. Methods have been established to expand PMSCs from vari-

ous placental tissues.44-48 The in vitro characteristics of PMSCs are

also analogous to those of MSCs isolated from various source tis-

sues49 in terms of surface marker expression and multipotency.44-48

It has been shown that PMSCs display notable immunomodula-

tory capabilities,50,51 exhibit wound healing capacity,52 demonstrate

neuroprotective effects,45,53-56 and may exhibit greater

immunomodulatory properties and ex vivo expansion potential com-

pared with adult BM-MSCs.46,51 As quantified by ELISAs, PMSCs

secreted significantly higher amounts of BDNF and hepatocyte

growth factor (HGF) than adult BM-MSCs. Both BDNF and HGF are

growth-promoting and chemoattractant for young embryonic cranial

motor axons.57 BDNF is a powerful neurotrophin for neuronal regen-

eration after injury.58 HGF is also a potent immunoregulatory59 and

angiogenic factor that has been shown to activate endothelial cell

migration and proliferation and may contribute to wound healing

in vivo by promoting rapid vascularization.60 Preclinical studies have

shown that PMSCs secrete significant amounts of neuroprotective

growth factors and cytokines in vitro,44,45,56 and can protect neurons

from damage in vivo,45,61-63 suggesting that PMSCs are a potent ther-

apy for developmental or perinatal neurological diseases. Specifically,

PMSCs have been used to treat a neurodevelopmental disease,

myelomeningocele (MMC), commonly known as spina bifida, which is

caused by incomplete neural tube closure during development of the

spinal cord. Our preliminary animal research in the rodent model64 as

well as in the well-established fetal sheep model45,61-63 of MMC has

shown that in utero treatment with human PMSCs can functionally

cure the paralysis associated with MMC in a dramatic and consistent

manner. Treatment of MMC with PMSCs in conjunction with an

extracellular matrix (ECM) scaffold as a delivery vehicle (PMSC-ECM)

drastically and significantly improved the locomotor function com-

pared with control animals treated with delivery vehicle alone, and

histological analysis demonstrated that PMSC-ECM consistently and

F IGURE 1 Sources and potential applications of neural crest stem cells (NCSCs) and neural crest-like stem cells (NCLSCs). NCSCs and
NCLSCs can be isolated from embryonic, fetal, placental, and adult tissues. NCLSCs can also be derived in vitro from pluripotent stem cells and

mature cells through differentiation and reprogramming strategies, respectively. NCSCs and NCLSCs can be differentiated to yield distinct cell
derivatives that are highly valuable for tissue engineering applications and disease modeling
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significantly increased neuron survival in the diseased spinal cord.45

No adverse effects were observed in any of the lambs treated with

human PMSC-ECM. Currently, clinical grade PMSCs produced under

current good manufacturing practice65 are being evaluated in pivotal

safety studies and IND-enabling studies and moving toward a clinical

trial for the treatment of MMC in human patients.

Enteric neural crest cell (ENCC) is another type of NCLSC that

has been utilized for the treatment of enteric neuropathies. ENCCs

have been isolated from embryonic and postnatal murine intes-

tine66,67 and more recently, from fetal and postnatal human gut.68-71

In murine studies, ENCCs were capable of colonizing the gut upon

migrating and differentiating into enteric neurons and glia. Further-

more, these cells formed neural networks and were able to function-

ally integrate within the host bowel in vivo without any long-term

safety issues.72,73 A recent study investigated the functional viability

of ENCCs derived from fetal human gut following in vivo transplanta-

tion into postnatal murine colon.71 It was demonstrated that these

cells displayed engraftment, differentiated into neurons and glia of the

enteric nervous system (ENS), and moreover, established functional

connectivity with the endogenous ENS. The successful engraftment

of transplanted ENCCs provides support for the development and use

of ENCC as a cell replacement therapy in enteric neuropathies. Apart

from ENCCs, NCLSCs from postnatal DRG were also shown to sur-

vive, colonize the appropriate gut layers, and generate functional

enteric neurons that could integrate with the endogenous ENS follow-

ing transplantation into the distal colon of postnatal mice,74

suggesting that NCLSCs from postnatal tissues besides the gut can

undergo ENS differentiation and, therefore, may be another potential

candidate for the replacement of ENS cells.

