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Abstract

To achieve ecological and reproductive success, plants need to mitigate a multitude of stressors. 

The stressors encountered by plants are highly dynamic but typically vary predictably due to 

seasonality or correlations among stressors. As plants face physiological and ecological constraints 

in responses to stress, it can be beneficial for plants to evolve the ability to incorporate predictable 

patterns of stress in their life histories. Here we discuss how plants predict adverse conditions, 

which plant strategies integrate predictability of biotic stress, and how such strategies can evolve. 

We propose that plants commonly optimize responses to correlated sequences or combinations of 

herbivores and pathogens, and that the predictability of these patterns is a key factor governing 

plant strategies in dynamic environments.
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Plants in a variable and multi-stressor environment

Individual organisms use historical and current information to adapt their physiology and 

behaviour to retain fitness under forthcoming conditions [1, 2]. For sessile organisms that 

cannot evade suboptimal environments by moving, fitness is strongly determined by 

phenotypic responses to changes in (a)biotic conditions. Plants serve as ideal model systems 

for understanding how sessile organisms use information and adapt their phenotype in a 

community context [3]. Over their lifetimes, plants cope with a range of stresses, such as 
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daily changes in insolation and temperature, low resource availability, unfavourable weather, 

competition, and attack by pathogens or herbivores [4, 5]. In many cases, stressors are 

immediate and long lasting [6]. However, probability of occurrence of biotic stressors as 

well as the sequence and combination in which they occur can be highly variable [e.g. 7]. 

Consequently, plants have evolved phenotypic plasticity to fine-tune their responses to the 

multiple stressors present in the environment in which they develop and persist [5, 8, 9].

Most of our research on plant plasticity has focussed on how plants maximize resilience to 

current stress. However, more recently plant physiological and ecological studies have 

highlighted how plant responses to current stress not only affect plasticity in response to 

future stress [10, 11] but also how this plasticity alters the likelihood of future stress [12, 

13]. Importantly, even though stressors may vary greatly across and within seasons and over 

the life cycle of plants, their occurrence is not random. Foreseeable patterns may emerge 

from the phenology of insect herbivores and activity patterns of vertebrate herbivores 

associated with optimal abiotic conditions [14], the responses of herbivores and pathogens to 

specific plant (ontogenetic) phenotypes [15], or the increased likelihood of simultaneous or 

sequential attacks by different plant-antagonists [13]. For example, open wounds in plant 

tissues caused by chewing herbivores increase the risk of pathogen attack [16]. Such 

correlations provide plants with an opportunity to adjust their phenotype in anticipation of 

sub-optimal conditions or dynamics of stress. Even though it has been well established that 

anticipatory responses (see Glossary) in plants are ubiquitous [17], we have little 

understanding of the ecological conditions that promote the evolution of anticipatory 

strategies, especially in relation to biotic stress, or under which conditions such strategies are 

adaptive [18]. Where most theory on plant growth-defence strategies and their evolution thus 

revolves around responses to current stress, predicting and anticipating forthcoming stress 

may be an adaptive strategy under various ecological scenarios [19] and should be 

prominently included in our theories on plant plasticity.

Plants are likely to commonly optimize responses to correlated sequences or combinations 

of herbivores and pathogens, rather than optimizing responses to current stress. We apply the 

concept of ecological forecast horizons, developed to quantify the accuracy of predictions 

on community and ecosystem processes, to plant defence strategies [20, 21]. We define a 

plant’s forecast horizon as the timespan measured from the (static) point in time at which the 

plant has obtained information for which a plant can make more accurate predictions on, and 

hence prepare for, forthcoming stress conditions than when following non-anticipatory 

strategies. Plant defence strategies incorporate a forecast horizon to cope with attacks by 

herbivores and pathogens following a gradient of predictability ranging from wholly 

unpredictable to highly predictable. Anticipatory strategies fundamentally revolve around a 

cost – benefit balance [22], but existing theory can be critically expanded by explicitly 

incorporating the predictability of biotic stress in risk management strategies.

