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Abstract

M-estimation, or estimating equation, methods are widely applicable for point estimation and 

asymptotic inference. In this paper, we present an R package that can find roots and compute the 

empirical sandwich variance estimator for any set of user-specified, unbiased estimating equations. 

Examples from the M-estimation primer by Stefanski and Boos (2002) demonstrate use of the 

software. The package also includes a framework for finite sample, heteroscedastic, and 

autocorrelation variance corrections, and a website with an extensive collection of tutorials.

Keywords

empirical sandwich variance estimator; estimating equations; M-estimation; robust statistics; R

1. Introduction

M-estimation methods are general class of statistical procedures for carrying out point 

estimation and asymptotic inference (Boos and Stefanski 2013). Also known as estimating 

equation or estimating function methods, M-estimation was originally developed in studying 

the large sample properties of robust statistics (Huber and Ronchetti 2009). The general 

result from M-estimation theory states that if an estimator can be expressed as the solution to 

an unbiased estimating equation, then under suitable regularity conditions the estimator is 

asymptotically Normal and its asymptotic variance can be consistently estimated using the 

empirical sandwich estimator. Many estimators can be expressed as solutions to unbiased 

estimating equations; thus M-estimation has extensive applicability. The primer by Stefanski 

and Boos (2002) demonstrates a variety of statistics which can be expressed as M-

estimators, including the popular method of generalized estimating equations (GEE) for 

longitudinal data analysis (Liang and Zeger 1986).

Despite the broad applicability of M-estimation, existing statistical software packages 

implement M-estimators specific to particular forms of estimating equations such as GEE. 

This paper introduces the package geex for R (R Core Team 2016), which can obtain point 

and variance estimates from any set of unbiased estimating equations. The analyst translates 

the mathematical expression of an estimating function into an R function that takes unit-
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level data and returns a function in terms of parameters. The package geex then uses 

numerical routines to compute parameter estimates and the empirical sandwich variance 

estimator.

This paper is outlined as follows. Section 2 reviews M-estimation theory and outlines how 

geex translates mathematical expressions of estimating functions into R syntax. Section 3 

shows several examples with increasing complexity: three examples from Stefanski and 

Boos (2002) (hereafter SB), GEE, and a doubly robust causal estimator (Lunceford and 

Davidian 2004). All of the SB examples and several more are available at the package 

website (https://bsaul. github.io/geex/). Section 4 compares geex to existing R packages. 

Section5demonstrates the variance modification feature of geex with examples of finite 

sample corrections and autocorrelation consistent variance estimators for correlated data. 

Section6concludes with a brief discussion of the software’s didactic utility and pragmatic 

applications.

2. From M-estimation math to code

In the basic set-up, M-estimation applies to estimators of the p×1 parameter θ = (θ1, θ2,…, 
θp)T

which can be obtained as solutions to an equation of the form

i = 1

m
ψ Oi, θ = 0, (1)

where O1,…, Om are m independent and identically distributed (iid) random variables, and 

the function ψ returns a vector of length p and does not depend on i or m. See SB for the 

case where the Oi are independent but not necessarily identically distributed. The root of 

Equation 1 is referred to as an M-estimator and denoted by θ  M-estimators can be solved for 

analytically in some cases or computed numerically in general. Under certain regularity 

conditions, the asymptotic properties of θˆ can be derived from Taylor series 

approximations, the law of large numbers, and the central limit theorem (Boos and Stefanski 

2013, sec. 7.2). In brief, let θ0 be the true parameter value defined by ψ o, θ0 dF o = 0,

where F is the distribution function of O. Let ψ̇ Oi, θ = ∂ψ Oi, θ / ∂θT , A θo = E[‐ψ o1, θo ]

and B B θ0 = E[ψ O1, θ0 ψ̇ O1, θ0
T ] Then under suitable regularity assumptions, θˆ is 

consistent and asymptotically Normal, i.e.,

m θ − θ0
d N 0, v(θ0) as m ∞,

where V (θ0) = A(θ0)−1B(θ0){A(θ0)−1}T. The sandwich form of V (θ0) suggests several 

possible large sample variance estimators. For some problems, the analytic form of V (θ0) 

can be derived and estimators of θ0 and other unknowns simply plugged into V (θ0). 

