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Abstract

Recovering low-rank structures via eigenvector perturbation analysis is a common problem in 

statistical machine learning, such as in factor analysis, community detection, ranking, matrix 

completion, among others. While a large variety of bounds are available for average errors 

between empirical and population statistics of eigenvectors, few results are tight for entrywise 

analyses, which are critical for a number of problems such as community detection.

This paper investigates entrywise behaviors of eigenvectors for a large class of random matrices 

whose expectations are low-rank, which helps settle the conjecture in Abbe et al. (2014b) that the 

spectral algorithm achieves exact recovery in the stochastic block model without any trimming or 

cleaning steps. The key is a first-order approximation of eigenvectors under the ℓ∞ norm:

uk ≈
Auk*
λk*

,

where {uk} and uk*  are eigenvectors of a random matrix A and its expectation EA, respectively. 

The fact that the approximation is both tight and linear in A facilitates sharp comparisons between 

uk and uk*. In particular, it allows for comparing the signs of uk and uk* even if uk − uk* ∞ is large. 

The results are further extended to perturbations of eigenspaces, yielding new ℓ∞-type bounds for 

synchronization (ℤ2-spiked Wigner model) and noisy matrix completion.

eabbe@princeton.edu. 

SUPPLEMENTARY MATERIAL
Supplementary A: proofs
(link). We provide detailed proofs of all stated results.

HHS Public Access
Author manuscript
Ann Stat. Author manuscript; available in PMC 2021 April 14.

Published in final edited form as:
Ann Stat. 2020 June ; 48(3): 1452–1474. doi:10.1214/19-aos1854.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

eigenvector perturbation; spectral analysis; synchronization; community detection; matrix 
completion; low-rank structures; random matrices; Primary 62H25; secondary 60B20; 62H12

1. Introduction

Many estimation problems in statistics involve low-rank matrix estimators that are NP-hard 

to compute, and many of these estimators are solutions to nonconvex programs. This is 

partly because of the widespread use of maximum likelihood estimation (MLE) which, 

while enjoying good statistical properties, often poses computational challenges due to 

nonconvex or discrete constraints inherent in the problems.

Fortunately, computationally efficient algorithms using eigenvectors often afford good 

performance. The eigenvectors either directly lead to final estimates (Shi and Malik, 2000; 

Ng et al., 2002), or serve as warm starts followed by further refinements (Keshavan et al., 

2010a; Jain et al., 2013; Candès et al., 2015). Such algorithms mostly rely on computation of 

leading eigenvectors and matrix-vector multiplications, which are easily implemented.

While various heuristics abound, theoretical understanding remains scarce on the entrywise 

analysis, and on when refinements are needed or can be avoided. In particular, it remains 

open in various cases to determine whether a vanilla eigenvector-based method without 

preprocessing steps (e.g., trimming of outliers) or without refinement steps (e.g., cleaning 

with local improvements) enjoys the same optimality results as the MLE (or SDP) does. A 

crucial missing step is a sharp entrywise perturbation analysis of eigenvectors. This is party 

because the ℓ∞ distance between the eigenvectors of a random matrix and their expected 

counterparts may not be the correct quantity to look at; errors per entry can be 

asymmetrically distributed, as we shall see in this paper.

This paper investigates entrywise behaviors of eigenvectors and more generally, eigenspaces, 

for random matrices with low expected rank using the following approach. Let A be a 

random matrix, A* = EA, and E = A − A* be the ‘error’ of A. In many cases, A* is a 

symmetric matrix with low rank determined by the structure of a statistical problem, such as 

low-rank with blocks in community detection.

Consider for now the case of symmetric A, and let uk, resp. uk*, be the eigenvector 

corresponding to the k-th largest eigenvalue of A, resp. A*. Roughly speaking, if E is 

moderate, our first-order approximation reads

uk =
Auk
λk

≈
Auk*
λk*

= uk* +
Euk*
λk*

.

While uk is a nonlinear function of A (or equivalently E), the approximation is linear in A, 

which greatly facilitates the analysis. Under certain conditions, the maximum entrywise 

approximation error uk − Auk*/λk* ∞ can be much smaller than uk* ∞, allowing us to study 
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uk through Auk*/λk*. To obtain such results, a key part in our theory is to characterize 

concentration properties of A and structural assumptions on its expectation A*.

This perturbation analysis leads to new and sharp theoretical guarantees. In particular, we 

find that for the exact recovery problem in stochastic block model, the vanilla spectral 

algorithm (without trimming or cleaning) achieves the information-theoretic limit, and it 

coincides with the MLE estimator whenever the latter succeeds. This settles in particular a 

conjecture left open in Abbe et al. (2014b, 2016). Therefore, MLE and SDP do not have 

advantage over the spectral method in terms of exact recovery, if the model is correct. SDP 

may be preferred in some applications for its robustness and optimality certificates, but that 

is beyond the scope of this paper.

1.1. A sample problem

Let us consider a network model that has received widespread interest in recent years: the 

stochastic block model (SBM). Suppose that we have a graph with vertex set {1, 2, ⋯, n}, 

and assume for simplicity that n is even. There is an unknown index set J G {1, 2, ⋯, n} 

with |J| = n/2 such that the vertex set is partitioned into two groups J and Jc. Within groups, 

there is an edge between each pair of vertices with probability p, and between groups, there 

is an edge with probability q. Let x ∈ ℝn be the group membership vector with xi = 1 if i ∈ J 
and xi = −1 otherwise. The goal is to recover x from the observed edges of the graph.

This random-graph-based model was first proposed for social relationship networks 

(Holland et al., 1983), and many more realistic models have been developed based on the 

SBM since then. Given its fundamental importance, there are a plurality of papers 

addressing statistical properties and algorithmic efficiencies; see Abbe (2017) for a survey.

Under the regime p = alogn
n , q = blogn

n  where a > b > 0 are constants, Abbe et al. (2016) and 

Mossel et al. (2014) proved that exact recovery is possible if and only if a − b > 2, and 

that the limit can be achieved by efficient algorithms. They used two-round procedures (with 

a clean-up phase) to achieve the threshold. Semidefinite relaxations are also known to 

achieve the threshold (Abbe et al., 2016; Hajek et al., 2016; Agarwal et al., 2015; Bandeira, 

2015), as well as spectral methods with local refinements (Abbe and Sandon, 2015; Yun and 

Proutiere, 2016; Gao et al., 2015). We will discuss more in Sections 1.5 and 3.2.

While existing works tackle exact recovery rather successfully, some fundamental questions 

remain unsolved: how do the simple statistics—top eigenvectors of the adjacency matrix—

behave? Are they informative enough to reveal the group structure under very challenging 

regimes?

To study these questions, we start with the eigenvectors of A* = EA. By definition, Aij is a 

Bernoulli random variable, and ℙ Aij = 1  depends on whenever i and j are from the same 

groups. The expectation EA must be a block matrix of the following form:
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EA = logn
n

a1n
2 × n

2
b1n

2 × n
2

b1n
2 × n

2
a1n

2 × n
2

,

where 1m×m is the m × m all-one matrix. Here, for convenience, we represent EA as if J = 

{1, 2, ⋯, n/2}. But in general J is unknown, and there is a permutation of indices {1, ⋯, n} 

in the matrix representation.

From the matrix representation it is clear that EA has rank 2, with two nonzero eigenvalues 

λ1* = a + b
2 logn and λ2* = a − b

2 logn. Simple calculations give the corresponding (normalized) 

eigenvectors: u1* = 1
n1n, and u2* i = 1/ n if i ∈ J and u2* i = − 1/ n if i ∈ Jc. Since u2*

perfectly aligns with the group assignment vector x, we hope to show its counterpart u2, i.e., 

the second eigenvector of A, also has desirable properties.