Using information from the environment to predict future stress

The forecast horizon of plants is determined by their ability to obtain information that 

correlates with future environmental and ecological conditions [23]. The process of 

information gathering in plants and the subsequent responses to stress involve numerous 
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sensory mechanisms and have been thoroughly reviewed [see e.g.: 17] (Table 1). As most 

stressors persist over long periods of time, current conditions experienced by plants are 

likely to correlate well with the environment that plants will experience in the near future. A 

simple example is the daily variation in light levels caused by the Earth’s rotation on its axis 

(night vs day). Circadian rhythms evolved in response to this predictable diurnal flux in light 

(and temperature) levels [24]. An example of a similar evolutionary response to biotic stress 

is that some plants can detect oviposition by phytophagous insects, which correlates well 

with likely future herbivory by larvae hatching from these eggs [1]. Plants that prime or 

induce defences in response to eggs gain a fitness advantage over those plants without the 

ability to use this cue [16].

In addition to a direct interaction with specific stressors, plants can obtain information from 

more indirect cues or from the correlations between different stressors [25]. As attacker 

communities are structured over time because of differences in phenology, life history and 

niche differentiation, interactions with specific attackers can become reliable predictors of 

future biotic stress by different attackers. For example, leaf shelters constructed by 

caterpillars of the genus Pseudotelphusa on white oak Quercus alba increase the species 

richness of subsequent herbivores that colonize the new niches provided by these leaf 

shelters [12]. In addition to niche construction, herbivore-induced changes in plants can 

generate plant-mediated interaction linkages between herbivores. Plant responses to an 

initial attacker can thus affect the likelihood of colonization by subsequent herbivores [13, 

26]. These correlations among antagonists can be immediate such as found for the correlated 

attack for pathogens spread by insect vectors [27], or spanning over longer periods of time 

and even across seasons for perennial plants, such as found for the correlations between 

transient attack by herbivores and their legacy effects on future biotic stress [28]. Thus, by 

perceiving the current herbivore interaction as a cue for the type of future attack, plants may 

incorporate likely future stress in their response to the current attacker.

As the probability of interactions with a specific stressor is closely related to plant 

phenotype, the phenological and conditional state of the plant can be an important source 

of information that predicts to what type of stress it may get exposed. Moreover, transition 

between ontogenetic or phenological stages of plants such as germination, leaf flushing, or 

flowering are often initiated by similar abiotic conditions that trigger the release from 

dormancy in insects or migration of vertebrate herbivores. Hence, phenologies of plants and 

their attackers may strongly correlate [29]. The likelihood and impact of herbivore attack on 

plants may be strongly dependent on the plant phenotype expressed at each ontogenetic 

stage [14, 30] and on the ability of different ontogenetic stages of herbivores to cope with 

ontogenetic variation in plant phenotypes [31].

When stress conditions for parental plants closely correlate with conditions that are likely to 

be experienced by their offspring, it can be adaptive for parental plants to actively regulate 

ontogenetic trajectories or trait plasticity in the next generation [32, 33]. Recent studies have 

highlighted the important role of epigenetic trans-generational mechanisms in the regulation 

of trait plasticity [34]. These mechanisms allow plants to alter the plasticity of offspring 

without requiring direct genetic variation, greatly increasing the responsiveness of plants to 

their environment over shorter trans-generational time scales (Box 1). Notably, such trans-
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generational plasticity fits well into a traditional evolutionary framework. The ability to alter 

the plasticity of a trait in offspring is likely a genetically encoded and heritable trait itself, 

resulting from Darwinian adaptation [35].

Plants evaluate and integrate information before expressing responses

A significant problem for plants is that not all stimuli are relevant or can be used to 

anticipate future conditions in the plant’s environment [23]. Identifying reliable cues from a 

background of environmental noise is thus a key challenge for plants using anticipatory 

defence strategies involving a forecast horizon. The first difficulty in the perception of 

information is that when the stimulus and the stress with which it correlates are separated 

over a wider timespan or longer distance, variation increases due to stochastic processes in 

the environment. Correlations between cues and the conditions they predict can rapidly 

deteriorate over spatial or temporal scales. This creates spatio-temporal variation in cue 

reliability, in which plants may be unable to correctly integrate or respond to the information 

they gather. A second challenge is that the correlations between single cues and stressors are 

often context-dependent e.g. the combination of the stressor with other cues. Exactly how 

accurate cues must be before they are considered reliable depends on the balance between 

the asymmetric fitness cost of errors. If the response threshold to a stimulus is too low, the 

costs of the defence response to a false alarm may outweigh the cost of being unprepared for 

attack [22, 36].