Alternatively, V (θ0) can be consistently estimated by the empirical sandwich variance 

estimator, where the expectations in A(θ) and B(θ) are replaced with their empirical 
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counterparts. Let Ai = − ψ̇ Oi, θ |θ = θ , Am = m−1
i = 1
m

Ai, Bi = ψ Oi, θ ψ Oi, θ T, and 

Bm = m−1
i = 1
m Bi .

The empirical sandwich estimator of the variance of θ  is

Σ = A−1
mBm A−1

m T/m . 2

The geex package provides an application programming interface (API) for carrying out M- 

estimation. The analyst provides a function, called estFUN, corresponding to ψ (Oi, θ) that 

maps data Oi to a function of θ. Numerical derivatives approximate ψ̇ so that evaluating Σˆ is 

entirely a computational exercise. No analytic derivations are required from the analyst.

Consider estimating the population mean θ = E[Yi] using the sample mean θ = m−1
i = 1
m Y i

of m iid random variables Y1,…, Ym. The estimator θ  can be expressed as the solution to the 

following estimating equation:

i − 1

m
Yi − θ = 0.

which is equivalent to solving Equation 1 where Oi = Yi and ψ (Oi, θ) = Yi − θ. An estFUN 

is a translation of ψ into an R function whose first argument is data and returns a function 

whose first argument is theta. An estFUN corresponding to the estimating equation for the 

sample mean of Y is:

meanFUN <- function(data){ function(theta){ data$Y - theta } } .

The geex package exploits R as functional programming language: functions can return and 

modify other functions (Wickham 2014, ch. 10). If an estimator fits into the above 

framework, then the user need only specify estFUN. No other programming is required to 

obtain point and variance estimates. The remaining sections provide examples of translating 

ψ into an estFUN.

3. Calculus of M-estimation examples

The geex package can be installed from CRAN with install.packages(“geex”). The first three 

examples of M-estimation from SB are presented here for demonstration. For these 

examples, the data are Oi = {Y1i, Y2i} where Y1 ∼ N (5, 16) and Y2 ∼ N (2, 1) for m = 100 

and are included in the geexex dataset. Another example applies GEE, which is elaborated 

on in Section5to demonstrate finite sample corrections. Lastly, a doubly-robust causal 

estimator of a risk difference introduces how estimating functions from multiple models can 

be stacked using geex.

Saul and Hudgens Page 3

J Stat Softw. Author manuscript; available in PMC 2021 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1. Example 1: Sample moments

The first example estimates the population mean (θ1) and variance (θ2) of Y1. Figure 1 

shows the estimating equations and corresponding estFUN code. The solution to the 

estimating equations in Figure 1 are the sample mean θ1 = m−1
i = 1
m Y 1i and sample 

variance θ2 = m−1
i = 1
m

Y 1i − θ1
2 . The primary geex function is m_estimate, which 

requires two inputs: estFUN (the ψ func- tion), data (the data frame containing Oi for i = 1,
…, m).The package defaults to rootSolve::multiroot (Soetaert and Herman 2009; Soetaert 

2009) for estimating the roots of Equation 1, though the solver algorithm can be specified in 

the root_control argument. Starting values for rootSolve::multiroot are passed via the 

root_control argument; e.g.,

R> library(“geex”)

R> results <- m_estimate

R+ estFUN = SB1_estfun,

R+ data = geexex,

R+ root_control = setup_root_control(start = c(1, 1)))

The m_estimate function returns an object of the S4 class geex, which contains an estimates 

slot and vcov slot for θ  and Σ , respectively. These slots can be accessed by the functions 

coef (or roots) and vcov. The point estimates obtained for θ1 and θ2 are analogous to the 

base R functions mean and var (after multiplying by m − 1/m for the latter). SB gave a 

closed form for A(θ0) (an identity matrix) and B(θ0) (not shown here) and suggest plugging 

in sample moments to compute B( θ  ). The maximum absolute difference between either the 

point or variance estimates is 4e-11, thus demonstrating excellent agreement between the 

numerical results obtained from geex and the closed form solutions for this set of estimating 

equations and data.

