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BACKGROUND: Aneurysmal subarachnoid hemorrhage (aSAH) is associated with a high
mortality andpoor neurologic outcomes. Thebiologic underpinnings of themorbidity and
mortality associated with aSAH remain poorly understood.
OBJECTIVE: To ascertain potential insights into pathological mechanisms of injury after
aSAH using an approach of metabolomics coupled with machine learning methods.
METHODS: Using cerebrospinal fluid (CSF) samples from 81 aSAH enrolled in a retro-
spective cohort biorepository, samples collected during the peak of delayed cerebral
ischemia were analyzed using liquid chromatography-tandemmass spectrometry. A total
of 138 metabolites were measured and quantified in each sample. Data were analyzed
using elastic net (EN) machine learning and orthogonal partial least squares-discriminant
analysis (OPLS-DA) to identify the leading CSFmetabolites associated with poor outcome,
as determined by the modified Rankin Scale (mRS) at discharge and at 90 d. Repeated
measures analysis determined the effect size for each metabolite on poor outcome.
RESULTS: EN machine learning and OPLS-DA analysis identified 8 and 10 metabolites,
respectively, that predicted poor mRS (mRS 3-6) at discharge and at 90 d. Of these
candidates, symmetric dimethylarginine (SDMA), dimethylguanidine valeric acid (DMGV),
and ornithine were consistent markers, with an association with poor mRS at discharge
(P = .0005, .002, and .0001, respectively) and at 90 d (P = .0036, .0001, and .004, respec-
tively). SDMAalsodemonstrated a significantly elevatedCSF concentration comparedwith
nonaneurysmal subarachnoid hemorrhage controls (P = .0087).
CONCLUSION: SDMA, DMGV, and ornithine are vasoactive molecules linked to the nitric
oxide pathway that predicts poor outcome after severe aSAH. Further study of dimethy-
larginine metabolites in brain injury after aSAH is warranted.

KEYWORDS: Aneurysm, Biomarker, Machine learning, Metabolites, Metabolomics, Subarachnoid hemorrhage,
Cerebrospinal fluid
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A neurysmal subarachnoid hemorrhage
(aSAH) is a devastating form of acute
central nervous system injury with an

occurrence of approximately 1:10 000 patients

ABBREVIATIONS: ADMA, asymmetric dimethylarginine; aSAH, aneurysmal subarachnoid hemorrhage; AUC,
area under the curve; CI, confidence interval; CSF, cerebrospinal fluid; DCI, delayed cerebral ischemia; DMGV,
dimethylguanidine valeric acid; EN, elastic net; EVD, external ventricular drain; HPLC, high-performance liquid
chromatography; LC-MS/MS, liquid chromatography-tandem mass spectrometry; mRS, modified Rankin Scale;
NO, nitric oxide;OPLS-DA, orthogonal partial least squares-discriminant analysis;OR, odds ratio;QQQMS, triple-
quadrupole mass spectrometry; SDMA, symmetric dimethylarginine; TCD, transcranial doppler ultrasonography;
VIP, variable importance in the projection;WFNS,World Federation of Neurological Surgeons
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per year and results in ∼15% mortality prior to
receiving medical attention.1,2 Of those able to
reach medical attention, 20% have a poor neuro-
logic outcome.3 This relates to both the primary
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brain injury sustained during aneurysmal rupture as well as
secondary injury from the sequelae of the hemorrhage. Despite
extensive research, the pathophysiology underlying patient
outcomes remain poorly understood.4-6

Clinical and demographic patient factors have a limited ability
to predict neurological outcome. Initial neurologic examination,
transcranial doppler ultrasonography (TCD), and electroen-
cephalography can be used to augment prediction and may
also inform the decision to pursue intervention and cerebral
angiography.7-10 Metabolomics is an established method to better
understand the pathophysiological and metabolic state in disease,
and to inform prognosis.11 Prior research demonstrated the utility
of this method combined with machine learning in uncovering
putative markers in aSAH patient plasma samples.12,13 Given
that the blood-brain barrier may lead to differing changes in
the cerebrospinal fluid (CSF) compared to plasma, we sought
to evaluate the relationship of CSF metabolites with clinical
outcome in a cohort of severe aSAH patients.