Possible solutions to these issues are, on the one hand, the integration of multiple cues in 

predictions, and, on the other hand, the selective weighting of more reliable cues over other 

by the plant [37]. It is clear that plants are able to respond conditionally to cues [17]. For 

example, repeated mechanical stimulation of leaflets by water droplets causes the sensitive 

plant, Mimosa pudica to decrease sensitivity in leaf closure to the point where leaflets no 

longer respond to the stimulus. After desensitisation to the stimulus, finger touch instead of 

water droplets elicited leaflet closure in the plants, thus excluding the possibility that 

desensitisation was due to fatigue [38].

Opportunities and challenges when anticipating future conditions

When abiotic or biotic cues or stresses are sufficiently well correlated with future conditions 

that plants experience, it can be beneficial for plants to evolve anticipatory life-history 

strategies [8, 39, 40]. Anticipatory induced responses to stimuli are ubiquitous in plants and 

can involve a primed state or actual phenotypic change in a wide range of physiological, 

chemical, or structural traits. These responses ultimately allow the plant to tolerate or avoid 

future stress conditions within its reaction norm (Box 2). The adaptiveness of an anticipatory 

response depends on opportunities and challenges in physiological regulation of the 

response, as well as on the overall predictability of the environment [20] (Figure 1).

Physiological dilemmas in plant responses to future stress

Anticipatory strategies may be highly prevalent as they provide a solution to challenges 

plants are likely to face when responding to different attacks by herbivores and/or pathogens. 

First, even though early detection of stress by electrical signalling and reactive oxygen 
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species (ROS) takes seconds to minutes, actual metabolic changes in the network of 

phytohormones and the formation of defence responses can take hours up to days to be 

realised [41, 42]. This not only constraints plants in responding to current stress but also 

potentially makes the response suboptimal by the time other stressors arrive. Second, cross-

talk between regulatory pathways may allow plants to fine-tune their responses to cope with 

simultaneous and sequential arrival of stressors [43, 44]. However, it can also lead to a 

situation where the response to one stressor compromises an optimal response to another 

[10, 43]. For example, activation of the salicylic acid (SA) pathway in response to attack by 

sap-sucking herbivores or biotrophic plant pathogens may impair jasmonic acid (JA)-based 

responses to chewing herbivores, and vice versa [43]. For anticipatory strategies to be 

optimal, plant responses should thus be effective against both the initial stress as well as the 

suite of future stressors the plant is likely to encounter. Natural selection should favour plant 

ability to integrate the correlated sequences of stressors in their physiological response to the 

initial attack, especially when the optimal response to the initial stressor would constrain 

responses to (more costly) future stressors. An emerging property is that plants may respond 

sub-optimally to stressors in isolation to account for arrival of future stress this and is likely 

to contribute to the substantial variation found in plant responses to biotic stress [11].

Ecological dilemmas in plant responses to future stress

How well plant responses match the actual conditions they anticipate and experience is 

highly dependent on the correlations between cues and stressors [45]. Even though dynamics 

in herbivore communities are often structured in their broad sense and offer plants the 

opportunity to anticipate stress, most plant interactions are characterised by high levels of 

stochasticity. This stochasticity affects the strength of the correlation between cues and 

stressors, shaping the degree of statistical predictability or intrinsic predictability of the 

plant’s environment. In addition to stochastic processes, a discrepancy in plant responses 

and anticipated conditions can be caused by the delayed rate of change in communities of 

antagonists in response to changes in the local environment [20]. Such mismatches are 

promoted by the persistence of relatively long-lived individuals, the absence of better 

matching species in the local species pool, or due to priority effects in the assembly of 

communities [46].

Together with physiological and developmental constraints, and incomplete or unreliable 

information when mounting responses, stochastic processes and community lags limit plants 

in how well and for which timespan they can anticipate and match plastic responses to 

stress. While physiological and developmental constraints determine the minimal timespan 

needed to form anticipatory plastic responses, stochastic processes and incomplete 

information determine the timespan for which predictions are reliable (Figure 1). Finally, 

specific plant responses can be the result of targeted manipulation of plant metabolism by 

herbivores, with gall forming herbivores as a prominent case [37]. Non-galling herbivores 

can also manipulate plant metabolism. For example, Colorado potato beetles Leptinotarsa 
decemlineata contain bacteria in their oral secretions which cause tomato plants, Solanum 
lycopersicum, to greatly increase levels of SA, which down-regulate JA-dependent defences 

required for resistance against the beetles [47]. This suggests that plants identify the stress as 
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related to pathogens rather than related to stress by chewing herbivores. Hence, biotic 

interactions can cause plants to mismatch their responses to stress [48].