1.2 | Adult tissue-derived NCLSCs for tissue
regeneration

As NCSCs proceed through embryonic development, their develop-

mental potential becomes limited and there is a loss of multipotency,

although we cannot completely exclude the possibility of NCSC rem-

nants in postnatal tissue. To date, NCLSCs have been discovered in

multiple adult tissues, including DRG,75 skin,76,77 gut,66 heart,78,79

carotid body,80 nasal passageways81 and cavity,82 adipose tissue,83-85

bone marrow (BM),86,87 iris,88 cornea,89 oral mucosa,90 palate,91,92

dental pulp,93 and periodontal ligament.94,95 Adult tissue-derived

NCLSCs express NCSC markers such as p75NTR, Sox10, Sox9, and

Snail1/2, and exhibit self-renewal and multilineage differentiation into

various cell types,30,96,97 including neurons, glia, cardiomyocytes, adi-

pocytes, smooth muscle, and chondrocytes, although self-renewal

capacity appears to decline with age and these cells demonstrate

reduced differentiation potential compared with fetal NCSCs.66

Despite this, NCLSCs from adult tissues possess stem cell-like quali-

ties, which make them great potential candidates for tissue regenera-

tion.97 Most of the studies carried out, thus far, using adult tissue-

derived NCLSCs have primarily focused on blood vessel, nerve, and

bone regeneration.

Vascular stem cells (VSCs) play an important role in vascular remo-

deling and regeneration.98 NCLSCs, as a type of VSCs, were found in

the media and adventitia layers.99 These Sox10+ NCLSCs not only dif-

ferentiated into SMCs in the neointima, but also contributed to

chondrogenic and osteogenic cell types in the atherosclerotic lesion,

providing a novel perspective on the development of vascular diseases.

NCLSCs were also identified in the perivascular cells around

microvessels throughout the body.100,101 Whether NCSLCs isolated

from a variety of vascularized tissues are actually vascular NCLSCs

remains to be investigated. When Sox10+ NCLSCs were injected into

ischemic limb, these cells formed perivascular cells and promoted

angiogenesis.100

Peripheral nerve injuries (PNIs) are some of the most common

types of traumatic lesions affecting the nervous system, which can

result in reduced quality of life in affected patients and be a huge social

burden.102 PNI continues to be a major challenge in reconstructive neu-

rosurgery. Owing to huge clinical demand, peripheral nerve regenera-

tion, particularly larger gap injuries, has become a prime focus of basic

and clinical research. Accelerating axonal regeneration to promote rein-

nervation and improve functional recovery after PNI is a clinical neces-

sity and an experimental challenge. Numerous studies have

demonstrated the potential utilization of adult tissue-derived NCLSCs

for peripheral nerve regeneration.102-106 Vascular NCLSCs transplanted

into nerve conduits enhanced sciatic nerve regeneration.107 These cells

differentiated into perineural cells around the bundles of regenerated

myelinated axons, but did not differentiate into Schwann cells. In a

recent study, Zhang et al examined the effects of cell cotransplantation

on PNI using epidermal NCSC (EPI-NCSC) and olfactory ensheathing

cells (OEC) in a rat sciatic nerve defect model.105 Their findings indi-

cated that EPI-NCSC and OEC cotransplantation promoted sciatic

nerve regeneration and improved nerve function. Moreover, the mech-

anism of PNI improvement by EPI-NCSC and OEC cotransplantation

was likely due to an upregulation in the expression of BDNF and nerve

growth factor (NGF). Similar findings were observed in the application

of BM-derived NC precursors (BM-NCPs) for the repair of sciatic nerve

defects in adult rats. These BM-NCPs were capable of repairing nerve

defects by promoting axonal regrowth and myelination and preventing

muscle atrophy, thereby restoring motor and sensory neuron function,

possibly through the secretion of various trophic factors that were dis-

tinct from those of BM-MSCs.106 In addition to trophic support, it has

been suggested that NCLSCs may promote tissue repair through the

modulation of the immune system,104,108 suggesting these cells may

alter pro- and anti-inflammatory factors that could therefore improve

tissue regeneration. The potential mechanisms by which transplanted

NCLSCs regulate peripheral nerve repair require further elucidation.

Additionally, the application of adult tissue-derived NCLSCs

transplanted alone or with other support cells in preclinical large animal

studies will provide further insights into clinical outcomes and the

potential of this new therapy for PNI.