3.2. Example 2: Ratio estimator

This example calculates a ratio estimator (Figure 2) and illustrates the delta method via M-

estimation. The estimating equations target the means of Y1 and Y2, labelled θ1 and θ2, as 

well as the estimand θ3 = θ1/θ2.

The solution to Equation 1 for this ψ function yields θ = Y 1/Y 2, , where Y j denotes the 

sample mean of Yj1,…, Yjm for j = 1, 2.

SB gave closed form expressions for A(θ0) and B(θ0), into which we plug in appropriate 

estimates for the matrix components and compare to the results from geex. The point 

estimates again show excellent agreement (maximum absolute difference 4.4e-16), while the 

covariance estimates differ by the third decimal (maximum absolute difference 2e-12).
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3.3. Example 3: Delta method continued

This example extends Example 1 to again illustrate the delta method. The estimating 

equations target not only the mean (θ1) and variance (θ2) of Y1, but also the standard 

deviation (θ3) and the log of the variance (θ4) of Y1.

SB again provided a closed form for A(θ0) and B(θ0), which we compare to the geex results. 

The maximum absolute difference between geex and the closed form estimates for both the 

parameters and the covariance is 3.8e-11.

3.4. Example 4: Generalized estimating equations

In their seminal paper,Liang and Zeger(1986) introduced generalized estimating equations 

(GEE) for the analysis of longitudinal or clustered data. Let m denote the number of 

independent clusters. For cluster i, let ni be the cluster size, Yi be the ni × 1 outcome vector, 

and Xi be the ni × p matrix of covariates. Let µ(Xi; θ) = E[Yi|Xi; θ] and assume µ(Xi; θ) = g
−1(Xiθ), where g is some user-specified link function. The generalized estimating equations 

are:

i = 1

m
ψ Oi, θ =

i = 1

m
DiTV i−1 Y i − μ Xi;θ = 0 3

where Oi = {Yi, Xi} and Di = ∂µ(Xi; θ)/∂θ. The covariance matrix is modeled by Vi = 

ϕW i0.5 R α W i0.5 where the matrix R(α) is the “working” correlation matrix. The example 

below uses an exchangeable correlation structure with off-diagonal elements α. The matrix 

Wi is a diagonal matrix with elements containing ∂2µ(Xi; θ)/∂θ2. Equation 3 can be 

translated into an estFUN as:

R> gee_estfun <function(data, formula, family){

R+ X <model.matrix(object = formula, data = data)

R+ Y <model.response(model.frame(formula = formula, data = data))

R+ n <nrow(X)

R+ function(theta, alpha, psi){

R+ mu <drop(family$linkinv(X %*% theta))

R+ Dt <crossprod(X, diag(mu, nrow = n))

R+ W <diag(family$variance(mu), nrow = n)

R+ R <matrix(alpha, nrow = n, ncol = n)

R+ diag(R) <1

R+ V <psi * (sqrt(W) %*% R %*% sqrt(W))

R+ Dt %*% solve(V, (Y mu))

R+ }

R+ }

This estFUN treats the correlation parameter α and scale parameter ϕ as fixed, though some 

estimation algorithms use an iterative procedure that alternates between estimating θ0 and 
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these parameters. By customizing the root finding function, such an algorithm can be 

implemented using geex [see vignette(“v03_root_solvers”) for more information].