The first reassuring fact is that, the top eigenvalues preserve proper ordering: by Weyl’s 

inequality, the deviation of any eigenvalue λi (i ∈ [n]) from λi* is bounded by ||A−A*||2, 

which is O( logn) with high probability; see supplementary materials (Abbe et al., 2018). 

The Davis-Kahan sin Θ theorem asserts that u1 and u2 are weakly consistent estimators for 

u1* and u2* respectively, in the sense that uk, uk*
ℙ 1 for k = 1, 2. However, this is not helpful 

for understanding their entrywise behaviors in the uniform sense, which is crucial for exact 

recovery. Nor can it explain the sharp phase transition phenomenon. This makes entrywise 

analysis both interesting and challenging.

This problem motivates some simulations about the coordinates of top eigenvectors of A. In 

Figure 1, we calculate the rescaled second eigenvector nu2 of one typical realization A, and 

make a histogram plot of its coordinates. (Note the first eigenvector is aligned with the all-

one vector 1n, which is uninformative.) The parameters we choose are n = 5000, a = 4.5 and 

b = 0.25, for which exact recovery is possible with high probability. Visibly, the coordinates 

of nu2 form two clusters around ±1 which, marked by red dashed lines, are coordinates of 

nu2*. Intuitively, the signs of the former should suffice to reveal the group structure.

To probe into the second eigenvector u2, we expand the perturbation u2 − u2* as follows:

u2 − u2* =
Au2*
λ2*

− u2* + u2 −
Au2*
λ2*

. (1.1)

The first term is exactly Eu2*/λ2*, which is linear in E and can be viewed as the first-order 

perturbation. The second term is nonlinear in general, representing the error of higher order. 

Figure 1 shows boxplots of the infinity norm of rescaled perturbation errors over 100 

realizations (see (i)-(iii)), which illustrates that u2 − Au2*/λ2* ∞ is much smaller than 

u2 − u2* ∞ and Au2*/λ2* − u2* ∞. Indeed, we will see in Theorem 1.1 that
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u2 − Au2*/λ2* ∞ = oℙ min
i

u2* i = oℙ(1/ n) . (1.2)

The result holds ‘up to sign’, i.e. can choose an appropriate sign for the eigenvector u2 as it 

is not uniquely defined; see Theorem 1.1 for its precise meaning. Therefore, the entrywise 

behavior of u2 − u2* is captured by its first-order term, which is much more amenable to 

analysis. This observation will finally lead to sharp eigenvector results in Section 3.2.

We remark that it is also possible to study the top eigenvector (denoted as u) of the centered 

adjacency matrix A = A − d
n 1n1n

T , where d = ∑i, jAij/n is the average degree of all vertices. 

The top eigenvector of EA is exactly u2*, and its empirical counterpart u is very similar to u2. 

In fact, the same reasoning and analysis applies to u, and one obtains similar plots as Figure 

1 (omitted here).

1.2. First-order approximation of eigenvectors

Now we present a simpler version of our result that justifies the intuitions above. Consider a 

general symmetric random matrix (more precisely, this should be a sequence of random 

matrices with growing dimensions) A ∈ ℝn × n with independent entries on and above its 

diagonal. Suppose its expectation A* = EA ∈ ℝn × n is low-rank and has r nonzero 

eigenvalues. Let us assume that

(a) r = O(1), these r eigenvalues are positive and in descending order 

λ1* ≥ λ2* ≥ ⋯ ≥ λr* > 0 , and λ1* ≍ λr*.

Their corresponding eigenvectors are denoted by u1*, ⋯, ur* ∈ ℝn. In other words, we have 

spectral decomposition A* = ∑j = 1
r λj*uj* uj*

T .

We fix k ∈ [r] and study the k-th eigenvector uk. Define the eigen-gap (or spectral gap) as 

Δ* = min λk − 1* − λk*, λk* − λk + 1* , where we adopt the convention λ0* = + ∞ and 

λn + 1* = − ∞. Assume that

(b) A concentrates under the spectral norm, i.e., there is a suitable γ = γn = o(1) 

such that A − A* 2 ≤ γΔ* holds with probability 1 − o(1).

A direct yet important implication is that, the fluctuation of λk is much smaller than the gap 

Δ*, since Weyl’s inequality forces λk − λk* ≤ A − A* 2. Thus, λk is well separated from 

other eigenvalues, including the ‘bulk’ n−r eigenvalues whose magnitudes are at most ‖E‖2.

In addition, we assume that A concentrates in a row-wise sense:

(c) there exists a continuous non-decreasing function φ:ℝ+ ℝ+ that possibly 

depends on n, such that φ(0) = 0, φ(x)/x is non-increasing, and that for any m ∈ 
[n], w ∈ ℝn, with probability 1 − o(n−1),
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A − A* m ⋅ w ≤ Δ*‖w‖∞φ
w 2

n w ∞
.

Here, the notation (A − A*)m. means the m-th row vector of A − A*.

For the Gaussian case where Aij ∼ N Aij*, σ2 , we can simply choose a linear function 

φ(x) = c Δ* −1σ nlognx where c > 0 is some proper constant. The condition then reads

ℙ A − A* m ⋅ w ≤ cσ logn w 2 = 1 − o n−1 ,

which directly follows from Gaussian tail bound since A − A* m ⋅ w ∼ N 0, σ2 w 2
2 . The tail 

of (A − A*)m.ω is completely determined by ||w||2. For Bernoulli variables, we will use 

Bernstein-type inequalities to study (A − A*)m.ω, which will inevitably involve both ||w||2 

and ||w||∞. Hence the function φ(x) can no longer be linear. It turns out that φ(x) ∝ (1∨log(1/

x))−1, shown in Figure 2, is a suitable choice. More details can be found in Section 2.1 and 

the supplementary material Abbe et al. (2018). In both cases we have φ(1) = O(1) under 

suitable signal-to-noise conditions.

Theorem 1.1—(Simpler form of Theorem 2.1). Let k ∈ [r] = {1, 2, ⋯, r} be fixed. Suppose 
that Assumptions (a), (b) and (c) hold, and uk* ∞ ≤ γ. Then, with probability 1 − o(1),

min
s ∈ ± 1

uk − sAuk*/λk* ∞ = O (γ + φ(γ)) uk* ∞ = o uk* ∞ , (1.3)

where the notations O(·) and o(·) hide dependencies on φ(1).

On the left-hand side, we are allowed to choose a suitable sign s as eigenvectors are not 

uniquely defined. The second bound is a consequence of the first one, since γ = o(1) and 

limγ→0 φ(γ) = 0 by continuity. We hide dependency on φ(1) in the above bound, since φ(1) 

is bounded by a constant under suitable signal-to-noise ratio. More details can be found in 

Theorem 2.1. Therefore, the approximation error uk − Auk*/λk* ∞ is much smaller than 

uk* ∞. This rigorously confirms the intuitions in Section 1.1.

Here are some remarks. (1) This theorem enables us to study uk via its linearization Auk*/λk*, 

since the approximation error is usually small order-wise. (2) The conditions of the theorem 

are fairly mild. For SBM, the theorem is applicable as long as we are in the logn
n  regime 

(p = a logn
n  and q = b logn

n ), regardless of the relative sizes of a and b.

1.3. MLE, spectral algorithm, and strong consistency

Once we obtain the approximation result (1.3), the analysis of entrywise behavior of 

eigenvectors boils down to that of Auk*/λk*. In the SBM example, suppose we have (1.2) and 

with probability 1−o(1), sgn Au2*/λ2* = sgn u2*  and all the entries of Au2*/λ2* are bounded 
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away from zero by an order of 1/ n. Then sgn u2 = sgn Au2*/λ2*  holds with probability 

1−o(1). Here sgn(·) denotes the entrywise sign function. The eigenvector-based estimator 

sgn(u2) for block membership can be conveniently analyzed through Au2*/λ2*, whose entries 

are just linear combinations of Bernoulli variables.

