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CytoTalk: De novo construction of signal transduction 
networks using single-cell transcriptomic data
Yuxuan Hu1, Tao Peng2,3, Lin Gao1, Kai Tan2,3,4*

Single-cell technology enables study of signal transduction in a complex tissue at unprecedented resolution. We 
describe CytoTalk for de novo construction of cell type–specific signaling networks using single-cell transcriptomic 
data. Using an integrated intracellular and intercellular gene network as the input, CytoTalk identifies candidate 
pathways using the prize-collecting Steiner forest algorithm. Using high-throughput spatial transcriptomic data 
and single-cell RNA sequencing data with receptor gene perturbation, we demonstrate that CytoTalk has substan-
tial improvement over existing algorithms. To better understand plasticity of signaling networks across tissues 
and developmental stages, we perform a comparative analysis of signaling networks between macrophages and 
endothelial cells across human adult and fetal tissues. Our analysis reveals an overall increased plasticity of signal-
ing networks across adult tissues and specific network nodes that contribute to increased plasticity. CytoTalk 
enables de novo construction of signal transduction pathways and facilitates comparative analysis of these path-
ways across tissues and conditions.

INTRODUCTION
Single-cell RNA sequencing (scRNA-seq) technologies are increasingly 
being used to characterize the heterogeneity of a complex tissue. 
Beyond cataloging cell types and transcript abundance, it is critical 
to understand how different cell types interact with one another to 
give rise to the emergent tissue complexity. Signal transduction is the 
primary mechanism for cell-cell communication. scRNA-seq tech-
nology holds great promise for studying cell-cell communication at 
much higher resolution. Using scRNA-seq data, several methods have 
been developed to infer ligand-receptor pairs that are active between 
two cell types. Skelly et al. (1) and Kumar et al. (2) predict ligand- 
receptor pairs if the two genes are expressed in the two respective 
cell types. Zhou et al. (3) and Vento-Tormo et al. (4) identify ligand- 
receptor pairs whose expression is specific to the cell types consid-
ered. Signaling pathways are highly dynamic, and cross-talk among 
them is prevalent. Because of these two features, simply examining 
expression levels of ligand and receptor genes cannot reliably cap-
ture the overall activities of signaling pathways and interactions among 
them (5, 6). As a step forward, Wang et al. (7) developed SoptSC and 
Browaeys et al. (8) developed NicheNet to identify both ligand- 
receptor pairs and genes downstream of them. However, these 
methods are based on known annotations of signaling pathways. To 
our knowledge, no method currently exists to perform de novo pre-
diction of full signal transduction pathways emanating from the 
ligand-receptor pairs.

Here, we describe the CytoTalk algorithm for de novo construction 
of a signaling network (union of multiple signaling pathways) be-
tween two cell types using single-cell transcriptomic data. The algorithm 
first constructs an integrated network consisting of intracellular and 
intercellular functional gene interactions. It then identifies the sig-
naling network by solving a prize-collecting Steiner forest (PCSF) 

problem based on appropriately defined node prize (i.e., cell-specific 
gene activity) and edge cost (i.e., probability of functional interaction 
between two genes). The objective of the PCSF problem is to find an 
optimal subnetwork in the integrated network that includes genes 
with high levels of cell type–specific expression and close connection 
to highly active ligand-receptor pairs. We benchmark the perform-
ance of CytoTalk using high-throughput spatial transcriptomic 
data and scRNA-seq data with perturbation to the receptor genes in 
a signaling pathway. To gain new insight into the heterogeneity of 
signaling pathways across tissues and developmental stages, we apply 
CytoTalk to perform a comparative analysis of signaling networks 
between macrophages and endothelial cells across human adult 
and fetal tissues. A software package implementing the CytoTalk 
algorithm has been deposited at GitHub (https://github.com/tanlabcode/
CytoTalk).

RESULTS
Wiring of signaling pathways is highly cell type dependent
A hallmark of signal transduction pathways is their high level of cell 
type–specific wiring pattern. Single-cell transcriptome data allow us 
to examine the cell type–specific activity of individual signaling path-
ways beyond just ligand and receptor genes. To this end, we examined 
the canonical fibroblast growth factor receptor 2 (FGFR2) signaling 
pathway in two tissues, mammary gland and skin. Four canonical 
downstream pathways are known to signal from FGFR2 (9), includ-
ing Janus kinase and signal transducer and activator transcription 
proteins (JAK-STAT), protein kinase C (PKC), mitogen-activated 
protein kinase (MAPK), and phosphoinositide 3-kinase and protein 
kinase B (PI3K/AKT) pathways. For mammary gland, we studied 
FGFR2 signaling between fibroblasts and luminal epithelial cells or 
basal cells (10, 11). For skin, we studied FGFR2 signaling between 
keratinocyte stem cells and basal cells (12). Using published scRNA-seq 
data (13) for each tissue type, we computed an expression specificity 
score, preferential expression measure (PEM) (14, 15) (see Materials 
and Methods), for each pathway gene in each cell type (Fig. 1, A to C). 
We found that the four canonical subpathways downstream of the 
same receptor (FGFR2) exhibit notable difference in cell type–specific 
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activities not only within the same tissue but also across different 
tissues. In the mammary gland, the PI3K/AKT and PKC pathways 
are the most active pathways for signaling between fibroblasts and 
luminal epithelial cells and basal cells, respectively. In contrast, the 
JAK-STAT pathway is the most active pathway for signaling between 
keratinocyte stem cells and basal cells in the skin. To systematically 
evaluate the extent of cell type–specific wiring of signaling pathways, 
we examined all manually annotated signaling pathways in the Re-
actome database (16). For each pathway, we computed its cell type–
specific activity score using the same mammary gland and skin 
scRNA-seq datasets (13). We found that most of the pathways ex-
hibit high degree of cell type–specific activities (Fig. 1, D and E). 
This is true even for the same cell types from different tissues, such 
as basal cells from mammary gland versus basal cells from skin (Fig. 1F). 
Using an alternative source of signaling pathway annotations that 
include gene signatures for Myc, Ras, E2F3, Src, and -catenin path-
ways (17), we found that all pathways exhibit differential activities 
across cell types in mammary gland and skin (fig. S1). Together, 