Predictability of biotic stress is integrated in plant strategies

Despite the physiological constraints and ecological stochasticity, there is substantial 

evidence that plants do integrate predictability in their strategies. The nature of these 

strategies is determined by the accuracy and timespan of the forecast horizon. We may 

expect that specific anticipatory strategies that are commonly found across populations of a 

plant species match processes that act on large spatial or temporal scales such as climatic 

conditions or migration patterns of herbivores [49, 50]. More uncommon or plant-

population-specific anticipatory strategies include adaptations to local dynamics in herbivore 

communities.

Ontogenetic trajectories

When probability and patterns of herbivore attack change in a predictable way throughout 

the lifetime of plants, defensive traits can be expressed through fixed ontogenetic trajectories 

which allow the optimization of resources and functions across plant development [15]. 

These trajectories can have significant genetic variation and/or be phenotypically variable 

within populations, influenced by plastic responses to different stressors. Thus, natural 

selection should favour plants allocating resources to specific defensive traits only when 

most needed or when other functions with a greater impact on fitness are not compromised 

[51, 52]. The genes underlying these allocation trade-offs, such as those between defence 

and growth, are now being identified [53, 54].

Ontogenetic changes in resistance and tolerance are found in systems in which interactions 

with herbivores affecting plant fitness are relatively predictable [53]. For example, once 

boreal plants outgrow the height browsed by mammals, they reduce their investment in 

phenolic compounds, a natural deterrent against these herbivores [55]. Analogous to 

ontogenetic expression of direct defences, it is common to see dynamics in indirect defences 

that enhance herbivore predation by their natural enemies. Plants tend to increase domatia 

and extrafloral nectaries as plants develop [56]. This increased emphasis on indirect 

defences during ontogeny could be driven by the likelihood of encountering natural enemies 

that are foraging for plant rewards, the resources available to produce such traits, mutualism 

management strategies, and/or trade-offs between processes regulating reproduction and 

direct plant defences [57, 58]. The adaptive value of ontogenetic changes in defence 

strategies matches patterns that act on longer-term scales of development (i.e. weeks to 

months for annuals, years for perennials) [59].

Steering development of communities

On shorter time scales, priming and induced responses can allow plants to cope with low 

predictability of herbivory or allow them to influence the sequence in which different types 

of herbivores occur on the plant. Induced responses to biotic and abiotic stress frequently 

involve fundamental changes in both primary and secondary metabolism and alter the plant 

as an environment for current and subsequent attackers [60, 61]. Hence, the pool of 
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herbivore species that interact with the plant after the first attacker is in part a function of the 

induced phenotype of the plant [62]. Plants in environments with multiple fitness-impacting 

herbivore species can thus be hypothesized to be under selection to predict and influence 

attacker sequences through their induced responses to minimize overall fitness impact 

(Figure 2). A major expectation of this hypothesis is that herbivore communities interacting 

with a plant change in their predictability after the plant interacts with antagonists. In 

extreme cases this could mean that plants are under selection to be attractive to herbivores 

that themselves have little or no significant negative fitness impact on the plant but make the 

plant more resistant to other, more damaging herbivores [26, 63]. More generally, these 

ecological phenomena allow plants to fine tune their responses to current attack while 

optimising this response in function of the plant’s community-wide context (Figure 2).

Predictability in an eco-evolutionary context

While predicting dynamics in stress can provide plants with a means to better match 

responses to the environment, it is unlikely that plants achieve a perfect prediction of future 

conditions given pleiotropic constraints and the lack of a guarantee of a future environment 

that is predicted by the past. However, fitness differences between plants that anticipate 

stress relative to less informed conspecifics should be sufficient to select for plant strategies 

that allow for increased predictability, even if dynamics in stress are uncertain. As individual 

plants rarely interact with all potential antagonists in the local environment, plants may 

reduce their responses to only the more likely and most severe fitness-limiting stressors and 

anticipate the most predictable responses of other community members to the induced plant 

phenotype. Variation in predictability of herbivore assembly on individual plants is likely to 

drive the evolution of (herbivore specific) induced defences. This may include maintenance 

of genetic variation in plant populations by frequency-dependent selection in which 

genotypes are selected to optimise resistance strategies to subsets of the community 

consisting of strongly correlated antagonists [64]. An emerging evolutionary consequence 

may be that heritability of traits in resistance to different herbivores becomes linked. For 

example, correlation between leaf chewing herbivore attack and subsequent arrival of seed 

predators may yield induced responses to leaf chewers that include changes in traits of 

reproductive organs [63].

