Skip to main content
. 2021 Apr 14;16(4):e0247388. doi: 10.1371/journal.pone.0247388

Table 1. Segmentation performance metrics on two publically available retinal image datasets.

Datasets Method MCC SE SP ACC AUC F1
DRIVE Unsupervised Zhao [29] N/A 0.7420 0.9820 0.9540 0.8620 N/A
Azzopardi [30] N/A 0.7655 0.9704 0.9442 0.9614 N/A
Roychowdhury [31] N/A 0.7395 0.9782 0.9494 0.8672 N/A
Supervised U-Net [2] N/A 0.7537 0.9820 0.9531 0.9755 0.8142
RU-Net [6] N/A 0.7792 0.9813 0.9556 0.9784 0.8171
DE-Unet [25] N/A 0.7940 0.9816 0.9567 0.9772 0.8270
SWT-UNet [32] 0.8045 0.8039 0.9804 0.9576 0.9821 0.8281
BTS-UNet [33] 0.7923 0.7800 0.9806 0.9551 0.9796 0.8208
Driu [34] 0.7941 0.7855 0.9799 0.9552 0.9793 0.8220
CS-Net [35] N/A 0.8170 0.9854 0.9632 0.9798 N/A
SA-Net (Ours) 0.8055 0.8252 0.9764 0.9569 0.9822 0.8289
CHASE-DB1 Unsupervised Azzopardi [30] N/A 0.7585 0.9587 0.9387 0.9487 N/A
Roychowdhury [31] N/A 0.7615 0.9575 0.9467 0.9623 N/A
Supervised RU-Net [6] N/A 0.7756 0.9820 0.9634 0.9815 0.7928
SWT-UNet [32] 0.8011 0.7779 0.9864 0.9653 0.9855 0.8188
BTS-UNet [33] 0.7733 0.7888 0.9801 0.9627 0.9840 0.7983
SA-Net (Ours) 0.8102 0.8199 0.9827 0.9665 0.9865 0.8280

aN/A = Not Available, SWT-UNet shows the vessel segmentation results using fully convolutional neural networks, BTS-DSN gives the segmentation results with the multi-scale deeply-supervised networks with short connections.