these results highlight the need for analytical tools for de novo con-
struction of complete signaling pathways (instead of ligand-receptor 
pairs) using single-cell transcriptomic data.

Overview of the CytoTalk algorithm
CytoTalk is designed for de novo construction of a signal trans-
duction network between two cell types (Fig. 2; Materials and Methods), 
which is defined as the union of multiple signal transduction path-
ways. It first constructs a weighted integrated gene network composed 
of both intracellular and intercellular functional gene-gene interac-
tions. Intracellular functional gene interactions are computed and 
weighted using mutual information between two genes. Two intra-
cellular networks are connected via cross-talk edges (i.e., known 
ligand-receptor interactions). Ligand-receptor pairs with higher cell 
type–specific gene expression but lower correlated expression with-
in the same cell type (thus more likely to be involved in cross-talk 
instead of self-talk) are assigned higher cross-talk weights. Nodes in 
the integrated network are weighted by a combination of their cell 
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Fig. 1. Wiring of signaling pathways is highly cell type dependent. (A to C) Cell type–specific activity of subpathways downstream of the FGFR2 between fibroblasts 
and luminal epithelial cells (A) and basal cells (B) in mouse mammary gland and between keratinocyte stem cells and basal cells in mouse skin (C). Cell type–specific ac-
tivities of four canonical subpathways downstream of FGFR2 are shown. PEM, cell type–specific activity score, was calculated using scRNA-seq data (Materials and Meth-
ods). Color shade of each gene node is proportional to the PEM score. Top: Individual pathway activities. Bottom: Quantification of average PEM score of subpathway 
genes. (D) Cell type–specific activity of Reactome pathways across five cell types in mammary gland. Each vertical bar represents the average PEM score of one pathway. 
(E) Cell type–specific activity of Reactome pathways across four cell types in skin. (F) Differential pathway activity in basal cells from two different tissues, mammary gland 
and skin.
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type–specific gene expression and closeness to the ligand/receptor 
genes in the network. We use a network propagation procedure to 
determine the closeness of a gene to the ligand/receptor genes. With 
the integrated network as the input, we formulate the identification 
of signaling network as a PCSF problem (18, 19). The rationale for 
using the PCSF algorithm is to find an optimal subnetwork that in-
cludes genes with high levels of cell type–specific expression and close 
connection to high-scoring ligand-receptor pairs. The objective func-
tion of the PCSF algorithm is designed to capture these two types of 
information/weights (see Materials and Methods for details). This 
optimal subnetwork is defined as the signaling network between the 
two cell types. The statistical significance of the identified signaling 
network is computed using a null score distribution of signaling 
networks generated using degree-preserving randomized networks.

Performance evaluation using spatial transcriptomic data
To evaluate the performance of CytoTalk, we applied it to scRNA-
seq datasets on mouse visual cortex (20) and olfactory bulb (21), 
respectively. Both datasets cover the following cell types: neurons, 

astrocytes, microglia cells, endothelial cells, oligodendrocytes, and 
oligodendrocyte precursor cells. In the visual cortex dataset, neu-
rons were further classified into two subtypes, glutamatergic (Glut) 
neurons and GABAergic (GABA) neurons. On average, 6358 and 
836 genes were detected per cell in the visual cortex and olfactory 
bulb datasets, respectively. Among the covered cell types, neurons, 
endothelial cells, astrocytes, and microglia cells are known to signal 
to each other (22–29). We identified signaling networks between 
five pairs of these cell types, including neuron–endothelial cell 
(NeuronEndo for the olfactory bulb or GlutEndo and GABAEndo 
for the visual cortex), neuron-astrocyte (NeuronAstro or GlutAstro 
and GABAAstro), neuron-microglia (NeuronMicro or GlutMicro 
and GABAMicro), astrocyte–endothelial cell (AstroEndo), and en-
dothelial cell–microglia cell (EndoMicro), respectively. The eight 
predicted cell type pair–specific signaling networks in the visual 
cortex consist of 567, 445, 692, 332, 643, 628, 577, and 403 genes and 
involve 24, 22, 42, 29, 32, 28, 39, and 45 ligand-receptor interactions 
(cross-talk edges), respectively (table S1). For the olfactory bulb, the 
five predicted signaling networks consist of 627, 542, 604, 764, and 
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684 genes and involve 10, 14, 10, 20, and 23 cross-talk edges, respectively 
(table S1). Compared to PCSFs identified using 1000 randomized 
input networks, all predicted signaling networks have significantly 
smaller objective function scores (empirical P ≤ 0.01; see Materials 
and Methods and fig. S2, A and B) and larger fractions of cross-talk 
edges (empirical P ≤ 0.04; fig. S2, C and D). Several predicted 
ligand-receptor pairs are known to mediate signal transduction be-
tween these five pairs of cell types. For example, neuronal protein 
SLIT2 can modulate vascular permeability by binding to ROBO4 
expressed on endothelial cells (23, 30). NLGN1 expressed on astro-
cytes can interact with NRXN1 expressed on neurons to control 
astrocyte morphogenesis and synaptogenesis (26). CX3CL1 expressed 
by neurons can bind to CX3CR1 expressed on microglia to modu-
late the neuroprotective activity of microglia (29). Astrocytes are known 
to express VEGFA (vascular endothelial growth factor A) that can 
signal to endothelial cells in the central nervous system (CNS) via 
KDR (or VEGFR2), which is important for CNS angiogenesis and 
the formation of the blood-brain barrier (23, 31). TGFB1 secreted 
by microglia is known to bind to ACVRL1 and ENG that are ex-
pressed on neighboring endothelial cells (32).