We use this example to compare covariance estimates obtained from the gee function (Carey 

2015), and so do not estimate roots using geex. To compute only the sandwich variance 

estimator, set compute_roots = FALSE and pass estimates of θ0 via the roots argument. For 

this example, estimated roots of Equation 3, i.e., θ  , and estimates for α and ϕ are extracted 

from the object returned by gee. This example shows that an estFUN can accept additional 

arguments to be passed to either the outer (data) function or the inner (theta) function. 

Unlike previous examples, the independent units are clusters (types of wool), which is 

specified in m_estimate by the units argument. By default, m equals the number of rows in 

the data frame.

R> g <gee::gee(breaks~tension, id=wool, data=warpbreaks,

R+ corstr=“exchangeable”)

R> results <m_estimate(

R+ estFUN = gee_estfun,

R+ data = warpbreaks,

R+ units = “wool”,

R+ roots = coef(g),

R+ compute_roots = FALSE,

R+ outer_args = list(formula = breaks ~ tension,

R+ family = gaussian()),

R+ inner_args = list(alpha = g$working.correlation[1,2],

R+ psi = g$scale))

The maximum absolute difference between the estimated covariances computed by gee and 

geex is 2.7e-09.

3.5. Example 5: Doubly robust causal effect estimator

Estimators of causal effects often have the form:

∑
i = 1

m
ψ Oi, θ = ∑

i = 1

m ψ oi, v
ψ oi, β = 0, 4

where ν are parameters in nuisance model(s), such as a propensity score model, and β are 

the target causal parameters. Even when ν represent parameters in common statistical 

models, deriving a closed form for a sandwich variance estimator for β  based on Equation 4 

may involve tedious and error-prone derivative and matrix calculations (e.g., see the 

appendices of Lunceford and Davidian 2004, and Perez-Heydrich, Hudgens, Halloran, 

Clemens, Ali, and Emch (2014)). In this example, we show how an analyst can avoid these 

calculations and compute the empirical sandwich variance estimator using geex.
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Lunceford and Davidian (2004) review several estimators of causal effects from 

observational data. To demonstrate a more complicated estimator involving multiple 

nuisance models, we implement the doubly robust estimator:

ΔDR = ∑
i = 1

m ZiY i − Zi − e i m1 Xi, α1
e i

− 1 − Zi Y i − Zi − e i m0 Xi, α0
1 − e i

5

This estimator targets the average causal effect, ∆ = E[Y (1) − Y (0)], where Y (z) is the 

potential outcome for an observational unit had it been exposed to the level z of the binary 

exposure variable Z. The estimated propensity score, e i, is the estimated probability that unit 

i received z = 1 and mZ Xi, αZ  is an outcome regression model with baseline covariates Xi 

and estimated paramaters αZ for the subset of units with Z = z. This estimator has the 

property that if either the propensity score model or the outcome models are correctly 

specified, then the solution to Equation 5 will be a consistent and asymptotically Normal 

estimator of ∆.

This estimator and its estimating equations can be translated into an estFUN as:

R> dr_estFUN <function(data, models){

R+

R+ Z <data$Z

R+ Y <data$Y

R+

R+ Xe <grab_design_matrix(

R+ data = data,

R+ rhs_formula = grab_fixed_formula(models$e))

R+ Xm0 <grab_design_matrix(

R+ data = data,

R+ rhs_formula = grab_fixed_formula(models$m0))

R+ Xm1 <grab_design_matrix(

R+ data = data,

R+ rhs_formula = grab_fixed_formula(models$m1))

R+

R+ e_pos <1:ncol(Xe)

R+ m0_pos <(max(e_pos) + 1):(max(e_pos) + ncol(Xm0))

R+ m1_pos <(max(m0_pos) + 1):(max(m0_pos) + ncol(Xm1))

R+

R+ e_scores <grab_psiFUN(models$e, data)

R+ m0_scores <grab_psiFUN(models$m0, data)

R+ m1_scores <grab_psiFUN(models$m1, data)

R+

R+ function(theta){

R+ e <plogis(Xe %*% theta[e_pos])
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R+ m0 <Xm0 %*% theta[m0_pos]

R+ m1 <Xm1 %*% theta[m1_pos]