Spinal cord injury (SCI) has many distinct factorial aspects includ-

ing primary mechanical damage, reactive gliosis, secondary cell apo-

ptosis, and the inability of axons to regenerate.109,110 Axon

regeneration does not occur due to the nonresponsive environment
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of the injured spinal cord. Emerging evidence suggests that NCLSCs

derived from various adult tissues may serve a promising strategy for

SCI.111-113 Recently, human dental pulp (hDP)-NCSCs were used to

evaluate the effect of hDP-NCSC delivery on the lesion site and func-

tional recovery after SCI.111 The data provided a theoretical and

experimental basis for hDP-NCSC transplantation for the treatment

of SCI as it was shown that these cells could significant improve

motor recovery following spinal cord trauma. Compared with other

stem cells, hDP-NCSCs offer several advantages such as good primi-

tiveness, strong amplification ability, simple acquisition, and weak

in vivo rejection, without any damage to the donor. Therefore, hDP-

NCSCs can provide a new cell source and therapy for SCI.111 Apart

from hDP-NCSCs, transplanted EPI-NCSCs were shown to not only

provide neurotrophic support in an ex vivo SCI contusion model,112

but also improve motor function after SCI in rats, in particular demon-

strating beneficial synergistic effects when delivered in combination

with the potent antioxidant Astaxanthin.113 These findings suggest

that further research into combinatorial strategies with EPI-NCSCs

and pharmaceutical agents may prove to be valuable for the treatment

of SCI. Indeed, valproic acid has been proposed as a potential candi-

date as it can enhance the expression level of various trophic factors,

such as BDNF and glial cell line-derived neurotrophic factor (GDNF),

and promote SCI recovery.112,114 The purpose of neuroregenerative

medicine is to replace, regenerate, or arrest the loss of cells and tis-

sues due to neurodegenerative and neurological disorders. Fortino

et al successfully induced periodontal ligament stem cells (PDLSCs)

derived from the NC into neural-like cells using a combination of basic

FGF and epidermal growth factor.115 The ease of sourcing and expan-

sion, their embryologic NC origin, and the lack of ethical implications

in their use make PDLSCs an attractive cell source for neu-

roregenerative medicine.

Previous studies have shown that adult tissue-derived NCLSCs are

multipotent and, thus, can differentiate into various NC derivatives,

including bone cells. For instance, Ono et al used double transgenic

(P0-Cre/CAG-CAT-EGFP) mice to investigate the precise distribution

and properties of neural crest-derived stem cells (NCDCs) in adult oral

tissues. They found that these NCDCs widely reside throughout differ-

ent adult oral tissues, such as the buccal mucosa, gingiva, tongue, and

palate.116 In addition, NCDCs were found to proliferate and differenti-

ate into osteoblastic cells in vitro. In another study, Wnt pathway acti-

vator lithium chloride (LiCl) was used to investigate whether it could

promote odontoblast differentiation of hair follicle neural crest cells

(hfNCCs). The results showed that LiCl activated canonical Wnt signal-

ing and promoted the proliferation and odontogenic differentiation of

hfNCCs, suggesting that hfNCCs may be a good candidate for tooth

regeneration.117 As adult tissue-derived NCLSCs can undergo osteo-

genic differentiation in vitro, they are a promising cell source for bone

regeneration.118,119 NCLSCs isolated from excised human oral mucosa

could generate spheres that were multipotent and capable of self-

renewal in vitro.118 Subcutaneous implantation of composites of

osteogenic-induced NCLSCs and multiporous polylactic scaffolds into

immunocompromised mice for 10 weeks revealed these cells were

capable of generating ectopic bone tissue in vivo. Similarly, human

palate-derived NCLSCs incorporated into an allogen bone substitute

were found to contribute to the formation of new bone tissue during

peri-implant bone repair and induced extended peri-implant bone

remodeling with good biocompability,119 indicating these stem

cell-supported allogen bone scaffolds may be beneficial for bone regen-

eration, although the long-term effects of these implants has yet to be

fully evaluated. A recent study demonstrated that adult manidular skel-

etal stem cells activated an embryonic NC cell-like gene regulatory pro-

gram that is dependent on the focal adhesion kinase pathway during

distraction osteogenesis,120 enabling these cells to acquire a more plas-

tic, developmental state that aids in jaw bone regeneration. In addition,

alveolar bone-derived MSCs121 display high osteogenic potential and

promote ectopic bone formation in vivo,122–125 providing a more

accessible MSC source compared with the iliac crest.