METHODS

Cohort
With institutional review board approval, we prospectively enrolled

190 consecutive adult patients with aSAH, greater than 18 yr old,
who consented to participation in the neuroscience intensive care unit
biospecimen collection at a single institution. In patients who had an
external ventricular drain (EVD) placed (n = 112), CSF samples were
collected during acute hospitalization, at 3 time epochs during hospital-
ization (early: day 0-5 after aSAH, mid: day 6-10, and late: day 11-15),
and 81 were available for analysis. Clinical information was collected
at the time of entry into the repository as well as at 90-d follow-up.
CSF was only collected passively (from the burette) when the EVD
was open and draining. Patients with clamped EVDs did not have
samples drawn. A total of 154 CSF samples from 81 aSAH patients with
external ventricular drains were available. Patients were excluded if their
subarachnoid hemorrhage (SAH) was from an alternate etiology. We also
collected a separate cohort of nonruptured cerebral aneurysm patients
prospectively, which served as a control population. In this cohort after
preprocedural consent, CSF was obtained at the time of open cerebral
aneurysm surgery from either a lumbar drain or intracranial cistern
(n = 16 patients).

Patient demographic and clinical characteristics including World
Federation of Neurological Surgeons (WFNS) grade, modified Fischer
score, means of treatment, and need for permanent CSF diversion were
collected. Discharge and 90-d outcome were assessed using the modified
Rankin Scale (mRS) score. Vasospasm was evaluated on TCD, a peak
systolic velocity >200 cm/s was defined as elevated; delayed cerebral
ischemia (DCI) was evaluated based on the consensus definition of
Vergouwen et al.14

Metabolite Profiling
CSF samples were collected after <1 h accumulation in the burette

of a ventriculostomy system, centrifuged at 2000 × g for 15 min to
remove cellular material, and aliquots of supernatant frozen and stored
at −80◦C. Samples were treated with acetonitrile/methanol (3:1) with
citrulline-d8. CSF samples were separated using a high-performance

liquid chromatography (HPLC) system with hydrophilic interaction
chromatography on a 2.1 × 100 mm, 3.5-μm XBridge Amide column
(Waters,Milford,Massachusetts), followed by targeted triple-quadrupole
mass spectrometry (QQQ MS) detection in positive and negative
polarity modes, using our previously established method.13,15 Briefly,
the chromatography system consisted of a 1290 Infinity autosampler
and 2 1290 HLPC binary pumps, connected to 649S QQQ MS
(Agilent). Mobile phase A was 95:5 (v:v) water:acetonitrile with 20 mM
ammonium acetate and 20 mM ammonium hydroxide (pH 9.5).
Mobile phase B was acetonitrile. Ammonium acetate, ammonium
hydroxide, and HPLC grade solvents were obtained from Fisher Scien-
tific (Hampton, New Hampshire).

Peak integration for metabolite quantification was carried out using
MassHunter QQQ MS Quantitative Analysis software (Agilent). Peaks
quality was checked and normalized to human pooled CSF samples that
were interspersed at regular intervals every 10 injections, using standard
procedures.15,16 A total of 138metabolites were measured and quantified
in each sample.

The metabolites of interest, as identified with the screening method
(described below), were re-analyzed and quantitated. This assay achieved
chromatographic separation of asymmetric dimethylarginine (ADMA)
from symmetric dimethylarginine (SDMA) and, thus, allowing quanti-
tation of these arginine metabolites. In addition to ADMA and SDMA,
citrulline, arginine, monomethylarginine, methionine, S-adenosyl
methionine and S-adenosyl-L-homocysteine were also quantitated.

The collected CSF samples, calibration standards, and quality control
samples were defrosted on wet ice and vortex-mixed thoroughly before
extraction by protein precipitation. A total of 30 μl of each sample was
aliquoted and 20 μL of internal standard intermediate solution (20 μM
citrulline-d7 and 20 μM methionine-d4) in acetonitrile:water (50:50)
was added to each sample before mixing for 5 min. Protein precipi-
tation was carried out by adding 150 μL of acetonitrile:methanol:formic
acid (75:25:0.2) to each sample well. Sample plates were sealed and
vortex-mixed for 5 min before centrifugation (∼3500 × g, 5 min at
4˚C). For chromatographic separation, an Atlantis Silica HILIC 3 μm,
2.1 mm × 100 mm (waters) was used. Mobile phase A was ammonium
formate 10 mM (aq):formic acid (100:0.2), mobile phase B was acetoni-
trile:formic acid (100:0.2). A shallow gradient from 80% B to 60% B
over 4.6 min was run at 1 mL/min before re-equilibration. Duplicate
calibration curves, with ascending line at the start of the batch and a
descending line at the end of the batch, were run to establish linearity.
Peak integration was carried out using MassHunter QQQ MS Quanti-
tative Analysis software (Agilent) and internal standards were used for
data normalization.