To further characterize the predicted signaling networks, we clas-
sified them into three groups based on the involvement of three non- 
neuronal cell types, microglia cells, astrocytes, and endothelial cells. 
For microglial cell–related networks in the visual cortex, we found 
that signaling with neuronal cell types (i.e., GlutMicro and GABAMicro) 
shares a larger number of signaling genes (69%) than signaling with 
endothelial cells. Similar observations were also made for astrocyte- 
related networks [i.e., between GlutAstro and GABAAstro (61%)] 
and for endothelial cell–related networks [i.e., between GlutEndo 
and GABAEndo (74%)] (Fig. 3A). This result suggests that signal-
ing between glia cells (microglia cells and astrocytes) and endothelial 
cells is more cell type pair specific than that between glial cells and 
neurons. A similar phenomenon was also observed in the olfactory 
bulb (Fig. 3B). We extracted ligand-receptor–associated pathways 
from the predicted networks. We found that 50 and 33% of the pre-
dicted pathways in the visual cortex and olfactory bulb are enriched 
for known pathways curated in either the Reactome data (16) or the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (33) database 
(fig. S3).

For benchmarking purpose, we compared CytoTalk to six pub-
lished algorithms, four designed for predicting ligand-receptor pairs 
only (1–4), and two designed for predicting full signaling pathways 
based on known pathway annotations (7, 8). Since a comprehensive 
list of true ligand-receptor pairs is not available for the 13 cell type 
pairs, we first asked what fractions of the predicted ligand-receptor 
pairs are shared among the seven methods. We reasoned that a more 
accurate method will have, on average, a larger fraction of overlapped 
predictions with the rest of the methods. We found that CytoTalk 
has the highest average rank based on the Jaccard index of ligand- 
receptor pairs between any two methods in all 13 cell type pairs (fig. 
S4), suggesting that CytoTalk has the highest accuracy among the seven 
methods. Figure  3  (C  to  E) shows several representative ligand- 
receptor pairs and their related pathways uniquely predicted by CytoTalk 
for cell type pairs in the visual cortex. These pathways are enriched for 
genes involved in cell communication, nervous system development, 
and even neurodegenerative diseases (Fig. 3F). Overall, compared to 
predictions shared among CytoTalk, NicheNet, and SoptSC, genes in 
the networks uniquely predicted by CytoTalk are more significantly 
enriched for key cross-talk functions between the given cell type pairs (fig. S5).

To systematically evaluate the performance of CytoTalk, we used 
two matched sequential fluorescence in situ hybridization (SeqFISH+) 
datasets for the visual cortex and olfactory bulb (32), respectively, 
covering the same set of cell types as the scRNA-seq datasets (20, 21). 
On average, these two datasets provide a spatially resolved abun-
dance of 5826 transcripts (3344 genes) per cell in the visual cortex 
and 1284 transcripts (844 genes) per cell in the olfactory bulb, re-
spectively. For each pair of cell types under study, we divided cell 
pairs into close and distant groups based on their physical dis-
tance determined using the SeqFISH+ data (fig. S6 and Materials 
and Methods). We then calculated the mutual information of the 
SeqFISH+ expression among signaling pathway genes across the 
two groups of cell pairs (Fig. 3G). We reasoned that cells that are 
close are more likely to signal to each other. Therefore, bona fide 
signaling pathway genes are expected to have higher mutual infor-
mation of spatial expression in these cells than cells that are distant 
from each other.

For Glut neurons and endothelial cells in the visual cortex, there 
are 2812 and 916 cell pairs in the close and distant groups, respec-
tively (Materials and Methods). We found that genes in signaling 
pathways predicted by CytoTalk have significantly larger mutual 
information of spatial expression in close GlutEndo cell pairs than 
distant cell pairs (one-sided Kolmogorov-Smirnov test P = 2.0 × 10−100), 
thus providing support to our predictions (Fig. 3, G and H, and fig. 
S7A). In comparison, predicted pathway genes by other methods 
show no or less significant difference in mutual information be-
tween close and distant cell pairs (Fig. 3H and fig. S7A), suggesting 
that those predictions have higher false-positive rates.

For the predicted signaling networks of the other 12 cell type pairs, 
we also found that CytoTalk predictions have consistently larger mu-
tual information in close cell pairs than distant cell pairs, except for 
the NeuronMicro signaling network in the olfactory bulb. In com-
parison, predictions by other methods do not show significant sep-
aration in mutual information between close and distance cell pairs 
(Fig. 3, H and I, and fig. S7). Together, these results demonstrate 
that CytoTalk has substantial improvement over existing methods.