We remark on a subtlety of our result: our central analysis is a good control of 

uk − Auk*/λk* ∞, not necessarily of uk − uk* ∞. For example, in SBM, an inequality such as 

u2 − u2* ∞ < u2* ∞ is not true in general. In Figure 1, the second boxplot shows that 

n u2 − u2* ∞ may well exceed 1 even if sgn u2 = sgn u2* . This suggests that the distributions 

of the coordinates of the two clusters, though well separated, have asymmetric tails. Our 

Theorem 3.3 asserts that it is in vain to seek a good bound for u2 − u2* ∞. Instead, one 

should resort to the central quantity Au2*/λ2*. This may partly explain why the conjecture has 

remained open for long.

The vector Auk*/λk* also plays a pivotal role in the information-theoretic lower bound for 

exact recovery in SBM, established in Abbe et al. (2016). It is necessary to ensure 

Au2*/λ2* i > 0, ∀i ∈ J to hold with probability at least 1/3. Otherwise, by symmetry and the 

union bound, with probability at least 1/3 we can find some i ∈ J and i’ ∈ Jc with 

Au2*/λ2* i < 0 and Au2*/λ2* i′ > 0. Elementary calculation shows that in that case, a swap of 

group assignments of i and i’ increases the likelihood. Thus the MLE xMLE fails to exactly 

recover J. With a uniform prior on group assignments, the MLE is equivalent to the 

maximum a posteriori estimator, which is optimal for exact recovery. Therefore, we must 

eliminate such local refinements to make exact recovery possible. This forms the core 

argument in Abbe et al. (2016). The analysis above suggests an interesting property about 

the eigenvector-based estimator xeig(A): = sgn u2 :

Corollary 1.1—Suppose we are given a > b > 0 such that a ≠ b + 2, i.e., we exclude the 
regime where (a, b) is at the boundary of the phase transition. Then, whenever the MLE is 
successful, in the sense that xMLE = x (up to sign) with probability 1 − o(1), we have

xeig(A) = xMLE(A) = x

with probability 1 − o(1). Here x is the signed indicator of true communities.

This is because the success of xMLE hinges on sgn Au2*/λ2* = sgn u2* , which also guarantees 

xeig to work. See Section 3.2 for details. Such phenomenon appears in two applications 

considered in this paper.
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1.4. An iterative perspective: power iterations

In the SBM, a key observation is that u2 − Au2*/λ2* ∞ is small. Here we give some intuitions 

from an iterative (or algorithmic) perspective. For simplicity, we will focus on the top 

eigenvector u of the centered adjacency matrix A = A − d
n 1n1n

T .

It is well known that the top eigenvector of a symmetric matrix can be computed via the 

power method. For almost any possible initialization u0, the iterations ut + 1 = Aut/ Aut 2

converge to u. Suppose we set u0 = u2*, the top eigenvector of EA. Although this is not a real 

algorithm due to the initialization, it helps us gain theoretical insights.

The first, iterate after initialization is u1 = Au2*/ Au2* 2. Standard concentration inequalities 

show that Au2* 2 ≈ λ*, the top eigenvalue of EA Therefore, u1 is approximately Au2*/λ*, 

which coincides with our first-order approximation. If ut converges to u sufficiently fast, u1 

can already be good enough. This is similar to the rationale of one-step estimator (Bickel, 

1975): a single, carefully designed iterate may improve the precision of a good initialization 

to the desired level. Figure 3 helps illustrate this idea.

The iterative perspective has been explored in recent works (Zhong, 2017; Zhong and 

Boumal, 2018), where the latter studied both the eigenvector estimator and the MLE of a 

nonconvex problem. We are not going to show any proof with iterations or induction. 

Instead, we resort to the Davis-Kahan sin Θ theorem, combined with a “leave-one-out” 

technique. Nevertheless, we believe the iterative perspective is helpful to many other 

(nonconvex) problems where a counterpart of Davis-Kahan theorem is absent.

1.5. Related works

The study of eigenvector perturbation dates back to Rayleigh (Rayleigh, 1896) and 

Schrödinger (Schrödinger, 1926), in which asymptotic expansions were obtained. Later, 

Davis and Kahan (1970) developed elegant nonasymptotic perturbation bounds for 

eigenspaces gauged by unitary-invariant norms. These were extended to general rectangular 

matrices in Wedin (1972). See Stewart and Sun (1990) for a comprehensive investigation. 

Recently, O’Rourke et al. (2018) showed significant improvements of classical, 

deterministic bounds when the perturbation is random. Norms that depend on the choice of 

basis, such as the ℓ∞ norm, are not addressed in these works but are of great interest in 

statistics.

There are several recent papers related to the study of entrywise perturbation. Fan et al. 

(2016) obtained ℓ∞ eigenvector perturbation bounds. Their results were improved by Cape et 

al. (2017), in which the authors focused on 2 → ∞ norm bounds for eigenspaces. Eldridge 

et al. (2017) developed an ℓ∞ perturbation bound by expanding the eigenvector perturbation 

into infinite series. These results are deterministic by nature, and thus yield suboptimal 

bounds under challenging stochastic regimes with small signal-to-noise ratio. By taking 

advantage of randomness, Koltchinskii et al. (2016) and Koltchinskii and Xia (2016) studied 

bilinear forms of singular vectors, leading to a sharp bound on ℓ∞ error that was later 

extended to tensors (Xia and Zhou, 2017). Zhong (2017) characterized entrywise behaviors 
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of eigenvectors and explored their connections with Rayleigh-Schrödinger perturbation 

theory. Zhong and Boumal (2018) worked on a related but slighted more complicated 

problem named “phase synchronization”, and analyzed entrywise behaviors of both the 

spectral estimator and MLE under a near-optimal regime. Chen et al. (2017) used similar 

ideas to derive the optimality of both the spectral estimator and MLE in top-K ranking 

problem.

There is a rich literature on the three applications in this paper. The synchronization 

problems (Singer, 2011; Cucuringu et al., 2012) aim at estimating unknown signals (usually 

group elements) from their noisy pairwise measurements, and have attracted much attention 

in optimization and statistics community recently (Bandeira et al., 2016; Javanmard et al., 

2016). They are very relevant models for cryo-EM, robotics (Singer, 2011; Rosen et al., 

2016) and more.

The stochastic block model has been studied extensively in the past decades, with renewed 

activity in the recent years (Coja-Oghlan, 2006; Decelle et al., 2011; Massoulié, 2014; 

Mossel et al., 2013; Krzakala et al., 2013; Abbe et al., 2016; Guédon and Vershynin, 2016; 

Amini and Levina, 2014; Abbe and Sandon, 2015; Montanari and Sen, 2016; Bordenave et 

al., 2015; Abbe and Sandon, 2017; Banks et al., 2016), see Abbe (2017) for further 

references, and in particular McSherry (2001), Vu (2014), Yun and Proutiere (2014), Lelarge 

et al. (2015), Chin et al. (2015) and Yun and Proutiere (2016), which are closest to this paper 

in terms of regimes and algorithms. The matrix completion problems (Candès and Recht, 

2009; Candès and Plan, 2010; Keshavan et al., 2010b) have seen great impacts in many 

areas, and new insights and ideas keep flourishing in recent works (Ge et al., 2016; Sun and 

Luo, 2016). These lists are only a small fraction of the literature and are far from complete.

We organize our paper as follows: we present our main theorems of eigenvector and 

eigenspace perturbation in Section 2, which are rigorous statements of the intuitions 

introduced in Section 1. In Section 3, we apply the theorems to three problems: ℤ2-

synchronization, SBM, and matrix completion from noisy entries. In Section 4, we present 

simulation results to verify our theories. Finally, we conclude and discuss future works in 

Section 5.