R+ rd_hat <(Z*Y (Z e) * m1) / e -

R+ ((1 Z) * Y (Z e) * m0) / (1 e)

R+ c(e_scores(theta[e_pos]),

R+ m0_scores(theta[m0_pos]) * (Z == 0),

R+ m1_scores(theta[m1_pos]) * (Z == 1),

R+ rd_hat theta[length(theta)])

R+ }

R+ }

This estFUN presumes that the user will pass a list containing fitted model objects for the 

three nuisance models: the propensity score model and one regression model for each 

treatment group. The functions grab_design_matrix and grab_fixed_formula are geex 
utilities for extracting relevant pieces of a model object. The function grab_psiFUN converts 

a fitted model object to an estimating function; for example, for a glm object, grab_psiFUN 

uses the data to create a function of theta corresponding to the generalized linear model 

score function. The m_estimate function can be wrapped in another function, wherein 

nuisance models are fit and passed to m_estimate.

R> estimate_dr <function(data, propensity_formula, outcome_formula){

R+ e_model <glm(propensity_formula, data = data, family = binomial)

R+ m0_model <glm(outcome_formula, subset = (Z == 0), data = data)

R+ m1_model <glm(outcome_formula, subset = (Z == 1), data = data)

R+ models <list(e = e_model, m0 = m0_model, m1 = m1_model)

R+ nparms <sum(unlist(lapply(models, function(x) length(coef(x))))) + 1

R+

R+ m_estimate(

R+ estFUN = dr_estFUN,

R+ data = data,

R+ root_control = setup_root_control(start = rep(0, nparms)),

R+ outer_args = list(models = models))

R+ }

The following code provides a function to replicate the simulation settings of Lunceford and 

Davidian (2004).

R> library(“mvtnorm”)

R> tau_0 <c(−1, −1, 1, 1)

R> tau_1 <tau_0 * −1

R> Sigma_X3 <matrix(

R+ c(1, 0.5, −0.5, −0.5,

R+ 0.5, 1, −0.5, −0.5,
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R+ −0.5, −0.5, 1, 0.5,

R+ −0.5, −0.5, 0.5, 1), ncol = 4, byrow = TRUE)

R>

R> gen_data <function(n, beta, nu, xi){

R+ X3 <rbinom(n, 1, prob = 0.2)

R+ V3 <rbinom(n, 1, prob = (0.75 * X3 + (0.25 * (1 X3))))

R+ hold <rmvnorm(n, mean = rep(0, 4), Sigma_X3)

R+ colnames(hold) <c(“X1”, “V1”, “X2”, “V2”)

R+ hold <cbind(hold, X3, V3)

R+ hold <apply(hold, 1, function(x){

R+ x[1:4] <x[1:4] + tau_1^(x[5]) * tau_0^(1 x[5])

R+ x

R+ })

R+ hold <t(hold)[, c(“X1”, “X2”, “X3”, “V1”, “V2”, “V3”)]

R+ X <cbind(Int = 1, hold)

R+ Z <rbinom(n, 1, prob = plogis(X[, 1:4] %*% beta))

R+ X <cbind(X[, 1:4], Z, X[, 5:7])

R+ data.frame(

R+ Y = X %*% c(nu, xi) + rnorm(n),

R+ X[ , −1])

R+ }

To show that estimate_dr correctly computes Δ DR, the results from geex can be compared 

to computing Δ DR “by hand” for a simulated dataset.