Performance evaluation using scRNA-seq data with receptor 
gene perturbation
To further evaluate the accuracy of CytoTalk, we applied it to an 
scRNA-seq dataset in which the transcriptomes of wild-type and 
receptor gene knockout cells were measured (34). The dataset covers 
13 cell types in the mouse lung, including T and B cells, neutrophils, 
basophils, monocytes, macrophages, endothelial cells, alveolar type I 
(AT1) and type II (AT2) cells, club cells, smooth muscle cells, fi-
broblasts, and pericytes. On average, 2627 transcripts (1143 genes) 
were detected per cell. The authors found a novel signaling pathway 
involving interleukin 33 (IL33) secreted by AT2 cells and IL1 
receptor–like 1 (IL1RL1) on basophils (34). Using this dataset, we first 
asked whether the IL33-IL1RL1 interaction between AT2 cells and 
basophils can be predicted. We found that the three methods (Cy-
toTalk, NicheNet, and SoptSC) can identify the IL33-IL1RL1 inter-
action (table S1). We then evaluated the prediction accuracy using 
receiver operating characteristic (ROC) curve. To this end, we used 
the differentially expressed genes (DEGs; Materials and Methods) 
between IL1RL1-knockout and wild-type basophils as the ground 
truth. We found that predictions by CytoTalk have a higher area 
under the ROC curve (Fig.  4A). Furthermore, the downstream 
pathway genes predicted by CytoTalk tend to be more significantly 
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differentially expressed compared to the genes predicted by the other 
two methods (one-sided Wilcoxon P < 1.0 × 10−26; Fig. 4B). Together, 
these results provide additional support for the improved perform-
ance of CytoTalk compared to existing methods.

Entropy of signaling pathways across human tissues
Our analysis in Fig. 1 suggests that wiring of signaling pathway is 
highly cell type dependent. To better understand the heterogeneity 
of signaling pathways, we applied CytoTalk to perform a compara-
tive analysis across tissues and developmental stages. Endothelial cells 
and macrophages are two common cell types in many mammalian 
tissues, and their interaction plays a critical role in the tissue adapt-
ability of macrophages and tissue homeostasis (35, 36). We analyzed 
scRNA-seq datasets of these two cell types from human kidney, heart, 
and lung, at both fetal and adult stages (table S1) (37). On average, 
we found that 52 and 47% of the predicted pathway genes are shared 
among the three tissues at both fetal and adult stages, respectively 
(Fig. 5A). For shared pathway genes, we calculated their local Shannon 
entropy (38) that measures the uncertainty of signaling interaction 
patterns associated with a given pathway gene in a tissue. Genes with 
higher signaling entropies have more uniform signaling interaction 
probabilities with their interacting partners in the signaling net-
work. We next identified genes that exhibit significantly large dif-
ferential entropies across the three tissues (Materials and Methods). 
These genes represent the most dynamic nodes of the signaling net-
works across tissues. We identified 18 and 28 significant genes (em-
pirical P < 0.1; table S2) in fetal and adult tissues, respectively. We 
found that the significant genes have larger differential entropies 
among adult tissues than fetal tissues (Wilcoxon rank sum test P = 
6.8 × 10−5; Fig. 5B). This is reminiscent of a previous observation 
that transcriptomes differ more across adult organs than across fetal 
organs (39).

We hypothesized that genes with differential entropies are asso-
ciated with their diverse functions across tissues. We found several 
lines of evidence supporting this hypothesis. First, we observed that 
genes with significant differential entropies have larger tissue specificity 

scores (Materials and Methods) than nonsignificant genes (Wilcoxon 
rank sum test P = 0.03; Fig. 5C and table S2). Second, we found that 
significant genes are less evolutionary conserved than nonsignificant 
genes (Wilcoxon rank sum test P = 0.05; Fig. 5D and table S2). This 
anticorrelation between tissue specificity and sequence conservation 
was also observed in previous studies (40, 41). Third, we found that 
the ligand-receptor pairs that are most closely related to the signifi-
cant genes have larger differential cross-talk scores (see Materials 
and Methods) across tissues (Fig. 5E) than ligand-receptor pairs re-
lated to nonsignificant genes (Wilcoxon rank sum test P = 0.03; 
Fig.  5F). Last, to further investigate the functions of significant 
genes that are shared by all three tissues, we extracted their associated 
pathways (Materials and Methods) from the predicted signaling 
networks. We found that they are enriched for tissue-specific func-
tions and tissue-specific disease phenotypes (Fig. 5G), probably re-
flecting their functional adaptation across tissues (39). Together, 
these results highlight the heterogeneity of signaling pathways be-
tween the same cell type pair in different tissues, which may play an 
important role in tissue adaptation of these cell types.

We noticed that, among the significant genes shared by all three 
tissues, IFITM3 and CD74 are known to have important antiviral 
activities in endothelial cells (42) and macrophages (43), respectively. 
They are also the top genes with differential entropy in the endothelial 
(first ranked) and macrophage (second ranked) signaling networks, 
respectively. To investigate whether there exist functional cross-talk 
pathways between them, we extracted the shortest paths between 
IFITM3 and CD74 from the predicted signaling networks of the 
three tissues (Fig.  5H). We found that the majority of the genes 
(84%) on the shortest paths are different among the tissues. They 
are enriched for both common and tissue-specific virus-related bi-
ological processes and pathways, suggesting that different signaling 
pathways may be activated in response to a given virus in different 
tissues (Fig. 5I). Consistent with the fact that the lung is the main 
target organ of coronavirus infection, only the shortest-path genes 
in the lung are enriched for the term host-pathogen interaction of 
human corona viruses. This result implicates a possible role of the 
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IFITM3 and CD74 signaling cross-talk in SARS-CoV-2 (COVID-19) 
infection, which are also supported by several recent studies (43–45).