1.6. Notations

We use the notation [n] to refer to {1, 2, ⋯, n} for n ∈ ℤ+, and let ℝ+ = [0, + ∞). For any 

real numbers a, b ∈ ℝ, we denote a ∨ b = max{a, b} and a ∧ b = min{a, b}. For nonnegative 

an and bn that depend on n (e.g., problem size), we write an ≲ bn to mean an ≤ Cbn for some 

constant C > 0. The notation ≍ is similar, hiding two constants in upper and lower bounds. 

For any vector x ∈ ℝn, we define ‖x‖2 = ∑i = 1
n xi2 and ||x||∞ = maxi |xi|. For any matrix 

M ∈ ℝn × d, Mi· refers to its i-th row, which is a row vector, and M·i refers to its i-th column, 

which is a column vector. The matrix spectral norm is M 2 = max x 2 = 1 Mx 2, the matrix 

max-norm is M max = maxi, j Mij , and the matrix 2 → ∞ norm is 

M 2 ∞ = max x 2 = 1 Mx ∞ = maxi Mi ⋅ 2. The set of n × r matrices with orthonormal 

columns is denoted by On × r.
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2. Main results

2.1. Random matrix ensembles

Suppose A ∈ ℝn × n is a symmetric random matrix and A* = EA. Denote the eigenvalues of A 

by λ1 ≥ ⋯ ≥ λn, and their associated eigenvectors by uj j = 1
n . Analogously for A*, the 

eigenvalues and eigenvectors are λ1* ≥ ⋯ ≥ λn* and uj* j = 1
n , respectively. We also adopt the 

convention λ0 = λ0* = + ∞ and λn + 1 = λn + 1* = − ∞. We allow some eigenvalues to be 

identical. Thus, some eigenvectors may be defined up to rotations.

Suppose r and s are two integers satisfying 1 ≤ r ≤ n and 0 ≤ s ≤ n − r. Let 

U = us + 1, ⋯, us + r ∈ ℝn × r, U* = us + 1* , ⋯, us + r* ∈ ℝn × r and 

Λ* = diag λs + 1* , ⋯, λs + r* ∈ ℝr × r. We are interested in the eigenspace span(U). To this end, 

we assume there is an eigen-gap Δ* seperating λs + j* j = 1
r  from 0 and other eigenvalues 

(see Figure 4), i.e.,

Δ* = λs* − λs + 1* ∧ λs + r* − λs + r + 1* ∧ min
i ∈ [r]

λs + i* . (2.1)

Compared with the usual eigen-gap (Davis and Kahan, 1970), our definition also takes the 

distances between eigenvalues and 0 into consideration. When A* is rank-deficient, 0 is 

itself an eigenvalue.

We define κ: = maxi ∈ [r] λs + i* /Δ*, which is always bounded from below by 1. In our 

applications, κ is usually bounded from above by a constant, i.e., Δ* is comparable to 

λs + j* j = 1
r  in terms of magnitude.

The concentration property is characterized by a parameter γ ≥ 0, and a function 

φ(x):ℝ+ ℝ+. Roughly speaking, γ−1 resembles the signal-to-noise ratio, and γ typically 

vanishes as n tends to infinity. φ(x) is chosen according to the distribution of A, and is 

typically bounded by a constant for x ∈ [0,1]. In particular, we take φ(x) ∝ x for Gaussian 

matrices and φ(x) ∝ (1 ∨ log(1/x))−1 for Bernoulli matrices —see Figure 2. In addition, we 

will also make a mild structural assumption: ||A*||2⟶∞ ≤ γΔ*. In many applications 

involving low-rank structure, the eigenvalues of interest (and thus Δ*) typically scale with n, 

whereas ||A*||2⟶∞ scales with n.

Based on the quantities above, we make the following assumptions.

A1 (Incoherence) ||A*||2⟶∞ ≤ γΔ*.

A2 (Row- and column-wise independence) For any m ∈ [n], the entries in the mth 

row and column of A are independent with others, i.e. {Aij : i = m or j = m} are 

independent of {Aij : i ≠ m, j ≠ m}.

A3 (Spectral norm concentration) 32κ max{γ, φ(γ)} ≤ 1 and for some δ0 ∈ (0, 1),
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ℙ A − A* 2 ≤ γΔ* ≥ 1 − δ0 . (2.2)

A4 (Row concentration) Suppose φ(x) is continuous and non-decreasing in ℝ+ with 

φ(0) = 0, φ(x)/x is non-increasing in ℝ+, and δ1 ∈ (0, 1). For any m ∈ [n] and 

W ∈ ℝn × r,

ℙ ‖ A − A* m ⋅ W ‖2 ≤ Δ*‖W ‖2 ∞φ ‖W ‖F
n‖W ‖2 ∞

≥ 1 − δ1
n . (2.3)

Here are some remarks and intuitions. Assumption 1 requires that no row of A* is dominant. 

To relate it to the usual concept of incoherence (Candès and Recht, 2009; Candès et al., 

2011), we consider the case A* = U*∧*(U*)T and let 

μ U* = n
r maxi ∈ [n]∑k Uik*

2 = n
r U* 2 ∞

2 . Note that

U*Λ* U* T
2 ∞ ≤ U* 2 ∞ Λ* U* T

2 = U* 2 ∞ Λ* 2 (2.4)

and κ = Λ* 2/Δ*. Then Assumption 1 is satisfied as long as μ U* ≤ nγ2
rκ2 , which is very 

mild.

Assumption 2 is a mild independence assumption, and it encompasses common i.i.d. noise 

assumptions.

Assumption 3 requires the spectral norm of the noise matrix A − A* to be dominated by Δ*, 

which can be interpreted as signal strength. In our example of ℤ2 synchronization (see 

Section 3.1), we have Δ* = n, and A − A* have i.i.d. N(0, σ2) entries above the diagonal. 

Since A − A* 2 ≲ σ n by standard concentration results, we need to require σ = O(γ n).

Assumption 4 is a generalization of the row concentration assumption in Section 1.2, and the 

function φ is problem-dependent. Here we explain the role of φ using a special case where r 
= 1 and A ∈ {0, 1}n×n has i.i.d. Bernoulli entries with parameter p = pn on and above its 

diagonal. Then Δ* = np, ∑i = 1
n Ami* = np. If p is not too small, with high probability we have 

∑i = 1
n Ami ≲ np and thus

A − A* m ⋅ W ≤ W
∞

∑
i = 1

n
A − A* mi ≲ W

∞
np = Δ* W

∞
.

If many entries in W have magnitudes much less than ||W||∞, there should be less fluctuation 

and better concentration. Indeed, Assumption 4 stipulates a tighter bound by a factor of 

φ
W 2

n W ∞
, where 

W 2
n W ∞

 is typically much smaller than 1 in this case. This delicate 

concentration bound turns out to be crucial in the analysis of SBM, where A is a sparse 

binary matrix.
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2.2. Entrywise perturbation of general eigenspaces

In this section, we generalize Theorem 1.1 from individual eigenvectors to eigenspaces 

under milder conditions that are characterized by additional parameters. Note that neither U 
nor U* is uniquely defined, and they can only be determined up to a rotation if the 

eigenvalues are identical. For this reason, our result has to involve an r × r orthogonal 

matrix. Beyond asserting our result holds up to a suitable rotation, we give an explicit form 

of such orthogonal matrix.

Let H = UTU* ∈ ℝr × r, and its singular value decomposition be H = UΣV T , where 

U, V ∈ ℝr × r are orthonormal matrices, and Σ ∈ ℝr × r is a diagonal matrix. Define an 

orthonormal matrix sgn(H) ∈ ℝr × r as

sgn(H): = UV T . (2.5)

This orthogonal matrix is called the matrix sign function (Gross, 2011). Now we are able to 

extend the results in Section 1.2 to general eigenspaces.

