Table 1. Segmentation performance metrics on two publically available retinal image datasets.
Datasets | Method | MCC | SE | SP | ACC | AUC | F1 | |
---|---|---|---|---|---|---|---|---|
DRIVE | Unsupervised | Zhao [29] | N/A | 0.7420 | 0.9820 | 0.9540 | 0.8620 | N/A |
Azzopardi [30] | N/A | 0.7655 | 0.9704 | 0.9442 | 0.9614 | N/A | ||
Roychowdhury [31] | N/A | 0.7395 | 0.9782 | 0.9494 | 0.8672 | N/A | ||
Supervised | U-Net [2] | N/A | 0.7537 | 0.9820 | 0.9531 | 0.9755 | 0.8142 | |
RU-Net [6] | N/A | 0.7792 | 0.9813 | 0.9556 | 0.9784 | 0.8171 | ||
DE-Unet [25] | N/A | 0.7940 | 0.9816 | 0.9567 | 0.9772 | 0.8270 | ||
SWT-UNet [32] | 0.8045 | 0.8039 | 0.9804 | 0.9576 | 0.9821 | 0.8281 | ||
BTS-UNet [33] | 0.7923 | 0.7800 | 0.9806 | 0.9551 | 0.9796 | 0.8208 | ||
Driu [34] | 0.7941 | 0.7855 | 0.9799 | 0.9552 | 0.9793 | 0.8220 | ||
CS-Net [35] | N/A | 0.8170 | 0.9854 | 0.9632 | 0.9798 | N/A | ||
SA-Net (Ours) | 0.8055 | 0.8252 | 0.9764 | 0.9569 | 0.9822 | 0.8289 | ||
CHASE-DB1 | Unsupervised | Azzopardi [30] | N/A | 0.7585 | 0.9587 | 0.9387 | 0.9487 | N/A |
Roychowdhury [31] | N/A | 0.7615 | 0.9575 | 0.9467 | 0.9623 | N/A | ||
Supervised | RU-Net [6] | N/A | 0.7756 | 0.9820 | 0.9634 | 0.9815 | 0.7928 | |
SWT-UNet [32] | 0.8011 | 0.7779 | 0.9864 | 0.9653 | 0.9855 | 0.8188 | ||
BTS-UNet [33] | 0.7733 | 0.7888 | 0.9801 | 0.9627 | 0.9840 | 0.7983 | ||
SA-Net (Ours) | 0.8102 | 0.8199 | 0.9827 | 0.9665 | 0.9865 | 0.8280 |
aN/A = Not Available, SWT-UNet shows the vessel segmentation results using fully convolutional neural networks, BTS-DSN gives the segmentation results with the multi-scale deeply-supervised networks with short connections.