Machine Learning Analysis
We used a previously established method, elastic net (EN) machine

learning, to identify putative metabolites of interest.13,17,18 EN is a
selection method and extension of the linear regression model. EN is able
to automatically select the best features linked with the outcome from the
dataset and applies a penalty function that provides a sparse solution. In
order to get unbiased results, 75% of the samples were randomly divided
into a training set with the remaining 25% used as a validation set. Subse-
quent 10-fold cross-validation and 100 iterations optimized the penalty
parameters, which allowed a subsequent combinatorial analysis of the
EN to rank the metabolites according to their predictive value of mRS at
discharge and at 90 d.19 The stronger the penalty (close to 1), the smaller
number of variables are selected, whereas if the penalty is weaker (close
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TABLE 1. Clinical Characteristics of the CSF Cohort Compared to the
Entire Cohort

Entire cohort Study cohort
(n= 190) (n= 81) P

Age, mean ± SD 57.3 ± 12.0 57.7 ± 12.4 .78
Female, n (%) 117 (62%) 49 (60%) .97
WFNS, median
(interquartile range)

1 [1, 4] 4 [1, 5] <.001

Clip, n (%) 113 (61%) 45 (57%) .61
DCI, n (%)a 61 (43%) 29 (62%) .026
Vasospasm, n (%)b 43 (48%) 24 (58%) .28
VP shunt, n (%) 17 (9%) 12 (15%) .20
mRS at discharge 3 [2, 4] 4 [3, 5] <.001
mRS at 90 d 0 [0, 1] 1 [0, 1] .001

aDCI was available in 142 patients.
bVasospasm was available in 89 patients.
VP, ventriculoperitoneal.

to 0), higher numbers of variables are selected. We focused our analysis
on the time period when secondary brain injury is most likely to occur
(6-10 d after aSAH ictus), reasoning that metabolites changes during
this time frame would be most informative. These selected metabolite
features were further modeled using logistic regression and area under
the curve (AUC) calculations. We produced 2 AUC distributions. One
is from random label sampling, ie, randomizing the sample labels in each
iteration and averaged over 100 iterations and displayed as a “random
AUC.” The other AUC is based on the true bootstrapped samples and
considered as true distributions of AUC.

We also performed an additional machine learning approach
using orthogonal partial least squares-discriminant analysis (OPLS-DA)
regression.20 The variable importance in the projection (VIP) parameter
ranks the importance of each metabolite in its contribution to the
discriminatory model with a VIP value of>1.5 considered as significant.
We leveraged EN machine learning and OPLS-DA to identify common
metabolites in both methods.

Statistical Analysis
These metabolites were then further evaluated using 2-tailed student

t-test and categorical variables using Fischer’s exact test. A linear
mixed effects repeated measures model was performed to evaluate
for significant change in metabolite levels maintained over time.
Analyses were performed using R statistical computing environment
(R Version 3.6.0). A P-value < .05 was considered statistically
significant.

RESULTS

From the starting cohort of 190 patients, 112 patients
presented with SAH that required placement of an EVD. Of
those, 81 patients had 140 CSF samples available for analysis,
which constituted the EVD study cohort. The clinical charac-
teristics of the study cohort are presented in Table 1 and are
compared to the entire cohort of SAH patients. Patients with
EVDs demonstrated worse neurological function on presentation
and on follow-up. Compared to the starting cohort, the EVD

cohort had a higher WFNS grade (3 [1, 5] vs 1 [1, 4]; P < .001),
a higher rate of DCI (62% vs 43%; P = .026), worse outcome
at discharge (mRS 4 [3, 5] vs 3 [2, 4]; P < .001), and worse
outcome at 90 d (mRS 1 [0, 1] vs 0 [0, 1]; P < .001). No
procedure related rehemorrhage or ischemia was observed in our
metabolomics cohort.
Within the EVD cohort, clinical and demographic factors