Dental pulp stem cells (DPSCs) are also a source of NCLSCs that

have multilineage differentiation potential, immunomodulatory prop-

erties, and high regenerative capability.126,127 As a result, DPSCS can

be utilized to treat a broad spectrum of disorders,126,127 including

PNI,128,129 retinal injury, diabetes, cerebral ischemia, myocardial

infarction, muscular dystrophy, and neurological diseases.128,130,131

Indeed, in several case studies and preliminary clinical trials, the trans-

plantation of DPSCs has proven to be a safe and effective therapeutic

strategy,127 indicating that DPSCs are a promising cell source for tis-

sue regeneration and the treatment of various diseases.

1.3 | PSC-derived NCLSCs for tissue regeneration

PSCs, including embryonic stem cells (ESCs) and iPSCs, offer the

advantage that they can proliferate extensively and give rise to cells

from all three germ layers, thus making them powerful and instrumen-

tal for regenerative cell therapy, disease modeling, and drug discov-

ery.132-135 Utilizing existing knowledge of NCSC specification during

development, researchers have created protocols to generate NCLSCs

from mouse and human PSCs in vitro.30 Although initial protocols

relied on deriving NCLSCs through a neural progenitor cell population

or coculture with stromal cells, direct and specific NCSC induction

protocols have been developed that are based on using small mole-

cule activators of Wnt signaling and inhibitors of BMP and Activin/

Nodal signaling.136-138 This direct induction approach was further

modified and refined into a completely defined system utilizing inhibi-

tion of transforming growth factor beta and glycogen synthase kinase

3 to generate NCLSCs, thereby improving the potential translation of

these cells for clinical application.139 Moreover, inclusion of additional

factors, such as BMP-4, RA, and FGF-2, and modulation of Wnt sig-

nal140 has enabled researchers to induce NCLSCs with distinct

regional identity (eg, cranial,141 trunk,142 and vagal138,143,144 NCLSCs),

and as a result provides an approach to not only study regional iden-

tity in vitro, but also the possibility to generate NC derivatives that

may closely resemble the in vivo counterparts and be utilized for tis-

sue regeneration. As these NCLSCs can be differentiated in vitro into

various cell types,30 including peripheral neurons, glial cells, cho-

ndrocytes, osteocytes, myofibroblasts, melanocytes, SMCs, and
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adipocytes, this had led researchers to investigate the in vivo regener-

ative potential of NCLSCs derived from mouse and human PSCs.

As NCSCs give rise to peripheral nervous tissue in humans, it

comes as no surprise that human ESC/iPSC-derived NCLSCs can be

differentiated into peripheral neurons and Schwann cells30 and as

such, have shown great promise for the treatment of PNI. Results

from several studies where these derived NCLSCs were suspended in

different types of hydrogels and transplanted in conjunction with bio-

materials, such as nanofibrous tubular scaffolds and polymeric tubular

conduits, to generate tissue-engineered nerve conduits for peripheral

nerve repair have been encouraging.145-148 In rat and mice sciatic

nerve injury models, grafted NCLSCs were not only able to survive,

but also promoted axonal regrowth and myelination,145-147 enhanced

angiogenesis,147 and secreted neurotrophic factors146,148 (eg, BDNF

and NGF), thereby providing trophic support to stimulate peripheral

nerve regeneration. More importantly, NCLSCs accelerated functional

recovery as assessed through electrophysiological and behavioral

analysis.146,147 Interestingly, the application of physical stimulation,

such as low-intensity pulsed ultrasound149,150 and electrical

stimulation,151 after NCLSC transplantation, can also further improve

nerve regeneration and functional recovery following PNI. Apart from

PNI, these PSC-derived NCLSCs can also be utilized to treat spinal

cord damage in patients with spina bifida.152 Findings from these

studies suggest that PSC-derived NCLSCs are a potent therapy for

neural regeneration and repair.

Cumulative evidence has also shown that ENCCs and enteric-like

neurons can be generated from ESC/iPSC-derived NCLSCs and, thus,

potentially serve as a therapeutic cell source for ENS disorders and

regeneration.143,144,153-155 Grafted ENCC precursors were able to

repopulate the adult mouse colon and capable of targeted migration

into the gut region.143 In addition, these ENCCs rescued disease-

related mortality in an Ednrbs-1/s-1 Hirschsprung (HSCR) mice

model,143 demonstrating these cells were functional in vivo. More-

over, iPSC-derived NCLSCs transplanted into the hindgut of severe

combined immunodeficiency (SCID) mice were not only capable of

migrating towards myenteric and submucosal regions, but also differ-

entiated into glial cells and mature enteric neurons in vivo.155 Similar

findings were observed in human intestinal organoids after the inclu-

sion of human PSC-derived NCLSCs,144,154 enabling the development

of human tissue-engineered intestines that are potentially useful for

the treatment of enteric neuropathies and the study of human gastro-

intestinal tract mobility disorders.