Theorem 2.1—Under Assumptions A1–A4, with probability at least 1 – δ0 – 2δ1 we have

U 2 ∞ ≲ (κ + φ(1)) U* 2 ∞ + γ A* 2 ∞/Δ*,
Usgn(H) − AU* Λ* −1 2 ∞ ≲ κ(κ + φ(1))(γ + φ(γ)) U* 2 ∞ + γ A* 2 ∞/Δ*,
Usgn(H) − U* 2 ∞ ≤ Usgn(H) − AU* Λ* −1 2 ∞ + φ(1) U* 2 ∞ .

Here the notation ≲ only hides absolute constants.

The third inequality is derived by simply writing Usgn(H) − U* as a sum of the first-order 

error EU*(∧*)−1 and higher-order error Usgn(H) − AU*(∧*)−1, and bounding EU*(∧*)−1 by 

the row concentration Assumption A4. It will be useful for the noisy matrix completion 

problem. It is worth pointing out that Theorem 2.1 is applicable to any eigenvector of A that 

is not necessarily the leading one. This is particularly powerful in SBM (Section 3.2) where 

we need to analyze the second eigenvector. In addition, we do not need A* to have low rank, 

although the examples to be presented have such structure. For low-rank A*, estimation 

errors of all the eigenvectors can be well controlled by the following corollary of Theorem 

2.1.

Corollary 2.1—Let Assumptions A1–A4 hold, and suppose that A* = U*∧*(U*)T. With 

probability at least 1 – δ0 – 2δ1, we have

U 2 ∞ ≲ (κ + φ(1)) U* 2 ∞,
Usgn(H) − AU* Λ* −1 2 ∞ ≲ κ(κ + φ(1))(γ + φ(γ)) U* 2 ∞,
Usgn(H) − U* 2 ∞ ≤ Usgn(H) − AU* Λ* −1 2 ∞ + φ(1) U* 2 ∞ .

Here the notation ≲ only hides absolute constants.
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Corollary 2.1 directly follows from Theorem 2.1, inequality (2.4) and the fact that κ ≥ 1. 

Below we use a simple example to illustrate the results above. Let A* = λ*u*(u*)T be a 

rank-one matrix with λ* > 0 and ||u*||2 =1. Set r = 1 and s = 0. This structure implies Δ* = 

λ* and κ = 1. Suppose A has independent entries on and above the diagonal. Such A is 

usually called a spiked Wigner matrix in statistics and random matrix theory.

Let Assumptions A1-A4 hold. The first two inequalities in Corollary 2.1 are simplified as

u ∞ ≲ (1 + φ(1)) u* ∞, (2.6)

u − Au*/λ* ∞ ≲ (γ + φ(γ))(1 + φ(1)) u* ∞ . (2.7)

In many applications, φ(1) ≲ 1 and γ = o(1) as n goes to infinity. Then (2.6) controls the 

magnitude of the empirical eigenvector u by that of the true eigenvector u* in the ℓ∞ sense. 

Furthermore, (2.7) has the same form as the main result in Theorem 1.1, stating that Au*/λ* 
is an ℓ∞ approximation of u with error much smaller than ||u*||∞. Therefore, it is possible to 

study u via its linearization Au*/λ*, which usually makes analysis much easier.

The regularity conditions in Theorem 1.1 imply our Assumptions A1-A4. In particular, the 

condition ||u*||∞ ≤ γ there is equivalent to Assumption A1. As a result, Theorem 1.1 with r 
= 1 is a special case of Corollary 2.1 and hence of Theorem 2.1. It is not hard to generalize 

to r = O(1).

3. Applications

3.1. ℤ2-synchronization and spiked Wigner model

The problem of ℤ2-synchronization is to recover n unknown labels ±1 from noisy pairwise 

measurements. This is a prototype of more general SO(d)-synchronization problems 

including phase synchronization and SO(3)-synchronization, in which one wishes to 

estimate the phases of signals or rotations of cam- eras/molecules, etc. Such problems arise 

in time synchronization of distributed networks (Giridhar and Kumar, 2006), calibration of 

cameras (Tron and Vidal, 2009), and cryo-EM (Shkolnisky and Singer, 2012).

Consider an unknown signal x ϵ {±1}n. Suppose we have independent measurements of the 

form Yij = xixj + σWij, where i < j, Wij ~ N (0, 1) and σ > 0. We can define Wii = 0 and Wij 

= Wji for simplicity, and write our model into a matrix form as follows:

Y = xxT + σW , x ∈ ± 1 n . (3.1)

This is sometimes called the Gaussian ℤ2-synchronization problem, in contrast to the one 

with ℤ2-noise, also known as the censored block model (Abbe et al., 2014a). This problem 

can be further generalized: each entry xj is a unit-modulus complex number eiθj, if the goal 

is to estimate unknown angles from pairwise measurements; or, each entry xj is an 

orthogonal matrix from SO(3), if the goal is to estimate unknown orientations of molecules, 

cameras, etc. Here we focus on the simplest case xj ∈ {±1}.
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Note that in (3.1), both Y and W are symmetric matrices in ℝn × n, and the data matrix Y has 

a noisy rank-one decomposition. This falls into the spiked Wigner model. The quality of an 

estimator x is usually gauged either by its correlation with x, or by the proportion of labels xi 

it correctly recovers. It has been shown that the information-theoretic threshold for a 

nontrivial correlation is σ = n (Javanmard et al., 2016; Deshpande et al., 2015; Lelarge and 

Miolane, 2016; Perry et al., 2016), and the threshold for exact recovery (i.e., x = ± x with 

probability tending to 1) is σ = n
2logn  (Bandeira et al., 2016).

When σ ≤ n
(2 + ε)logn  (ε > 0 is any constant), it was proved by Bandeira et al. (2016) that 

semidefinite programming (SDP) finds the maximum likelihood estimator and achieves 

exact recovery. We are going to show that a very simple method, both conceptually and 

computationally, also achieves exact recovery. This method is outlined as follows:

1. Compute the leading eigenvector of Y, denoted by u;

2. Take the estimate x = sgn(u).

Our next theorem asserts that the eigenvector-based method above succeeds in finding x 

consistently under σ ≤ n
(2 + ε)logn . Thus, under any regime where the MLE achieves exact 

recovery, our eigenvector estimator x equals the MLE with high probability. This 

phenomenon also holds for the stochastic block model.

Theorem 3.1—Suppose σ ≤ n
(2 + ε)logn  for some ε > 0. With probability 1 − o(1), the 

leading eigenvector of Y with unit ℓ2 norm satisfies

n min
i ∈ [n]

sxiui ≥ 1 − 2
2 + ε + C

logn ,

for a suitable s ϵ {±1}, where C > 0 is an absolute constant. As a consequence, our 

eigenvector-based method achieves exact recovery.

Note that our approach does not utilize the structural constraints |xi| = 1, ∀ i ∈ [n]; whereas 

such constraints appear in the SDP formulation (Bandeira et al., 2016). A natural question is 

an analysis of both methods with an increased noise level σ. A seminal work by Javanmard 

et al. (2016) complements our story: the authors showed via non-rigorous statistical 

mechanics arguments that when σ is on the order of n, the SDP-based approach 

outperforms the eigenvector approach. Nevertheless, with a slightly larger signal strength, 

there is no such advantage of the SDP approach.

When σ ≍ n, general results for spiked Wigner models (Baik et al., 2005; Féral and Péché, 

2007; Benaych-Georges and Nadakuditi, 2011) imply that 1
n uTx 2 1 − σ2/n for 

σ/ n < 1 − ε with any small constant ε> 0. Deshpande et al. (2015) proved that non-trivial 

correlation with x cannot be obtained by any estimator if σ/ n > 1 + ε.
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3.2. Stochastic Block Model

As is briefly discussed in Section 1, we focus on the symmetric SBM with two equally-sized 

groups. (Though the second eigenvector of A* depends on relative sizes of the groups, our 

analysis only requires slight modification if groups have different sizes.) For simplicity, we 

allow for self-loops (i.e. edges from vertices to themselves) in the random graph, and it 

makes no much difference if they are excluded. In that case, the expectation of the adjacency 

matrix changes by a negligible quantity O(log n/n) under the spectral norm and moreover, 

Assumptions A1–A4 still hold with the same parameters.