associated with worse discharge outcome included older age (odds
ratio [OR] 1.15, 95% CI 1.06-1.24, P < .001) and WFNS score
4 to 5 (OR 3.71, 95% CI 1.01-13.7, P = .048), but not sex (OR
1.46, 95% CI 0.41-5.24, P = .56). Age was also associated with
worse mRS at 90 d (OR 1.06, 95% CI 1.01-1.12, P = .011).
To examine the CSF metabolites linked to discharge and

90-d mRS, we used EN machine learning method to select
metabolites automatically. Figure 1 demonstrates boxplots of the
leading metabolites identified in the EN model that predicted
discharge mRS. These included acetyl-alanine (P= .029), SDMA
(P = .00038), and dimethylguanidine valeric acid (DMGV)
(P = 3.4 × 10−5). Figure 2 demonstrates boxplots of the top
features in the EN model that predicted 90-d mRS outcome.
Common variables that predicted both discharge and 90-d mRS
included ornithine (P = .0015), DMGV (P = .0098), and
SDMA (P = .0012). The AUC using those metabolites after
100 bootstrapping resulted 0.8 (Figure, Supplemental Digital
Content).
We next employed a second method of machine learning,

OPLS-DA, which prioritizes features that can best distinguish
between 2 classes (eg, good vs poor outcome).21 The leading
metabolites that contributed to distinguishing both discharge and
90-dmRS, as defined by the VIP score> 1.5 are shown in Table 2.
Between the 2 methodologies at both time points, only 2 metabo-
lites were significant in all analysis: SDMA and ornithine. SDMA
appeared within each subset as associated with poor outcomes,
and given its prior investigations in SAH, was thus investigated
further as it related to patient outcomes.22,23
To further corroborate our findings, we comparedCSF concen-

trations of SDMA in SAH patients vs those undergoing elective
aneurysm clipping. SDMA concentrations in control patients
were significantly lower than that of patients with poor outcomes
(Figure 3A; P = .009). There was no difference in CSF SDMA
level between aSAH patients with good outcome and elective
aneurysm clipping patients (P = .9).
In our initial liquid chromatography-tandem mass

spectrometry (LC-MS/MS) metabolomics method, the
dimethylarginine enantiomers (SDMA and ADMA) were
not distinguishable from each other. We therefore developed
a follow-up dimethylarginine-targeted LC-MS/MS method
that differentiated SDMA from ADMA, as well as detected
additional related metabolites, including methylmalonic acid, s-
adenosylhomocysteine and s-adenosylmethionine. Examination
of these metabolites revealed that SDMA predicted outcome at
discharge and at 90 d (epoch1 P = .0005 and .0036) but not
with radiographic vasospasm (OR 0.12, 95% CI 0.001-13.9,
P = .38). Because SDMA measurements were available at serial
timepoints, we next constructed linear mixed effects models,
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FIGURE 1. Top metabolites that predict discharge outcome identified by the EN machine learning model. Individual boxplots with associated P-values are
shown for each of the top metabolites found to predict discharge outcome (mRS 0-2 vs 3-6).
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FIGURE 2. Top metabolites that predict 90-d outcome identified by the EN machine learning model. Individual boxplots with associated P-values are shown
for each of the top metabolites found to predict outcome at 90 d (mRS 0-2 vs 3-6).
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TABLE 2. Top Metabolites That Predict Good vs Poor Outcome in
OPLS-DAModel VIP Values

Discharge 90 d

P VIP P VIP

Ornithine 4.41E-05 1.91 1.51E-03 1.72
Phenylalanine 4.85E-05 1.67 1.01E-02 1.52
Indole lactate 4.73E-04 1.63 1.12E-02 1.56
Kynurenic acid 5.44E-05 1.79 1.73E-02 1.57
Pantothenic acid 7.02E-05 1.66 7.89E-03 1.50
Pseudouridine 5.96E-05 1.60 5.88E-03 1.66
Pyroglutamic acid 3.88E-05 1.79 1.99E-03 1.69
SAH 3.12E-06 1.93 2.95E-03 1.74
SAM 9.38E-04 1.68 1.35E-02 1.63
SDMA 5.05E-04 1.90 3.66E-03 1.81