DISCUSSION
We introduce a computational method, CytoTalk, for the construc-
tion of cell type–specific signaling pathways using single-cell tran-
scriptomic data and known ligand-receptor interactions. Unlike 
previous methods using known pathway annotations (7, 8), CytoTalk 
constructs full signaling pathways de novo. Using CytoTalk, we per-
formed a comparative analysis of signaling pathways across human 
tissues and developmental stages, revealing increased heterogeneity 

of signaling networks in adult tissues compared to fetal tissues and 
specific nodes in the network that exhibit significant changes in sig-
naling entropy across tissues.

Systematic evaluation of predicted signaling pathways represents 
a major challenge due to the lack of gold-standard cell type–specific 
pathway annotations. Here, we propose two benchmarking strategies 
using single-cell spatial transcriptomic data and perturbation-based 
scRNA-seq data, respectively. Using spatial transcriptomic data, cells 
of two types can be stratified into close and distant cell pair groups 
based on their physical separation. The predicted signaling pathways 
can be validated by computing the mutual information of spatial ex-
pression for pathway genes across cell pairs. Using perturbation-based 
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scRNA-seq data, especially data with ligand/receptor gene pertur-
bation, DEGs between the perturbed and wild-type cells can be used 
to validate predicted pathways. Using these two benchmarking ap-
proaches, we demonstrated that CytoTalk substantially outperforms 
six existing methods that also use scRNA-seq data to characterize 
cell-cell communication.

In the current version of CytoTalk, the node prize is defined on 
the basis of cell type specificity of gene expression. Thus, CytoTalk 
may fail to identify signaling pathways whose genes have low expres-
sion specificity in the cell types under study. To address this issue, 
the node prize can be redefined by considering both absolute gene 
expression level and cell type specificity of gene expression. It is also 
well known that activity of a signaling pathway is regulated by post-
translational modifications. With the rapid development of single-cell 
proteomic technologies (46), CytoTalk can be further improved by 
incorporating these data. The current version of CytoTalk uses intra-
cellular networks constructed using scRNA-seq data. Other types of 
molecular interaction data such as protein-protein interactions and 
genetic interactions are becoming more abundant. The utility of these 
data types can be investigated in the future development of CytoTalk.

In summary, CytoTalk provides a much-needed means for de novo 
construction of full cell type–specific signaling pathways. Compar-
ative analysis of signaling pathways will lead to a better understand-
ing of cell-cell communication in healthy and diseased tissues.

MATERIALS AND METHODS
Construction of intracellular functional gene 
interaction network
We construct an intracellular gene coexpression network for each 
cell type by calculating the mutual information between all pairs of 
genes using the infotheo R package (47). Edges representing indi-
rect functional relationship between genes are removed using the 
data processing inequality criterion (48) implemented in the parmi-
gene package (49). Mutual information value is used as the edge 
weight in the two intracellular networks.

Cross-talk score of a ligand-receptor pair between two 
cell types
Cell-cell communication in a multicellular organism can be mediated 
by autocrine signaling, paracrine signaling, and juxtacrine signaling 
(contact-mediated signaling). There is a fundamental trade-off be-
tween autocrine and paracrine signaling (50). The former enables a 
single cell to talk to itself, whereas the latter is designed to allow 
multiple cell types to talk to each other. Motivated by this observa-
tion, we define a cross-talk score between gene i in cell type A and 
gene j in cell type B as below. Genes i and j encode a ligand and a 
receptor or vice versa

   Cross- talk score  iA,jB   = Norm (    Expression score  iA,jB   )   ×  
              Norm (  Non–self- talk score  iA,jB   )     

   Expression score  iA,jB   = ( PEM  iA   +  PEM  jB   ) / 2  

   Non–self- talk score  iA,jB   =  [   (  − log  10     
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where Expression scoreiA,jB is defined as the average PEM (14, 15) 
(defined below) of gene i and j in cell types A and B, respectively.

The PEM value for cell type specificity of gene i in cell type A is 
defined as the following

   PEM  iA   =  log  10  ( Expr  iA   /  e  iA  )  

   e  iA   =   ∑ 
m=1

  
M

     Expr  im   ×    s  *A   ─ 
 ∑ m=1  M     s  *m  

    

where ExpriA is the observed expression of gene i in cell type A. eiA 
is the expected expression of gene i in cell type A under the null 
hypothesis of uniform expression across all M cell types in the single- 
cell transcriptomic data. Exprim represents the expression of gene 
i in cell type m. s*m is the sum of expression of all genes in cell type 
m. s*A is the sum of expression of all genes in cell type A. Since we 
focus on genes that are expressed higher in a cell type rather than 
lower, PEMiA is set to zero if it is negative.

Non–self-talk scoreiA,jB is defined on the basis of information- 
theoretic measures. MIiA;jA (or MIiB;jB) is the mutual information 
between genes i and j in cell type A (or cell type B). min{Hi*, Hj*} is 
the upper bound of the mutual information and is used to normalize 
the mutual information values to [0, 1]. HiA and HjA are Shannon 
entropy of genes i and j in cell type A, respectively. HiB and HjB are 
Shannon entropy of genes i and j in cell type B, respectively.