Definition 3.1—Let n be even, 0 ≤ q ≤ p ≤ 1, and J ⊆ [n] with |J| = n/2. SBM(n, p, q, J) is 
the ensemble of n × n symmetric random matrices A = (Aij)i,j∈[n] where {Aij}1≤i≤j≤n are 
independent Bernoulli random variables, and

ℙ Aij = 1 = p, if i ∈ J, j ∈ J or i ∈ Jc, j ∈ Jc

q, otℎerwise
. (3.2)

The community detection problem aims at finding the bi-partition (J, Jc) given only one 

realization of A. Let zi = 1 if i ∈ J and zi = −1 otherwise. We want to find an estimator z for 

the unknown labels z ∈ {±1}n. Intuitively, the task is more difficult when p is close to q, and 

when the magnitudes of p, q are small. It is impossible, for instance, to produce any 

meaningful estimator when p = q. The task is also impossible when p and q are as small as 

o(n−2), since A is a zero matrix with high probability.

As is already discussed in Section 1, under the regime p = alogn
n , q = blogn

n  where a and b are 

constants independent of n, it is information theoretically impossible to achieve exact 

recovery (the estimate z equals z or −z with probability tending to 1) when a − b < 2. In 

contrast, when a − b > 2, the goal is efficiently achievable. Further, it is known that SDP 

succeeds down to the threshold. Under the regime p = a
n , q = b

n , it is impossible to obtain 

nontrivial correlation (i.e. the correlation between z and z is at least some positive constant 

ε, as a random guess gets roughly half the signs correct and almost zero correlation with z) 

between any estimator z and z if (a − b)2 < 2(a + b), and when (a − b)2 > 2(a + b), nontrivial 

correlation can efficiently be obtained (Massoulié, 2014; Mossel et al., 2013).

Here we focus on the regime where p = a logn
n , q = b logn

n  and a > b > 0 are constants. Note 

that EA, or equivalently A*, is a rank-2 matrix. Its nonzero eigenvalues are λ1* = (p + q)n/2

and λ2* = (p − q)n/2, whose associated eigenvectors are u1* = 1
n1n and u2* = 1

n1J − 1
n1Jc. As 

u2* is aligned with z and perfectly reveals the desired partition, the following vanilla spectral 

method is a natural candidate:

1. Compute u2, the eigenvector of A corresponding to its second largest eigenvalue 

λ2;

2. Set z = sgn u2 .
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It has been empirically observed and conjectured that as soon as the signal strength a − b
exceed the information threshold 2, the vanilla spectral method achieves exact recovery 

(Abbe et al., 2014b). Moreover, in regimes where exact recovery is impossible, Zhang and 

Zhou (2016) established the following minimax result. It has not been clear whether the 

vanilla spectral method achieves the minimax misclassification rate.

If we define the misclassification rate as

r(z, z) = min
s ∈ ± 1

n−1 ∑
i = 1

n
1 zi ≠ szi , (3.3)

then the results of Zhang and Zhou (2016) imply that

inf
z

supEr(z, z) = exp −(1 + o(1)) ⋅ ( a − b)2 logn
2 , (3.4)

where the supremum is taken over approximately equal-sized SBM with 2-blocks. Note that 

this parameter space is slightly different from our Definition 3.1, but as explained before, we 

can modify our proofs accordingly such that the same conclusions still hold. See the 

supplementary materials (Abbe et al., 2018) for further explanation of (3.4).

Here we prove that the vanilla spectral method indeed succeeds in exact recovery whenever 

it is information-theoretic possible, which resolves the conjecture of (Abbe et al., 2014b); 

and if it is not, vanilla spectral method achieves the optimal misclassification rate.

Theorem 3.2—(i) If a − b > 2 then there exists η = η(a, b) > 0 and s ∈ {±1} such that 
with probability 1 − o(1),

n min
i ∈ [n]

szi u2 i ≥ η .

As a consequence, our spectral method achieves exact recovery.

(ii) Let the misclassification rate r(z, z) be defined in (3.3). If a − b ∈ (0, 2], then

Er(z, z) ≤ n−(1 + o(1))( a − b)2/2 .

This upper bound matches the minimax lower bound.

The first part implies that, under the regime where the MLE achieves exact recovery, our 

eigenvector estimator is exactly the MLE with high probability. This proves Corollary 1.1 in 

the introduction. Moreover, the second part asserts that for more challenging regime where 

exact recovery is impossible, the eigenvector estimator has the optimal misclassification rate.

Before further explaining our results, we give a brief review of previous endeavors and an 

analysis of difficulties. Various papers have investigated this algorithm and its variants such 

as McSherry (2001), Coja-Oghlan (2006), Rohe et al. (2011), Sussman et al. (2012), Vu 
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(2014), Lelarge et al. (2015), Yun and Proutiere (2014), Yun and Proutiere (2016), Lei and 

Rinaldo (2015), Gao et al. (2015), among others. However, it is not known if the simple 

algorithm above achieves exact recovery down to the information-theoretic threshold, nor 

the optimal misclassification rate studied in Zhang and Zhou (2016) while below the 

threshold. An important reason for the unsettlement of this question is that the entrywise 

behavior of u2 is not fully understood. In particular, people have been focusing on the ℓ∞ 
error u2 − u2* ∞, which may well exceed u2* ∞ (see Theorem 3.3), suggesting that the 

algorithm may potentially fail by rounding on the incorrect sign. This is not necessarily the 

case—as errors could have larger magnitudes on the ‘good side’ of the signal range—but 

u2 − u2* ∞ cannot capture this. To avoid suboptimal theoretical results, multi-round 

algorithms are popular choices in the literature (Coja-Oghlan, 2006; Vu, 2014), which 

typically have a preprocessing step of trimming and/or a postprocessing step refining the 

initial solution. Yun and Proutiere (2014) and Yun and Proutiere (2016) showed that such 

variants can achieve the exact recovery threshold. We are going to prove that the vanilla 

spectral algorithm alone achieves the threshold and the minimax lower-bound in one shot.

The key to proving Theorem 3.2 is the following first-order approximation result for u2 

under the ℓ∞ norm, which is a consequence of Theorem 2.1.

Corollary 3.1—If A ∼ SBM n, a logn
n , b logn

n , J , then with probability 1 − O(n−3) we have

min
s ∈ ± 1

u2 − sAu2*/λ2* ∞ ≤ C
nloglogn . (3.5)

where C = C (a, b) is some constant depending only on a and b.

The above result holds for any constants a and b, and does not depend on the gap a − b. 

This fact will be useful for analyzing the misclassification rate. By Corollary 3.1, the ℓ∞ 
approximation error is negligible, and thus the analysis of vanilla spectral algorithm boils 

down to analyzing the entries in Au2*/λ2*, which are just weighted sums of Bernoulli random 

variables.

As a by-product, we can show that entrywise analysis through u2 − u2* ∞ is not a good 

strategy. As is mentioned earlier, our sharp result for the eigenvector estimator stems from 

careful analysis of the linearized version Au2*/λ2* of u2, and the approximation error 

u2 − Au2*/λ2* ∞. This is superior to direct analysis of the ℓ∞ perturbation u2 − u2* ∞, as the 

next theorem implies that u2 − u2* ∞ > u2* ∞ is possible even if sgn u2 = sgn u2* .