SAH, s-adenosylhomocysteine; SAM, s-adenosylmethionine.

which confirmed that SDMA was elevated across time points
in patients with poor outcome at discharge (Figure 3B; β =
0.19, P = .002) and at 90 d (Figure 3C; β = 0.18, P = .001).
Additional metabolites within the pathway that were signif-
icant included s-adenosylhomocysteine (β = 0.01, P = .017 at
discharge; β = 0.02, P = .006 at 90 d), ADMA (β = 0.17,
P = .04 at discharge; β = 0.19, P = .014 at 90 d), DMGV
(β = 0.32, P = .002 at discharge; β = 0.46, P < .0001 at 90
d), and ornithine (β = 0.53, P < .0001 at discharge; β = 0.28,
P = .004 at 90 d), indicating a perturbation in dimethylarginine
metabolism at several points in the pathway.

DISCUSSION

Using complementary machine learning approaches, we noted
elevated CSF concentrations of dimethylarginines were associated
with poor outcomes at both discharge and 90-d follow-up after

FIGURE3. CSF SDMA concentrations over time repeated measures analysis and relative to control patients.
A, Comparison of CSF SDMA concentrations between elective aneurysm patients and SAH patients
(P= .009).B, Average SDMA concentrations of poor and good outcome at discharge with associated repeated
measures analysis and associated p value, P = .002. C, Average SDMA concentrations based on good and
poor outcomes at 90 d with associated P-value of repeated measures analysis, P = .001.
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severe aSAH.17 Further, when compared to CSF of control
patients undergoing elective aneurysm clipping, severe aSAH
patients demonstrated a significantly higher concentration of
SDMA in CSF, which was most notable in patients with poor
outcomes.
Dimethylarginines play a known role in cardiovascular disease

and renal dysfunction.22,24-27 Known breakdown product of
proteins containing methylarginines, dimethylarginines play a
critical role in regulating the synthesis of nitric oxide (NO).
ADMA (an enantiomer of SDMA) has been shown to alter the
synthesis of NO as a competitive inhibitor. Multiple studies
have demonstrated that high serum concentrations of ADMA
are associated with poor outcomes in the critically ill patients.
Additionally, primate models have demonstrated an association of
ADMA with cerebral vasospasm.23 We found that both SDMA
and transamination byproducts, DMGV and ornithine, were
associated with poor outcome.28 Moreover, SDMA was not
originally thought to have a direct effect on the NO synthase
pathway; however, recent studies have found that high density
lipoprotein in combination with SDMA, but not ADMA, inhibit
NO synthase via innate immunity pathways.29 Taken together,
our study found that CSF SDMA, ornithine, and DMGV,
related metabolites that alter the NO pathway, were significantly
associated with outcomes.
Prior studies demonstrated a putative role of both SDMA

and ADMA in neurovascular disease.30 SDMA and ADMA are
implicated as markers and putative mediators of poor outcomes
based on an association with DCI and vasospasm.22,23 These
papers, although lower powered than our study (n = 34 and
13, respectively) specifically analyzed the cerebral spinal fluid for
SDMA without evaluating for multiple other markers. Our study
reaches a similar conclusion that the CSF concentration of SDMA
is associated with poor outcomes with the additional demon-
stration of association with other metabolites in dimethylarginine
metabolism, DMGV, and ornithine.
As a retrospective study, we relied on the availability of CSF for

analysis, thus our cohort was biased towards higher grade SAH
patients. Our findings did not correlate metabolite levels with
vasospasm. Similarly, although statistically robust, the odds ratio
of 1.27 and 1.5 of SDMA concentrations with poor outcome at
discharge and 90 d, respectively, demonstrated a moderate effect
size. These effects may be a byproduct of exclusively studying
sicker patients. A future study with a more diverse cohort can
clarify and these findings. Vasospasm does not correlate with
outcomes in larger cohorts and the lack of correlation with SDMA
in our cohort may add further support to the pathophysiology
occurring at the microvascular level.31,32 Additionally, although
the patient samples were obtained and processed in less than an
hour, this time may introduce a change in the metabolite profile
that we are unable to control for in our study.
With a limited number of therapeutic options beyond

supportive care for aSAH, our study adds further support of the
role of SDMA in SAH pathophysiology. The secondary injury
associated with aSAH is an important therapeutic target. Studies

of serum are limited to those metabolites in the peripheral circu-
lation, whereas CSF provides a unique lookmore proximate to the
site of injury. Whether these significant metabolites are a marker
of damage or a causative agent and point for intervention remains
a question. Future work will explore the origin of differential
concentrations of SDMA, DMGV, and ornithine in aSAH.