R> dt <gen_data(n = 1000,

R+ beta = c(0, 0.6, −0.6, 0.6),

R+ nu = c(0, −1, 1, −1, 2),

R+ xi = c(−1, 1, 1))

R> geex_results <estimate_dr(dt, Z ~ X1 + X2 + X3, Y ~ X1 + X2 + X3)

R> e <predict(glm(Z ~ X1 + X2 + X3, data = dt, family = “binomial”),

R+ type = “response”)

R> m0 <predict(glm(Y ~ X1 + X2 + X3, data = dt, subset = Z==0),

R+ newdata = dt)

R> m1 <predict(glm(Y ~ X1 + X2 + X3, data = dt, subset = Z==1),

R+ newdata = dt)

R> del_hat <with(dt, mean( (Z * Y (Z e) * m1) / e)) -

R+ with(dt, mean(((1 Z) * Y (Z e) * m0) / (1 e)))

The maximum absolute difference between coef(geex_results)[13] and del_hat is 1.4e-09.
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4. Comparison to existing software

The above examples demonstrate the basic utility of the geex package and the power of R’s 

functional programming capability. The gmm package (Chauss´ 2010) computes 

generalized methods of moments and generalized empirical likelihoods, estimation strategies 

similar to M-estimation, using user-defined functions like geex. To our knowledge, geex is 

the first R package to create an extensible API for any estimator that is the solution to 

estimating equations in the form of Equation 1. Existing R packages such as gee (Carey 

2015), geepack (Halekoh, Hojsgaard, and Yan 2006), and geeM (McDaniel, Henderson, and 

Rathouz 2013) solve for parameters in a GEE framework. Other packages such as fastM 
(Duembgen, Nord-hausen, and Schuhmacher 2014) and smoothmest (Hennig 2012) 

implement M-estimators for specific use cases.

For computing a sandwich variance estimator, geex is similar to the popular sandwich 

package (Zeileis 2004, 2006), which computes the empirical sandwich variance estimator 

from modelling methods such as lm, glm, gam, survreg, and others. For comparison to the 

exposition herein, the infrastructure of sandwich is explained in Zeileis (2006). Advantages 

of geex compared to sandwich include: (i) for custom applications, a user only needs to 

specify a single estFUN function as opposed to both the bread and estfun functions; (ii) as 

demonstrated in the examples above, the syntax of an estFUN may closely resemble the 

mathematical expression of the corresponding estimating function; (iii) estimating functions 

from multiple models are easily stacked; and (iv) point estimates can be obtained. The 

precision and computational speed of point and variance estimation in geex, however, 

depends on numerical approximations rather than analytic expressions.

To compare sandwich and geex, consider estimating Σ for the θ parameters in the following 

simple linear model contained in the geexex data: Y4 = θ1+θ2X1+θ3X2+s, where s ∼ N (0, 
1). The estimating equation for θ in this model can be expressed in an estFUN as:

R> lm_estfun <function(data){

R+ X <cbind(1, data[[“X1”]], data[[“X2”]])

R+ Y <data[[“Y4”]]

R+ function(theta){

R+ crossprod(X, Y X %*% theta)

R+ }

R+ }

Then θ  and Σ can be computed in geex:

R> results <m_estimate(

R+ estFUN = lm_estfun,

R+ data = geexex,

R+ root_control = setup_root_control(start = c(0, 0, 0)))
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or from the lm and sandwich functions:

R> fm <lm(Y4 ~ X1 + X2, data = geexex)

R> sand_vcov <sandwich::sandwich(fm)

The results are virtually identical (maximum absolute difference 1.4e-12). The lm/sandwich 

option is faster computationally, but geex can be sped up by, for example, changing the 

options of the derivative function via deriv_control or computing Σ using the parameter 

estimates from lm. While geex will never replace computationally optimized modelling 

functions such as lm, the important difference is that geex lays bare the estimating function 

used, which is both a powerful didactic tool as well as a programming advantage when 

developing custom estimating functions.

5. Variance corrections

The standard empirical sandwich variance estimator is known to perform poorly in certain 

situations. In small samples, Σ will tend to underestimate the variance of θˆ(Fay and 

Graubard 2001). When observational units are not independent and/or do not share the same 

variance, consistent variance estimators can be obtained by modifying how B(θ0) is 

estimated. The next two examples demonstrate using geex for finite sample and 

autocorrelation corrections, respectively.