The cross-talk score equals the product of the min-max–normalized 
expression score and non–self-talk score. If genes i and j are specif-
ically expressed in cell types A and B, respectively, but are not co-
expressed in either cell type (likely involved in self-talk), then the 
Cross-talk scoreiA,jB would be high, suggesting a high possibility of 
cross-talk between the two cell types.

Construction of an integrated network between two 
cell types
We construct an integrated network consisting of two intracellular 
networks connected by known ligand-receptor interactions. We 
collected 1942 manually annotated ligand-receptor interactions, includ-
ing 1894 interactions from (51) and 48 interactions from (34, 52–56) 
(table S3). Note that both secreted and cell surface proteins could be 
ligands. For each ligand-receptor pair, if the ligand gene and the 
receptor gene are present in the two intracellular networks, then we 
connect them and denote the edge as a cross-talk edge. The cross-
talk score is used as the edge weight as described above. Because of 
the difference in scale between mutual information value and cross-
talk score, we separately normalize the edge weights of intracellular 
networks and cross-talk edges using z score transformation.

De novo identification of signaling network between two 
cell types
We formulate the identification of a signaling network between two 
cell types as a PCSF problem (18, 19). Because the forest is a disjoint 
set of trees, the PCSF problem is a generalization of the classical 
prize-collecting Steiner tree (PCST) problem (57, 58). The individ-
ual signaling pathways are represented as trees, and the collection of 
which (forest) represents the entire signaling network between two 
cell types.

We define edge costs and node prizes in the integrated network 
as follows. The z score–normalized edge weights of the integrated 
network are first scaled to the range of [0, 1]. The cost of edge e in 
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the network is then defined as c(e) = 1 − w(e), where w(e) represents 
the scaled weight of edge e. Node prize is defined on the basis of 
both the PEM value of a gene and its closeness to the ligand/receptor 
genes in the network to identify signaling networks centered around 
the cross-talk edges. To determine the closeness to ligand/receptor 
genes, we use a network propagation procedure to calculate a rele-
vance coefficient for each gene in an intracellular network.

   Relevance   t  = W′ Relevance   t−1  + (1 −  )  Relevance   0   

where Relevancet is the relevance coefficient vector for all genes in 
the intracellular network at iteration t. Relevance0 is the initial value 
of the relevance coefficient vector such that Relevance0(i) = 1 if gene 
i is a ligand or receptor. Otherwise, Relevance0(i) = 0. W′ is a nor-
malized edge weight matrix for an intracellular network, which is 
defined as W′=D−1/2WD−1/2. Here, W is set to the original mutual 
information matrix, and D is defined as a diagonal matrix such that 
D(i, i) is the sum of row i of the matrix W. This network propagation 
procedure is equivalent to a random walk with restart on the network. 
 is a tuning parameter that controls the balance between prior in-
formation (known ligands or receptors) and network smoothing. 
Thus, node prize of gene i in the integrated network is defined as 
p(i) = PEMi × Relevancet(i). This definition can capture both the 
cell type specificity and the closeness of this gene to the ligand or 
receptor gene in the network. To avoid extremely large node prizes 
for ligand or receptor genes, we used  = 0.9 in this study.

The PCSF algorithm identifies an optimal forest in a network that 
maximizes the total amount of node prizes and minimizes the total 
amount of edge costs in the forest. Although the PCSF problem is 
NP (nondeterministic polynomial time)-hard and often needs a high 
computational cost (18), we use a PCSF formulation established in 
(18, 59) and use a highly efficient PCST algorithm (60) to identify the 
PCSF. The objective function of the PCSF problem is defined as below

   min  
F
    c(F ) +  × p(  ̄  F   ) +  × k  

where F represents a forest (i.e., multiple disconnected trees) in the 
integrated network. c(F) denotes the sum of edge costs in the forest 
F, and  p(  ̄  F  )  denotes the sum of node prizes of the remaining subnet-
work excluding the forest F from the network. We modify the inte-
grated network by introducing an artificial node and a number of 
artificial edges to the original network. The artificial edges connect 
the artificial node to all genes in the original network. The costs of 
all artificial edges are the same and are defined as , which influences 
the number of trees, k, in the resulting PCSF.  is a parameter for 
balancing the edge costs and node prizes, which influences the size 
of the resulting PCSF. By tuning parameters  and , multiple PCSTs 
can be identified with the artificial node as the root node. For each 
identified PCST, a PCSF can be obtained by removing the artificial 
node and artificial edges from the PCST.

We identify the signaling network between two cell types by 
searching for the most robust PCSF across the full parameter space 
(see below; fig. S8). To further evaluate the statistical significance of 
the identified PCSF, we construct null distributions for the objec-
tive function and for the fraction of cross-talk edges in a PCSF using 
1000 null PCSFs identified from randomized integrated networks 
(fig. S2). To generate the randomized networks, we separately shuf-
fle the edges of the two intracellular networks while preserving the 

node degree distribution, node prizes, and cross-talk edges as the 
original integrated network.