CONCLUSION

Using a combination of metabolomics and machine learning,
we have demonstrated an association of poor clinical outcomes
with SDMA, DMGV, and ornithine concentrations in the CSF
of severe aSAH patients. These findings are a platform for future
investigations into the pathologic underpinnings of secondary
injury from aSAH.
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COMMENTS

I n the current study, the authors present a machine learning-based
analysis of CSF metabolites in severe aneurysmal subarachnoid

hemorrhage (aSAH), with the stated goal of identifying candidate
biomarkers for clinical prognostication. Their assessment is a novel,
timely, and potentially impactful application of machine learning
technologies to a patient population with an unambiguous need for
innovative approaches to their clinical care. The key findings pertain to
dimethylarginine metabolites including SDMA,DMGV, andOrnithine,
which were observed at significantly higher concentrations in the CSF
of patients with severe aSAH and poor outcomes, as compared to those
patients who reached a more favorable outcome after severe aSAH. This
highlights an important link between an excess of metabolites that alter
the nitric oxide pathway and poor aSAH outcomes; however, the study is
also limited by a small cohort size, poor generalizability due to the specific
focus on higher-grade hemorrhages in patients with EVDs, and marked
risk of systematic error, including selection bias. Further, as has been
described in several preceding critiques of machine learning as applied
to small, heterogeneous, potentially confounded cohorts, the risk of a
spurious statistical outcome is considerable–particularly when employing
a 0.05 alpha threshold. Nevertheless, the authors present their findings
with appropriate caution and reserve, and their interesting work should
be interpreted as a promising exercise in hypothesis generation, which
may guide more impactful work in this critical clinical space.

Christopher S. Graffeo
Rochester, Minnesota

I n this study of 81 patients with aneurysmal subarachnoid hemor-
rhage (aSAH), the authors assessed metabolomic markers within

cerebrospinal fluid (CSF) and used machine learning techniques
to associate CSF markers with functional outcomes at discharge
and 90-day follow up. In conclusion, elevated CSF levels of
symmetric dimethylarginine (SDMA), dimethylguanidino valeric acid
(DMGV), and ornithine were associated with poorer outcomes after
aSAH.

As machine learning techniques advance, the identification of
disease biomarkers is simultaneously enhanced. Metabolomics specif-
ically addresses the end results of cellular processes, with metabolic
products sequentially following gene expression and protein translation
fromDNA. Given the complexity of neuro-metabolomics, this search for
biomarkers amongst a broad cohort of metabolic markers is appropriate
for machine learning strategies. In this study, biomarker identification
has implications on prognostication; however, other biomarkers may be
used to guide treatment decisions or even identify possible pharmacologic
targets.

In light of the authors’ results, it is reasonable to conclude that SDMA,
DMGV, and ornithine are markers of poor outcome after severe aSAH.
However, a critique of the study design is the patient cohort, which is

1010 | VOLUME 88 | NUMBER 5 | MAY 2021 www.neurosurgery-online.com

https://academic.oup.com/neurosurgery/article-lookup/doi/10.1093/neuros/nyaa557#supplementary-data
https://academic.oup.com/neurosurgery/article-lookup/doi/10.1093/neuros/nyaa557#supplementary-data


CSF METABOLITES ASSOCIATEDWITH ASAH OUTCOMES

made up of aSAH patients with external ventricular drains (EVDs) and
non-aSAH patients undergoing elective surgery for aneurysm treatment.
One major population that is excluded is good grade aSAH patients who
did not require an EVD. While the results do indicate that biomarker
discovery is reasonable using machine learning, it is important to note
this absence of a major patient cohort and its potential implications for

bias. While obtaining CSF specimen in this group may be difficult, this
is certainly a space for further research in the future.

Kurt Yaeger
J. Mocco

New York, New York
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