5.1. Finite sample correction

Particularly in the context of GEE, many authors (e.g., seePaul and Zhang 2014;Li and 

Redden 2015) have proposed corrections that modify components of Σ and/or by assuming θ
follows a t (or F ), as opposed to Normal, distribution with some estimated degrees of 

freedom. Many of the proposed corrections somehow modify a combination of the Ai, Am , 

Bi, or Bm m matrices.

Users may specify functions that utilize these matrices to form corrections within geex. A 

finite sample correction function requires at least the argument components, which is an S4 

objΣect with slots for the A (= ∑i i Ai) matrix, A_i (a list of all m Ai matrices), the 

B = ∑iBi matrix, B_i i (a list of all m Bi matrices), and ee_i (a list of the observed 

estimating function values for all m units). Additional arguments may also be specified, as 

shown in the example. The geex package includes the bias correction and degrees of 

freedom corrections proposed by Fay and Graubard (2001) in the fay_bias_correction and 

fay_df_correction functions respectively. The following demonstrates the construction and 

use of the bias correction.Fay and Graubard (2001) proposed the modified variance 

estimator the adjustment to Σbc (b) = Am−1Bmbc b Am−1 T/m, where:

Bmbc b =
i = 1

m
Hi b BiHi b T,
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Hi b = 1 − min b, AiAm−1 jj
−1/2,

and Wjj denotes the jj element of a matrix W. When AiAm−1 jj is close to 1, the adjustment 

to Σbc (b) may be extreme, and the constant b is chosen by the analyst to limit over 

adjustments. The bias corrected estimator Σbc (b) can be implemented in geex by the 

following function:

R> bias_correction <function(components, b){

R+ A <grab_bread(components)

R+ A_i <grab_bread_list(components)

R+ B_i <grab_meat_list(components)

R+ Ainv <solve(A)

R+

R+ H_i <lapply(A_i, function(m){

R+ diag( (1 pmin(b, diag(m %*% Ainv) ) )^(−0.5) )

R+ })

R+

R+ Bbc_i <lapply(seq_along(B_i), function(i){

R+ H_i[[i]] %*% B_i[[i]] %*% H_i[[i]]

R+ })

R+

R+ Bbc <compute_sum_of_list(Bbc_i)

R+ compute_sigma(A = A, B = Bbc)

R+ }

The compute_sum_of_list sums over a list of matrices, while the compute_sigma(A, B) 

function simply computes A−1B{A−1}T. To use this bias correction, the m_estimate function 

accepts a named list of corrections to perform. Each element of the list is a correct_control 

S4 object that can be created with the helper function correction, which accepts the 

argument FUN (the correction function) plus any arguments passed to FUN besides 

components; e.g.,

R> results <m_estimate(

R+ estFUN = gee_estfun, data = warpbreaks,

R+ units = “wool”, roots = coef(g), compute_roots = FALSE,

R+ outer_args = list(formula = breaks ~ tension,

R+ family = gaussian(link = “identity”)),

R+ inner_args = list(alpha = g$working.correlation[1,2],

R+ psi = g$scale),

R+ corrections = list(

Saul and Hudgens Page 12

J Stat Softw. Author manuscript; available in PMC 2021 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



R+ bias_correction_.1 = correction(FUN = bias_correction, b = .1),

R+ bias_correction_.3 = correction(FUN = bias_correction, b = .3)))

In the geex output, the slot corrections contains a list of the results of computing each item 

in the corrections, which can be accessed with the get_corrections function. The corrections 

of Fay and Graubard (2001) are also implemented in the saws package (Fay and Graubard 

2001). Comparing the geex results to the results of the saws::geeUOmega function, the 

maximum absolute difference for any of the corrected estimated covariance matrices is 

3.8e-09.

5.2. Newey-West autocorrelation correction

When error terms are dependent, as in time series data, E[B] is challenging to estimate 

(Zeileis 2004). A solution is to estimate B using the pairwise sum,

BAC = ∑
i, j = 1

m
w i − j ψ Oi;θ ψ Oj; θ T,

where w|i−j| is a vector of weights that often reflect decreasing autocorrelation as the 

distance between i and j increases. Many authors have proposed ways of computing weights 

(see for example,White and Domowitz 1984;Newey and West 1987;Andrews 1991;Lumley 

and Heagerty 1999).