Parameter selection
The main parameters of CytoTalk are  and  in the objective func-
tion of the PCSF problem. We first determined the optimal ranges 
of the two parameters based on the total number of genes in the 
input integrated network and the size and overlap of the resulting 
PCSFs. For the mouse visual cortex dataset,  values were tested 
from 1 to 60 with a step size of 1. For the mouse olfactory bulb and 
lung tissue datasets,  values were tested from 5 to 500 with a step 
size of 5. For the Human Cell Atlas dataset,  values were tested 
from 1 to 80 with a step size of 1. We found that the upper limit of 
the test values of  is inversely proportional to the total number of 
genes in the integrated network of a given cell type pair (fig. S8A). 
Using  values above this upper limit results in very large PCSFs 
(>2000 edges) (fig. S8B). On the basis of this observation, we sug-
gest that  values can be tested from 1 to 100 if the total number of 
genes in a given cell type pair is above 10,000. However, if the total 
number of genes is below 5000, then it is necessary to increase the 
upper limit of test  value to 500 to ensure that the largest PCSF 
includes more than 2000 edges.

For all datasets,  values were tested from 0.1 to 1.5 with a step 
size of 0.1. We found using  values above this range resulting in 
PCSFs with little difference compared to existing PCSFs (fig. S8C). 
Subsequent optimal parameter selection was conducted using the 
above parameter ranges. For all PCSFs identified using the  and  
ranges determined above, the occurrence frequency of each edge in 
a PCSF was computed to construct a background distribution of edge 
occurrence frequency. A P value for each PCSF was computed by 
comparing the edge occurrence frequency distribution of this PCSF 
to the distribution of all other PCSFs using one-sided Kolmogorov- 
Smirnov test. The PCSF with the minimum P value (red dot) was 
considered as the most robust signaling network predicted by CytoTalk 
(fig. S8D).

Processing of scRNA-seq data
For all scRNA-seq datasets used in this study (table S4), we only re-
tained protein-coding genes based on annotations from the GENCODE 
database (61). For data from the Human Cell Atlas (37), follow-
ing the authors’ data processing procedure, we removed genes 
expressed in fewer than three cells of a given type. For all other data-
sets, we removed genes expressed in less than 10% of all cells of a 
given type.

For identifying DEGs between IL1RL1-knockout and wild-type 
basophils, we first filtered out genes that have fewer than five sequenc-
ing reads in at least five cells. Then, we used the zinbwave function 
in the zinbwave R package (62) to model the zero inflation of the 
counts. The DESeq2 R package (63) was used to perform differen-
tial expression analysis. P values were adjusted for multiple testing 
using the method of Benjamini-Hochberg (64). A total of 619 DEGs 
with adjusted P < 0.05 were identified (table S5).

Processing of SeqFISH+ data
Two SeqFISH+ datasets were downloaded from a published study 
(32), including cell type annotation, cell spatial location [i.e., field of 
view (FOV) index] data, and two cell-by-gene count matrices 
for 523 visual cortex cells and 2050 olfactory bulb cells, respectively 
(table S6). On the basis of the authors’ preprocessing procedure 
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(32), we first log2-transformed the count matrix followed by z score 
transformation.

Mutual information of spatial expression of signaling 
pathway genes using SeqFISH+ data
Cell pairs consisting of two types were categorized into two groups 
based on their physical locations imaged by SeqFISH+, namely close 
and distant groups. SeqFISH+ can image mRNAs for thousands of 
genes in all single cells in each FOV. Five and seven FOVs were im-
aged in the visual cortex and olfactory bulb datasets, respectively (32). 
We considered two cells in the same FOV as a close cell pair, where-
as two cells from two most distant FOVs were considered as a dis-
tant cell pair (fig. S6). Genes in predicted signaling pathways were 
intersected with the genes detected by SeqFISH+. Among these genes, 
we computed the mutual information of SeqFISH+ expression 
values between any gene pair (one from each cell type and are con-
nected in the predicted signaling pathways) across individual cells 
of the two types.

Running of published methods
NicheNet (8) uses a prior ligand-target regulation model by integrating 
known signaling transduction and transcriptional regulatory inter-
actions to predict a signaling network between two cell types. Given 
the scRNA-seq data of cell type A and B, we first defined two gene 
sets that are expressed in these two cell types, respectively. We used 
the same expression cutoff and only retained protein-coding genes 
for analysis as described above. NicheNet requires a predefined gene 
set of interest in cell type B as candidate target genes regulated by 
ligands in cell type A. This gene set was defined as the genes that are 
specifically expressed (i.e., PEM score of >0) in cell type B. Using 
these gene sets as the input, we predicted ligands, their signaling 
pathways, and target genes using predict_ligand_activities and get_
ligand_signaling_path functions in the NicheNet R package. These 
identified signaling pathways were considered as a “cell type A to B” 
signaling subnetwork. Using another set of genes that are specifical-
ly expressed in cell type A as input, we also predicted a “cell type B 
to A” signaling subnetwork. By combining the two subnetworks, we 
obtained a final predicted signaling network between the two cell types.

SoptSC (7) also uses known pathway annotations to predict sig-
naling pathways between two cell types. For comparison, we used 
mouse Reactome pathways and the same ligand-receptor pairs as used 
by CytoTalk. For each ligand-receptor pair, we computed a matrix 
of signaling probabilities between any two cells from cell types A 
and B using the LR_Interaction function in the SoptSC MATLAB 
package. Using this matrix, we computed two probabilities of sig-
naling via the given ligand-receptor pair from each direction (A → 
B and B → A), respectively. On the basis of these signaling probabilities, 
we selected the same number of ligand-receptor pairs as predicted 
by CytoTalk and their known downstream pathways for perform-
ance comparison.