Rather than accurately predicting arrival of individual stressors, it is likely that plants 

optimise a more general cost – benefit balance to deal with multiple stressors, while 

managing risk by making adaptive errors under conditions of uncertain but, if realised, 

costly attack [22]. This suggests that a plant strategy that maximises the predictability of 

individual stressors is not adaptive by default: a developmental trajectory associated with 

higher levels of uncertainty will be selected over a developmental trajectory with predictable 

dynamics if the latter is associated with a lower overall fitness (Figure 1). Nevertheless, the 

predictability of stressors could help plants to anticipate future dynamics in costs, benefits 

and risks and ultimately optimise life-history strategies [65]. The readiness of plants to 

respond to stimuli is likely to be dynamic over plant ontogeny, as some plant life-stages may 

be more vulnerable to specific stressors than other stages [66].
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Finally, high levels of gene flow may prevent plants from incorporating patterns that are 

predictable at the local scale due to trait mismatching. However, the lack of sustained 

directional change towards integrating predictability in plant strategies is not indicative of 

the absence of selection. For example, alternative strategies can evolve within populations 

through balancing selection. Conversely, while we observe that many mechanisms can 

increase the predictability of stress in the plants’ environment, not all traits involved are 

necessarily shaped by processes where predictability is the selective agent. It remains 

challenging to disentangle selective agents, as phenotypes that are selected by other stressors 

are likely to overlap with changes in the overall predictability of future conditions plants 

experience. For example, drought stress can alter plant phenotypes in ways that affect their 

subsequent interactions with herbivores. Even though the expressed phenotype under 

drought stress may increase the predictability of, and resistance against future biotic stress, it 

is unlikely that the induced phenotype is selected to increase predictability.

Concluding remarks

Anticipatory responses are ubiquitous in plants, demonstrating that the integration of 

correlations between stimuli and stressors in plant strategies can provide fitness benefits 

relative to plants with uninformed strategies [17]. Over recent years there has been a 

growing interest in the role such correlations play across larger (transgenerational) scales in 

modulating the plasticity of plant development and responses to stress, which itself may 

evolve [67, 68]. However, a continuing challenge is to identify the ecological conditions 

under which such strategies are adaptive, and how variation in the predictability of the 

environment in which plants grow affects intraspecific variation in plant strategies (see 

Outstanding questions) [69]. We propose that, even if dynamics in stress for the greater part 

remain uncertain, predictable patterns are readily integrated in plant strategies. Hence, the 

predictability of (sequences of) stressors is likely to be a key component governing inter and 

intra-specific variation in plant responses and strategies maximising life-time fitness [64]. 

While studying plant interactions with stressors in isolation provides fundamental insights in 

the mechanisms underlying plant responses to stress, integrating predictability to the 

framework of plant-stressor interactions will yield important new insights in the evolution of 

plant defence strategies.
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Glossary

Anticipatory responses
a plant response to information indicative of stress in which the phenotype is adjusted in 

anticipation of sub-optimal conditions or arrival of stress.
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Forecast horizon
the maximal length of time into the future from the point in time at which information is 

gathered for which plants can make predictions about, and hence anticipate, forthcoming 

stress conditions

Induced response
the phenotypic change of a plant in response to stress that may lead to decreased 

performance of the stressor (induced resistance) and result in a plant fitness benefit by the 

response (induced defence)

Phenological and/or conditional state of the plant
the intrinsic state of the plant determined by ontogenetic and physiological phenotype 

formed by prior interactions with the (a)biotic environment

Plant-mediated interaction
the indirect effects of spatially or temporally separated organisms on each other’s 

performance or behaviour through induced responses of their shared host plant

Predictability of stress
the level of certainty in arrival patterns of stress such as the timing and order of arrival of 

herbivore or pathogen species over a plant’s lifetime

Intrinsic predictability
the maximal degree of statistical predictability among successive environmental states 

within a local environment

Priming
the phenomenon whereby a temporally limited environmental (priming) stimulus prepares 

and modifies the response to a future stress incident (the triggering stimulus)
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Outstanding questions

• What characteristics of ecological systems underly variation in the intrinsic 

predictability of stress and how does this affect plant life-history strategies?

• What are the plant traits that perceive and process predictive environmental 

cues?