To illustrate autocorrelation correction using geex, we implement the Newey-West 

correction (without pre-whitening) and compare to the NeweyWest function in sandwich 
(Zeileis 2004). The example is taken from the NeweyWest documentation.

R> x <sin(1:100)

R> y <1 + x + rnorm(100)

R> dt <data.frame(x = x, y = y)

R> fm <lm(y ~ x)

R>

R> lm_estfun <function(data){

R+ X <cbind(1, data[[“x”]])

R+ Y <data[[“y”]]

R+ function(theta){

R+ crossprod(X, Y X %*% theta)

R+ }

R+ } R>

R> nwFUN <function(i, j, lag){

R+ ifelse(abs(i -j) <= lag, 1 abs(i j) / (lag + 1), 0)

R+ }

R>

R> nw_correction <function(components, lag){

R+ A <grab_bread(components)

Saul and Hudgens Page 13

J Stat Softw. Author manuscript; available in PMC 2021 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



R+ ee <grab_ee_list(components)

R+ Bac <compute_pairwise_sum_of_list(ee, .wFUN = nwFUN, lag = lag)

R+ compute_sigma(A = A, B = Bac)

R+ }

R>

R> results <m_estimate(

R+ estFUN = lm_estfun,

R+ data = dt,

R+ root_control = setup_root_control(start = c(0, 0)),

R+ corrections = list(

R+ NW_correction = correction(FUN = nw_correction, lag = 1)))

R>

R> get_corrections(results)[[1]]

[,1] [,2]

[1,] 0.010555254 0.003304559

[2,] 0.003304559 0.023758823

R> sandwich::NeweyWest(fm, lag = 1, prewhite = FALSE)

(Intercept) x

(Intercept) 0.010555254 0.003304559

x 0.003304559 0.023758823

The function lm_estfun is essentially the same as the previous comparison to sandwich in 

Section4. The function nw_correction performs the Newey-West adjustment using nwFUN 

which computes the Newey-West weights for lag L,

w i − j = 1 − i − j
L + 1

The function grab_ee_list returns the list of observed estimating functions, ψ oi, θ  from the 

sandwich_components object. The utility function compute_pairwise_sum_of_list computes 

BAC using either (but not both) a fixed vector (argument .w) of weights or a function of i and 

j (argument .wFUN), which may include additional arguments such as lag, as in this case. 

For this example, geex and sandwich return nearly identical results.

6. Summary

This paper demonstrates how M-estimators and finite sample corrections can be 

transparently implemented in geex. The package website (https://bsaul.github.io/geex/) 

showcases many examples of M-estimation including instrumental variables, sample 

quantiles, robust regression, generalized linear models, and more. A valuable feature of M-

estimators is that estimating functions corresponding to parameters from multiple models 

may be combined, or “stacked,” in a single set of estimating functions. The geex package 

makes it easy to stack estimating functions for the target parameters with estimating 

functions from each of the component models, as shown in the package vignette 

v06_causal_example. Indeed, the software was motivated by causal inference problems 
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(Saul, Hudgens, and Mallin 2017) where target causal parameters are functions of 

parameters in multiple models.

The theory of M-estimation is broadly applicable, yet existing R packages only implement 

particular classes of M-estimators. With its functional programming capabilities, R routines 

can be more general. The geex framework epitomizes the extensible nature of M-estimators 

and explicitly translates the estimating function ψ into a corresponding estFUN. In this way, 

geex should be useful for practitioners developing M-estimators, as well as students learning 

estimating equation theory.
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Figure 1: 
Estimating equations and estFUN for example 1.
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Figure 2: 
Estimating equations and estFUN for example 2.
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Figure 3: 
Estimating equations and estFUN for example 3.
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