Different from NicheNet and SoptSC, the other four methods only 
predict active ligand-receptor pairs between two cell types. Among 
these four methods, Zhou’s and Skelly’s methods are similar, which 
consider the gene expression levels of a ligand and its receptor sep-
arately. On the basis of Zhou’s method (3), for each gene i, we cal-
culated the mean    ̄   x  i     and SD i of the gene expression values across 
all cell types. If the average expression values of the ligand gene in cell 
type A and the receptor gene in cell type B are both larger 
than    ̄   x  i    + 2    i   , then this ligand-receptor pair is predicted to be active 

by Zhou’s method. On the basis of Skelly’s method (1), for each ligand- 
receptor pair, if the ligand and the receptor genes are expressed in 
more than 20% of the cells of cell types A and B, respectively, then 
this ligand-receptor pair is retained and considered to transmit a 
signal from cell type A to B. We considered all retained ligand- 
receptor pairs from both directions (A → B and B → A) as the final 
predictions by Skelly’s method.

Kumar’s method (2) is different from the two methods above, 
which defines an interaction score for a given ligand-receptor pair 
as the product of the average expression of the ligand gene in cell 
type A and the average expression of the receptor gene in cell type 
B. We selected the same number of ligand-receptor pairs as predict-
ed by CytoTalk based on interaction scores as the final predictions 
by Kumar’s method.

CellPhoneDB (4) is a repository of curated ligand-receptor pairs 
and can be used for predicting ligand-receptor interactions based 
on their cell type specificity. Given an scRNA-seq gene expression 
matrix and cell type annotation data as the input, we used the cell-
phonedb function in the CellPhoneDB Python package to compute 
a P value for the likelihood of cell type specificity of each ligand- 
receptor pair. For two given cell types A and B, we selected the 
ligand-receptor pairs with P < 0.05 from each direction (A → B and 
B → A) as the final predictions by CellPhoneDB.

Differential signaling entropy
Given a signaling network and gene expression data, a local Shannon 
entropy for each gene in the network can be computed to measure 
the uncertainty of signaling interaction incident on a given gene. Fol-
lowing the definition in (38), signaling entropy of gene i is defined as

    ~  S  i    = −   1 ─ log  k  i  
     ∑ 
j∈ N  i  

     p  ij   log  p  ij    

   p  ij   =   
 w  ij   ─ 

 ∑ k∈ N  i      w  ik   
    

where Ni represents the first-order neighbors of gene i in the signaling 
network. wij denotes the edge weight between genes i and j and is 
defined as wij ∝ Expri ∙ Exprj, where Expri and Exprj are the normal-
ized expression levels of gene i and j, respectively. pij is the probabil-
ity of interaction between genes i and j. Here, ki is the degree of gene 
i in the signaling network, which serves as a normalization factor to 
scale the signaling entropy to the range of [0, 1].

We computed signaling entropies for all genes in the predicted 
networks in kidney, heart, and lung at fetal and adult stages using 
the R package provided in (38). We then defined differential entropy 
for a given gene as the absolute value of the difference in signaling 
entropies between a pair of tissues. Note that a gene shared by all 
three tissues has three differential entropy values. We selected the 
maximum differential entropy value of that gene for determining 
the significance of differential entropy.

To identify genes with significantly large differential entropies, 
we constructed a null distribution of differential entropies based on 
randomized networks. To generate the randomized network for 
each of the three tissues at a developmental stage, we separately 
shuffled the edges of the two intracellular networks while preserv-
ing the node degree distribution, node prizes, and cross-talk edges 
as the original integrated network. We then identified 100 PCSFs 
from the randomized integrated networks for each tissue and com-
puted signaling entropies of genes in these PCSFs. To generate the 
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null distribution of differential entropy, we performed a total of 30,000 
pair-wise comparisons of signaling entropies between all PCSFs from 
a pair of tissues. An empirical P value of 0.1 was used as the cutoff 
to identify genes with significant differential entropies.

Tissue specificity and conservation scores of genes
Tissue specificity scores of genes are based on the Tau metric (65), 
which is defined as   =  ∑ i=1  N   (1 −  x  i   ) / (N − 1) , where N is the number 
of tissues and xi is the expression of gene x in tissue i normalized by 
its maximal expression across all tissues. Tau values for all genes 
were downloaded from (39). Conservation scores of genes were cal-
culated on the basis of the phastCons score, which is the probability 
that a nucleotide belongs to a conserved element based on the multiple 
sequence alignment (66). We downloaded phastCons scores based 
on multiple alignments of 30 mammalian genomes from the Univer-
sity of California, Santa Cruz Genome Browser. Conservation score 
for a gene was computed as the average phastCons score of all exonic 
sequences of the gene. Both tissue specificity and conservation scores 
of the shared pathway genes across kidney, heart, and lung tissues 
are listed in table S2.

Differential cross-talk score across tissues
For each ligand-receptor pair, we computed three absolute differential 
values of cross-talk scores between the three human tissues (kidney, 
heart, and lung) and used the maximum of the three values as the 
differential cross-talk score for the ligand-receptor pair.

Functional enrichment analysis of signaling pathways
To investigate the functions of the signaling pathway associated with 
a given gene, we first extracted the 10th-order neighborhood of that 
gene from the predicted signaling network. Then, we performed en-
richment analysis of the neighborhood using g:Profiler (67) and 
removed redundant Gene Ontology terms using REVIGO (68). En-
richment P values were adjusted for multiple testing using the method 
of Benjamini-Hochberg (64).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/16/eabf1356/DC1

View/request a protocol for this paper from Bio-protocol.
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