Theorem 3.3—(Asymptotic lower bound for eigenvector perturbation). Let J = [n/2] and 

A ∼ SBM n, a logn
n , b logn

n , J , where a > b > 0 are constants and n → ∞. For any fixed η > 1 

with η log η − η + 1 < 2/a, with probability 1 − o(1) we have

n u2 − u2* ∞ ≥ a(η − 1)
a − b .
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Now let us consider the case in Figure 1, where a = 4.5 and b = 0.25. On the one hand, exact 

recovery is achievable since a − b > 1.62 > 2. On the other hand, by taking η = 2 we get 

h(η) = 2log2 − 2 + 1 < 4/9 = 2/a and a(η − 1)
a − b > 1.05. Theorem 3.3 implies

lim
n ∞

ℙ u2 − u2* ∞ > 1.05/ n = 1.

In words, the size of fluctuation is consistently larger than the signal strength. As a result, by 

merely looking at u2 − u2* ∞ we cannot expect sharp analysis of the spectral method in 

exact recovery.

Finally, we point out that it is not straightforward to develop a simple spectral method to 

achieve the information threshold for exact recovery in SBM with K > 2 blocks. Spectral 

methods in this scenario (Rohe et al., 2011; Lei and Rinaldo, 2015) typically start with r > 1 

eigenvectors vj j = 1
r ⊆ ℝn of some data matrix (e.g. the adjacency matrix or Laplacian 

matrix). Then, the n rows of V = v1, ⋯, vr ∈ ℝn × r are treated as embeddings of the n nodes 

into ℝr, from which one infers block memberships using clustering techniques. In our 

vanilla spectral method for 2 blocks, we only look at a single eigenvector and return the 

blocks based on signs of coordinates. This method always returns the same memberships (up 

to a global swap), even though the eigenvector is identifiable only up to a sign. When K > 2 

and r > 1, due to possible multiplicity of eigenvalues, the embeddings of n nodes may be 

identifiable only up to an orthonormal transform in ℝr. Such ambiguity causes trouble for 

effective clustering, although we can still study the embedding using Theorem 2.1. Due to 

space constraints, we put a brief discussion in the supplementary material Abbe et al. (2018).

3.3. Matrix completion from noisy entries

Matrix completion based on partial observations has wide applications including 

collaborative filtering, system identification, global positioning, remote sensing, etc., see 

Candes and Plan (2010). A popular version is the “Netflix problem”, where one is given a 

incomplete table of customer ratings and wants to predict the missing entries. This could be 

useful for targeted recommendation in the future. Since it has been intensively studied in the 

past decade, our brief review below is by no means exhaustive. Candès and Recht (2009), 

Candès and Tao (2010), and Gross (2011) focused on exact recovery of low-rank matrices 

based on noiseless observations. More realistic models with noisy observations were studied 

in Candès and Plan (2010), Keshavan et al. (2010b), Koltchinskii et al. (2011), Jain et al. 

(2013) and Chatterjee (2015).

As an application of Theorem 2.1, we are going to study a model similar to the one in 

Chatterjee (2015) where both sampling scheme and noise are random. It can be viewed as a 

statistical problem with missing values. Suppose we have an unknown signal matrix 

M* ∈ ℝn1 × n2. For each entry of M*, we have a noisy observation Mij* + εij with probability 

p, and have no observation otherwise. Let Mobs ∈ ℝn1 × n2 record our observations, with 

missing entries treated as zeros. We consider the rescaled partial observation matrix M = 
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Mobs/p for simplicity. It is easy to see that M is an unbiased estimator for M*, and hence a 

popular starting point for further analysis. The definition of our model is formalized below.

Definition 3.2—Let M* ∈ ℝn1 × n2, p ∈ (0, 1) and σ ≥ 0. We define NMC(M*,p, σ) to be 
the ensemble of n1 × n2 random matrices M = Mij i ∈ n1 , j ∈ n2  with 

Mij = Mij* + εij Iij/p, where Iij, εij i ∈ n1 , j ∈ n2  are jointly independent, 

ℙ Iij = 1 = p = 1 − ℙ Iij = 0 and εij ∼ N 0, σ2 .

Let r = rank(M*) and M* = U*Σ*V* be its singular value decomposition (SVD), where 

U* ∈ On1 × r, V * ∈ On2 × r, Σ* = diag σ1*, ⋯, σr*  is diagonal, and σ1* ≥ ⋯ ≥ σr*. We are 

interested in estimating U*, V*, and M*. The rank r is assumed to be known, which is 

usually easily estimated otherwise, see Keshavan and Oh (2009) for example. We work on a 

very simple spectral algorithm that often serves as an initial estimate of M* in iterative 

methods.

1. Compute the r largest singular values σ1 ≥ ⋯ ≥ σr of M, and their associated left 

and right singular vectors uj j = 1
r  and vj j = 1

r . Define Σ = diag(σ1, ⋯, σr), 

U = u1, ⋯, ur ∈ On1 × r and V = v1, ⋯, vr ∈ On2 × r.

2. Return U, V and UΣVT as estimators for U*, V*, and M*, respectively.

Note that the matrices in Definition 3.2 are asymmetric in general, due to the rectangular 

shape and independent sampling. Hence, Theorem 2.1 is not directly applicable. 

Nevertheless, it could be tailored to fit into our framework by a “symmetric dilation” trick. 

See the supplementary materials (Abbe et al., 2018) for details. Below we present our 

results.

Theorem 3.4—Let M ~ NMS(M*, p, σ), n = n1 + n2, κ = σ1*/σr*, H = 1
2 UTU* + V TV * , 

and η = U* 2 ∞ ∨ V * 2 ∞ . There exist constants C and C’ such that the followings 

hold. Suppose p ≥ 6 logn
n  and κ

n M* max + σ
σr*

logn
np ≤ 1/C. With probability at least 1 − C/n, 

we have

U 2 ∞ ∨ V 2 ∞ ≤ C′κη,

Usgn(H) − U* 2 ∞ ∨ V sgn(H) − V * 2 ∞ ≤ C′ηκ2n M* max + σ
σr*

logn
np ,

UΣV T − M* max ≤ C′η2κ4 M* max + σ nlogn
p .

To our best knowledge, the results for singular vectors are the first of this type for the 

spectral algorithm. Our bound on ||UΣVT – M*||max is a by-product of that, and a similar 

result was derived by Jain and Netrapalli (2015) using a different approach.

There are two reasons why entrywise type bounds are important. First, in applications such 

as recommender systems, it is often desirable to have uniform guarantees for all individuals. 

If we directly use existing ℓ2-type inequalities to control entrywise errors, the resulting 
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bounds can be highly sub-optimal in high dimensions. Thus new results are needed. Second, 

in algorithms based on non-convex optimization (Keshavan et al., 2010b; Sun and Luo, 

2016; Jain and Netrapalli, 2015), entrywise bounds are critical for the analysis of 

initializations and iterations. After the first draft of this paper came out, the entrywise 

bounds on singular subspaces were applied by Ma et al. (2017) as a guarantee for spectral 

intialization. The relevance of entrywise bounds goes well beyond matrix completion; see 

Section 1.5.

For the rest of this subsection, we will illustrate the results in Theorem 3.4 by comparing 

them with existing ones based on Frobenius norm.

Suppose p > c logn
n  for some large constant c > 0. By Theorems 1.1 and 1.3 of Keshavan et al. 

(2010b), an upper bound for the root-mean squared error (RMSE) gives:

1
n UΣV T − M* F ≲ M* max + σ r

np . (3.6)

This implies that the spectral algorithm is rate-optimal when σ ≳ ||M*||max as Candes and 

Plan (2010) established a lower bound 1
n M − M* F ≳ σ r

np  for any estimator M. On the 

other hand, our Theorem 3.4 asserts that

UΣV T − M* max ≲κ, r, η M* max + σ logn
np .

where ≲κ,r,η hides a factor O(κ, r, η n/r) that is not large if certain matrix incoherence 

structure is assumed; see Candès and Recht (2009) for example. Note that our result recovers 

(3.6) up to a factor of logn, since X F ≤ n1n2 X max always holds for any X of size n1 × 

n2.