PSC-derived NCLSCs have also been differentiated into various

cell types, including MSCs, osteocytes, and chondrocytes, that are

beneficial for bone, cartilage, and tendon regeneration.30,156-160 Xu

et al examined whether iPSC-derived NCLSCs could repair a rat patel-

lar tendon window defect. Transplantation of these NCLSCs in a fibrin

gel promoted the host endogenous repair process, resulting in a signif-

icant improvement in tendon healing and repair.156 Moreover, MSC-

like cells generated from iPSC-derived NCLSCs have been utilized to

repair rat femoral osteochondral defects and regenerate mouse cra-

niofacial bone in vivo, respectively. In comparison to human BM-

MSCs, tissue engineered constructs of MSCs from iPSC-derived

NCLSCs did not undergo chondrogenesis in vivo nor did they effec-

tively repair osteochondral defects.158 On the other hand, mouse

iPSC-NCLSC-MSCs transplanted into calvarial defects differentiated

into osteoblasts, produced no tumors, and contributed to bone regen-

eration.159 These studies highlight how these derived cells may

behave differently in vivo. However, a direct comparison cannot be

made as the cells used in these studies were from different species

and distinct defect models were implemented. Further investigation

of craniofacial bone repair using MSCs from human iPSC-derived

NCLSCs would reveal whether these cells could be a potential cell

source for clinical application.

Melanocytes, which produce melanin and play a critical role in

skin homeostasis and protection, have also been derived from ESCs

and iPSCs after proceeding through a NC stage.138,161-163 Notably,

human ESC-derived melanocytes were able to localize to the appro-

priate layer after being introduced into a human skin xenograft model.

Engraftment of these skin reconstructs into SCID mice revealed that

these cells survived and were functional for over 4 weeks.161 Further-

more, these melanocytes were capable of producing melanin and

functionally integrated into a reconstituted pluristratified epidermis

in vitro.162 Altogether, this in vitro system provides an opportunity to

study melanocyte developmental biology and may serve as a potential

cellular therapy for hypopigmentation disorders.

Corneal scarring or blindness resulting from damage to the corneal

stroma or corneal endothelial (CE) dysfunction is currently being

treated with surgical corneal transplantation.164 However, limitations,

such as graft failure and shortage of donor cornea, still exist, prompting

researchers to search for more suitable alternatives, such as an

NCLSC-based cell therapy. Using a two-step induction process, several

studies have derived corneal endothelial cells (CECs)165-167 and corneal

keratocytes168,169 from ESCs and iPSCs after first generating an

NCLSC population. Transcriptomic analysis of CEC-like cells from

human ESC-derived NCLSCs using RNA sequencing has revealed that

the transcriptome of these cells closely resembles that of adult

CECs.167 Yet, whether these cells would integrate and aid in tissue

regeneration in vivo remains unknown. Preliminary studies using CECs

generated from human ESCs that proceeded through a periocular mes-

enchymal phase, rather than an NCSC stage, have shown promising

results in improving CE dysfunction in rabbit models,170 suggesting the

possibility that keratocytes and CECs generated from ESC/iPSC-

derived NCLSCs may yield similar beneficial effects. Although further

investigation into the functionality of these cells in vivo is still required,

these NCLSC-derived corneal cells may serve a promising alternative

for corneal repair.

Mouse iPSC-derived NCLSCs can also undergo differentiation

into odontoblast-like cells upon cotransfection of Pax9 and BMP4

expression plasmids.171 Interestingly, transplantation of control and

transfected NCLSCs did not give rise to teratomas after they were

subcutaneously injected into mice, suggesting these cells were not

tumorigenic and, thus, a safe cell source for tooth regeneration.

Another study also showed that mouse iPSC-derived NCLSCs could

differentiate into odontogenic mesenchymal cells.172 Culturing these

NCLSCs with conditioned medium from mouse dental epithelium
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further promoted their differentiation into odontoblasts. However,

whether PSC-derived NCLSCs can be differentiated into other dental

cell types (eg, dental pulp and dental follicle cells) and aid in dental tis-

sue regeneration has yet to be determined.