• How plastic are plants in their sensitivity to cues and what is their tendency to 

take risks? Do plants exposed to a more predictable antagonist community 

anticipate arrival of new stressors in their plastic response to current stress, 

and do plants in unpredictable environments respond to each stressor in 

isolation when it arrives?

• Does selection by a local predictable order of stressors lead to rapid evolution 

in plant populations in which plant traits become linked to maximize 

resistance to multiple stressors?
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Highlights

• Sessile organisms such as plants strongly rely on external stimuli that predict 

the onset of stress to anticipate sub-optimal conditions and adjust their 

phenotype accordingly.

• By integrating correlations among attackers as well as predictable patterns in 

the timing, and order of arrival of attack in their defence strategies, plants can 

anticipate biotic stress and maximize life-time fitness. However, it is unclear 

under which ecological conditions such strategies are adaptive.

• Selection on plants to integrate predictable patterns of future stressors in their 

strategies when responding to current stress can lead to sub-optimal responses 

to each stressor in isolation. Explicitly including the predictability of co-

occurrence and temporal patterns of stressors in theory on plant defence 

strategies is crucial in understanding the evolution of plant growth-defence 

and reproductive strategies.
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BOX 1:

Epigenetic modulation of plant trait plasticity across generations

Variation in most plant traits is quantitative (continuously variable) and the heritable 

component of this variation is polygenic in architecture – many genes each contribute a 

small effect to the phenotype. However, the expression of plant traits can be regulated by 

(heritable or transient) molecular mechanisms such as DNA methylation, small RNAs, or 

histone modifications affecting gene transcription. The epigenetic regulation of protein-

coding genes is essential for general plant functions such as development or the silencing 

of transposable elements [104]. In addition to these general functions, epigenetic 

mechanisms play a key role in acclimation to stress and rapid plastic responses in plants 

[105]. Importantly, epigenetically controlled variation in trait plasticity exists without the 

need to deviate from a genetic blueprint – natural selection acts on the ability of a plant to 

epigenetically control trait expression – regulation of gene expression being a simple 

example [106, 107]. Non-genetic inheritance through the transfer of epigenetic states can 

have major consequences on offspring resistance to (a)biotic stress [105]. These effects 

can be limited to one generation or persist for multiple generations by so called soft 

inheritance [108]. A critical need is to study the levels of biological organization from 

individual to populations and species that produce these ontogenetically extended 

phenotypes. In addition, fully addressing this question requires identifying ultimate 

mechanisms at the genetical level that may drive the origin and persistence of 

transgenerational phenotypes.

Even though the mechanisms underlying epigenetic regulation of gene expression are 

becoming increasingly well studied, the effects of transgenerational phenotypic plasticity 

on plant responsiveness to environmental conditions and ultimately plant fitness are 

poorly understood. This is in great part due to complexity: A plant’s phenotype is the 

result of interactions between its genotype, the inherited epigenetic elements, 

environmental conditions, within-generation epigenetic regulation, and other regulatory 

elements involved in plant development. Moreover, evidence suggests that non-genetical 

inherited elements that confer a fitness advantage are often and rapidly reversed, 

nuancing the implications of epimutations for long-term fitness of individuals. Despite its 

complexity, transgenerational phenotypic plasticity can be key to understanding the short-

term integration of predictable patterns into plant life-history strategies. For example, 

information obtained by the maternal plant or both parental plants may correlate well 

with stress experienced by their progeny through spatial or temporal autocorrelation of 

stress.

Mertens et al. Page 17

Trends Ecol Evol. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BOX 2:

Plant anticipatory strategies to deal with (un)predictable stress

In anticipatory strategies, plants adapt their phenotype in preparation of forthcoming 

adverse conditions. These strategies entail a range of genotypic and phenotypic 

regulations to match predictable arrival patterns of stress. The genetic regulation of 

anticipatory strategies is illustrated by ontogenetic trajectories of plants in expression of 

traits that are adaptive to stress. For example, seedlings that are heavily attacked by 

herbivores express stronger resistance to herbivory, because the costs of herbivory early 

in the development of plants are large. When plant biomass increases, the same degree of 

herbivore damage can be tolerated, and resources may be used for growth and 

reproduction. The adaptive value of ontogenetic changes in defence strategies match 

patterns that act on longer-term scales of development. Phenotypically, plants may use 

abiotic conditions to match seasonal variation in resistance to the likelihood of herbivore 