We also compare the estimation errors of singular vectors under the Frobenius norm and the 

max-norm. On the one hand, the perturbation inequality in Wedin (1972) and spectral norm 

concentration yield the following.

max Usgn(H) − U* F , V sgn(H) − V * F ≲ r M − M* 2/σr*

≲ rn/p M* max + σ
σr*

≲ n M* max
σr*

1 + σ
M* max

r
np . (3.7)

On the other hand, by our entry-wise bound in Theorem 3.4 we have

nmax Usgn(H) − U* 2 ∞, V sgn(H) − V * 2 ∞

≲ κ, r, ηn M* max
σr*

1 + σ
M* max

rlogn
np . (3.8)

where, as before, ≲κ,r,η hides a factor O(κ, r, η n/r) that is usually not large. Therefore, we 

also recover (3.7) up to a factor of logn, since X F ≤ nr X max holds for any X of size n 

× r. Note that our goal is to derive good max-norm bounds rather than improving Frobenius-
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norm bounds. The comparisons above demonstrate that our bounds have the ‘correct’ order. 

To a certain extent, our results better portrait the behavior of spectral algorithm and provide 

more information than their Frobenius counterparts.

4. Numerical experiments

4.1. ℤ2-synchronization

We present our numerical results for the phase transition phenomenon of ℤ2-synchronization

—see Figure 5. Fix q1 = 5001/50 and q2 = 21/10. For each n in the geometric sequence 

2, 2q1, 2q1
2, ⋯, 2q1

50  (rounded to the nearest integers), and each σ in the geometric sequence 

q2
−32, q2

−31, ⋯, q2
50 , we compare our eigenvector-based estimator x with the unknown signal 

x, and report the proportion of success (namely x = ± x) out of 100 independent runs in the 

heat map.

A theoretical curve σ = n
2logn  is added onto the heat map. It is clear that below the curve, 

the eigenvector approach almost always recovers the signal perfectly; and above the curve, it 

fails to recover the signal.

4.2. Stochastic Block Model

Now we present our simulation results for exact recovery and misclassification rates of 

SBM. The phase transition phenomenon of SBM is exhibited on the left of Figure 6. In this 

simulation, n is fixed as 300, and parameters a (y-axis) and b (x-axis) vary from 0 to 30 and 

0 to 10, with increments 0.3 and 0.1 respectively. We compare the labels returned by our 

eigenvector-based method with the true cluster labels, and report the the proportion of 

success (namely z = ± z) out of 100 independent runs. As before, lighter pixels represent 

higher chances of success. Two theoretical curves a − b = ± 2 are also added onto the 

heat map. Clearly, theoretical predictions match numerical results.

The right plot of Figure 6 shows misclassification rates of our eigenvector approach with a 

fixed parameter b and a varying parameter a, where a is not large enough to reach the exact 

recovery threshold. We fix b = 2, and increase a from 2 to 8 by 0.2 for three different choices 

of n from {100, 500, 5000}. Then we calculate the mean misclassification rates Er(z, z)
averaged over 100 independent runs, and plot logEr(z, z)/logn against varying b. We also add 

a theoretical curve (with no markers), whose y-coordinates are −( a − b)2/2; see Theorem 

3.2 (ii). It is clear that with n tending to infinity, the curves of mean misclassification rates 

move closer to the theoretical one.

4.3. Matrix completion from noisy entries

Finally we come to experiments of matrix completion from noisy entries. The performance 

of the spectral algorithm in terms of root-mean squared error (RMSE) has already been 

demonstrated in Keshavan et al. (2010b), among others. In this part, we focus on the 

comparison between the maximum entrywise errors and RMSEs, for both the singular 

vectors and the matrix itself. The settings are mainly adopted from Candès and Plan (2010) 
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and Keshavan et al. (2010b). Each time we first create a rank-r matrix M* ∈ ℝn × n using the 

product MLMR
T , where ML, MR ∈ ℝn × r have i.i.d. N(0, 20/ n) entries. Then, each entry of 

M* is picked with probability p and contaminated by random noise drawn from N(0, σ2), 

independently of others. While increasing n from 500 to 5000 by 500, we choose p = 10logn
n , 

fix r = 5 and σ = 1. All the data presented in the plot are averaged over 100 independent 

experiments.

In support of our discussions in Section 3.3, Figure 7 shows that the following two ratios

Rmat =
UΣV T − M* max

η2 logn ⋅ UΣV T − M* F
,

Rvec =
max Usgn(H) − U* 2 ∞, V sgn(H) − V * 2 ∞
η logn ⋅ max Usgn(H) − U* F, V sgn(H) − V * F

,

approximately remain constant as n grows. Here the RMSEs n−1||UΣVT – M*||F and 

n−1/2max Usgn(H) − U* F , V sgn(H) − V * F  are scaled by ( nη)2 logn and ( nη) logn, 

respectively. Hence our analysis is sharp, and the perturbations are obviously delocalized 

among the entries.

5. Discussions

We have developed first-order approximations for eigenvectors and eigenspaces with small 

ℓ∞ errors under random perturbations. These results lead to sharp guarantees for three 

statistical problems.

Several future directions deserve exploration. First, the main perturbation theorems are 

currently stated only for symmetric matrices. We think it may be possible to extend the 

current analysis to SVD of general rectangular matrices, which has broader applications 

such as principal component analysis. Second, there are many other graph-related matrices 

beyond adjacency matrices, including graph Laplacians and non-backtracking matrices, 

which are important both in theory and in practice. Third, we believe our assumption of row- 

and column-wise independence can be relaxed to block-wise independence, which is 

relevant to cryo-EM and other problems.

Finally, in our examples, the spectral algorithm is strongly consistent if and only if the MLE 

is, though the latter can be NP-hard to compute in general. It would be interesting to see how 

general this phenomenon is, in view of better understanding the statistical and computational 

tradeoffs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1: 
The second eigenvector and its first-order approximation in SBM. Left: The histogram of 

coordinates of nu2 computed from a single realization of adjacency matrix A, where n is 

5000, a is 4.5 and b is 0.25. Exact recovery is expected as coordinates form two well-

separated clusters. Right: boxplots showing three different distance/errors (up to sign) over 

100 realizations: (i) n u2 − u2* ∞, (ii) n Au2*/λ2* − u2* ∞, (iii) n u2 − Au2*/λ2* ∞ ⋅ Au2*/λ2* is 

a good approximation of u2 under ℓ∞ norm even though u2 − u2* ∞ may be large.
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Fig 2: 
Typical choices of φ for Gaussian noise and Bernoulli noise.
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Fig 3: 
Error decay in power iterations. The larger and smaller squares represent ℓ∞ balls centered at 

u, with radii u0 − u ∞ and u1 − u ∞, respectively.
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Fig 4: 
Eigen-gap Δ*
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Fig 5: 
Phase transition of ℤ2-synchronization: the x-axis is the dimension n, and the y-axis is σ. 

Lighter pixels refer to higher proportions of runs that x recovers x. The red curve shows the 

theoretical boundary σ = n
2logn .
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Fig 6: 
Vanilla spectral method for SBM. Left: phase transition of exact recovery. The x-axis is b, 

the y-axis is a, and lighter pixels represent higher chances of success. Two red curves 

a − b = ± 2 represent theoretical boundaries for phase transtion, matched by numerical 

results. Right: mean misclassification rates on the logarithmic scale with b = 2. The x-axis is 

a, varying from 2 to 8, and the y-axis is logEr(z, z)/logn. No marker: theoretical curve; 

circles: n = 5000; crosses: n = 500; squares: n = 100.
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Fig 7: 
Rmat and Rvec in matrix completion from noisy entries. The x-axis is n, varying from 500 to 

5000 by 500, and the y-axis is the ratio. Crosses and circles stand for Rmat and Rvec, 

respectively.
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