In addition to tissue regeneration, numerous studies have dem-

onstrated the potential of using iPSCs from patients affected by

neurocristopathies for modeling human disease in vitro. Various

diseases have been studied, thus far, including CHARGE

syndrome,173,174 Ewing sarcomas,175 familial dysautonomia,176,177

pigmentation disorders (eg, Hermansky-Pudlak and Chediak-Higashi

syndromes),138 HSCR disease,143,178 Bardet-Biedl syndrome,179

Treacher Collins syndrome,180 and cardiovascular malformations,

such as bicuspid aortic valves.181 Findings from these studies have

not only provided demonstration of disease-related phenotypes, but

also evidence on the origin of certain neurocristopathies, which

appear to arise from defects in NCSCs, rather than MSCs.174,175,181

Additionally, this technology has served as a platform to identify

potential drug candidates that are capable of restoring impaired func-

tion and possibly serve as therapeutic agents.143,176,182

Apart from deriving NCLSCs from PSCs through directed differen-

tiation, it has also been shown the NCLSCs can be generated using

direct reprogramming, a process that bypasses the iPSC stage during

the conversion of somatic cells into distantly related cell types.183,184 In

contrast to directed differentiation, which can take up to several

weeks,137 reprogramming can yield NCLSCs in 10 to 14 days.177,185

Therefore, this approach provides a rapid method of obtaining NCLSCs

that can be potentially administered clinically. To date, NCLSCs have

been derived from human and mouse fibroblasts,177,186-188

keratinocytes,189,190 and melanocytes191 via the introduction of tran-

scription factors, such as SOX10 and FOXD3, specific growth factors, or

forced expression of Notch1 signaling, respectively. It has been

reported that the derived NCLSCs are functional in vivo when they

were investigated for neural repair in a zebrafish model186 and migra-

tion capability in a chick embryo model system177,191; however, more

detailed and comprehensive analysis of in vivo functional outcomes is

still necessary. Furthermore, this reprogramming approach has been

applied to generate NCLSCs from fibroblasts isolated from patients

with familial autonomic dystrophy, enabling the production of patient-

specific cells, which holds great promise for personalized medicine and

disease modeling.177 Further elucidation on whether reprogrammed-

derived NCLSCs can be used for the various aforementioned tissue

regeneration applications will greatly expand their therapeutic utility

and clinical applicability.

2 | CONCLUSIONS AND FUTURE
DIRECTIONS

Current progress in the derivation and therapeutic application of

NCLSCs suggests that these cells have great potential for regenerative

cell therapy, disease modeling, and drug discovery. NCLSCs isolated

from various fetal and adult tissues have demonstrated beneficial

effects in several tissue engineering paradigms. However, acquisition

and isolation of cells from fetal tissue are still somewhat controversial

and adult NCLSCs may display limited multipotentiality.30 As such,

PSCs may serve as a promising alternative for the derivation of

NCLSCs. Although ESC-based cell therapies are currently undergoing

clinical trials,134,135 the discovery of iPSCs has generated new excite-

ment in the field of personalized regenerative medicine as these cells

lack the ethical controversy associated with ESCs and are easier to

obtain from the primary source of tissue. The source of iPSCs is an

important factor to consider when generating NCLSCs as it has been

shown that NCLSCs derived from iPSCs generated from NC tissue,

such as periodontal ligament, are more equivalent to their in vivo

counterparts compared with fibroblast-derived iPSC-NCLSCs,192

suggesting these cells may have improved therapeutic efficacy. None-

theless, several challenges still exist and need to be overcome before

there is effective clinical translation of iPSC-based cell therapies.193

Although NCLSC therapy shows great promise for tissue regenera-

tion, the safety and potential risks associated with these cells, such as

tumorigenicity, need to be overcome before these cells can serve as a

viable therapeutic option. In several studies where the therapeutic

effects of human PSC-derived NCLSCs were investigated in animal

models, no tumors were present, even up to 1 year after transplanta-

tion.145,158,171 However, transplantation of a specific subset of NCLSCs

derived from PSCs resulted in tumors and unwanted grafts.194 Thus,

the differentiation stage of the transplanted cells is an important factor

to be considered. In addition to the formation of teratomas or tumors

of NC origin, including neuroblastoma and melanomas, the immuno-

genic response of transplanted NCLSCs is an important parameter that

should also be considered and closely monitored. A recent study has

shown that iPSC-derived NCLSCs exhibit a nonimmunogenic pheno-

type, rather than an immunosuppressive one, as demonstrated by low

levels of immune-related antigens in a noninflammatory environment

and no induction of T-cell proliferation or pro-inflammatory cytokine

production.195 In contrast, another study proposed that PSC-derived

NCLSCs exhibited immunosuppressive properties.196 More work on the

immunogenic properties of these cells will aid to provide more clarity

on the issue. Overall, careful consideration of these concerns will

ensure these cells are clinically safe and effective upon transplantation.

To facilitate the therapeutic applications of NCLSCs in the clinical

setting, current NCLSC isolation, expansion, and differentiation proto-

cols may require further optimization to consider good manufacturing

practices.197 Furthermore, during the development of favorable scale-

up procedures to achieve large numbers for cell transplantation, cer-

tain aspects, such as passage number, should be taken into account as

increased cell passaging can potentially diminish the therapeutic

effects of these cells198 and result in chromosomal defects that may

lead to tumorigenesis.199 In stem cell-based therapies, often times

materials are used in combination with stem cells.200,201 These mate-

rials can provide a scaffold that not only promotes cell survivability

and the regeneration process, but also greatly influences cell fate and

function in vivo. Future developments of next-generation biomaterials

that are biocompatible and able to further improve NCSC expansion

and differentiation in vitro and in vivo will be highly desirable for

regenerative therapies.
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Although NCSC and NCLSC appear to share common characteristics,

such as multipotency, NC marker expression (eg, Sox10, p75NTR, AP-2,

and Nestin) and pluripotent gene expression, and a molecular signature

representative of EPI-NCSC and embryonic NCSC has been defined,202

there also are some apparent differences. For instance, long SAGE-

transcriptome profiling revealed that human NCSCs exhibited a unique

NC molecular signature, expressed pluripotent genes (Nanog, POU5F1.

and Sox2), and were found to have global molecular profile similar to

ESCs.203 On the other hand, mouse epidermal NCLSCs only partially

share the gene expression pattern of PSCs in that they express Myc, Klf4,

and Sox2 but significantly lower levels of Nanog and Oct-4 when com-

pared with mouse ESCs,204 an attribute that can potentially reduce their

tumorigenicity potential. A recent study performed transcriptome profil-

ing at different time points during the induction of cranial neural crest

cells (cNCCs) from mouse iPSCs and found that cNCCs exhibited gene

expression profiles that were only partially similar to those previously

reported.205 Interestingly, they observed that these cNCCs did not

express certain NC specifier genes (eg, FoxD3, Gbx2,Msx1, Dlx3, Zic2, and

Zic3) during the derivation process and other markers, such as Sox10,

were only expressed at day 14, indicating that cNCCs take longer to

acquire a migratory phenotype in vitro in comparison to mouse embryos

in vivo.205 These findings suggest that the molecular network that gov-

erns gene expression during iPSC-derived cNCC induction may poten-

tially differ to the in vivo NCSC gene regulatory network. Moreover,

although there is substantial overlap among human, mouse, and avian

NCSC transcriptomes, there exists a specific subset of genes that are only

expressed by human cells,203 highlighting the importance of human

NCLSCs derivation and their translational potential for regenerative medi-

cine. Further genome and epigenome profiling of NCSCs and NCLSCs

from various sources will reveal new molecular insights into the unique

attributes of each cell type and the similarities they share.

Advancements in high-throughput omics technologies and drug

screening platforms will provide new mechanistic insights into the sig-

naling pathways and gene expression profiles of NCLSCs during

development206-208 and tissue repair, and furthermore, facilitate the

development of therapeutics that can be used to treat patients with

neurocristopathies. Moreover, iPSC technology in conjunction with

gene-editing platforms, such as CRISPR-Cas9,209-211 will aid to

broaden our understanding of disease pathogenesis and provide an

approach to correct genetic mutations in patient-derived NCLSCs,

thereby enabling the therapeutic utilization of these cells upon restor-

ing normal cell function. Additionally, the systemic delivery of gene

editing components provides an opportunity to modulate disease-

causing alleles in vivo without the need for cell isolation.210,211 Taken

together, NCLSCs, which can be isolated and derived from multiple

sources, are a promising cell source for regenerative medicine.
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