attack due to the correlation of seasonality and herbivore activity [29]. Over shorter time 

scales, plants may use reliable cues of presence of antagonists to anticipate actual attack 

by these antagonists. These cues may come from the environment, such as neighbouring 

plants that release volatiles when attacked by herbivores, or from direct interactions of 

the plant with stressors that predict forthcoming attack such as the oviposition of eggs by 

herbivorous insects on plant tissues [1, 109]. Plants may anticipate the forthcoming stress 

by priming, a physiological process by which a plant prepares to respond to future biotic 

or abiotic stress more quickly or intensively, without the formation of resistance in the 

absence of the actual occurrence of stress. Alternatively, when the cue is highly reliable it 

pays plants to increase resistance through induced resistance [8]. The induced resistance 

may be tailored directly and primarily to the stressor associated with the cue, but we 

argue that these induced responses may also anticipate attack across longer temporal 

scales when the initial stressor is a good predictor for the arrival of other stressors. Across 

generations, plants may prepare offspring for forthcoming conditions by epigenetic 

mechanisms (Box 1).
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Figure 1: Plant strategies in the framework of forecast horizons
Community: Plants interact with multiple biotic stressors in sequence. Stressors may 

strongly correlate (indicated by R2) such as when caterpillars cause open wounds that 

promote pathogen infections, or correlate only weakly such as illustrated by attack by a 

different herbivore species. Plant strategy: To deal with variation in predictability and the 

risk of incurring fitness costs, plants follow different strategies. The green line illustrates a 

trajectory in which the plant only responds to an initial stimulus and does not follow an 

anticipatory strategy. The red and blue lines illustrate trajectories with an anticipatory 

strategy, but in which plants differ in their proneness to take risk: The phenotypic trajectory 

illustrated by the blue line tracks the most probable antagonist community. The phenotypic 

trajectory illustrated by the red line is a risk averse strategy, where the plant anticipates a less 

likely, but if realized while unprepared, more costly scenario. Match in phenotype with the 
predicted community: Plant strategies vary in how well the plant phenotype will match 

with the predicted environment, represented by the coloured lines. The y-axis represents 

how well the plant phenotype is predicted to match the future environment. Shaded areas 
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indicate the increasing uncertainty in how well the phenotype will match the future 

community of antagonists due to stochastic processes, lag in community responses, and 

incorrect or incomplete information transferred by the initial attack. Time lag: Plants need 

time to detect and start responding to the stimulus or stress, defined by physiological 

constraints. Plant response to initial stress: Time needed to fully form responses to the 

initial stress or stimulus. Anticipatory strategies match the changing antagonist community 

(red and blue lines), while non-anticipatory strategies only respond to the initial stressor or 

stimulus (green line). Developmental constraints and the integration of potential future stress 

in plant responses may limit how well plants following anticipatory strategies will match 

their phenotype with the environment. Phenotype to predicted community: Time frame 

where plants following anticipatory strategies try to match the future antagonistic 

community, and in which uncertainty increases until the forecast horizon is met, indicated by 

the solid black line. Forecast horizon with increasing uncertainty: In the period after the 

forecast horizon is met, predictions of plants following anticipatory strategies are not more 

accurate than non-informed / non-anticipatory strategies.
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Figure 2. Interactions with an antagonist require anticipatory responses to subsequent conditions 
and results in linkages in the evolution of traits
Attack by an initial stressor induces responses in the plant with physiological and ecological 

consequences for the plant, with the potential to ultimately change the selective pressure on 

plant traits. Blue: Induced responses involve (local or systemic) changes in the chemical 

composition of plant tissues and require the regulation of underlying phytohormonal 

pathways. In addition, herbivores themselves may manipulate the responses of plants on a 

molecular level. These changes in the plant’s defensive phenotype may prove effective 

against subsequent attackers due to cross resistance but may also cause the plant to become 

more susceptible to subsequent attackers. Anticipatory responses should thus integrate, or at 

least not inhibit, responses to likely subsequent attack at the level of the plant’s physiology. 

Green: Induced responses to initial stress often lead to systemic changes in the plant’s 

phenotype. In addition, herbivores themselves may manipulate the phenotype of plants 

through niche construction (e.g. leaf-rolling caterpillars). The overall changes in the 

phenotype of the plant presented to the community can affect the likelihood of colonization 

by subsequent herbivores, effectively partitioning the antagonist community into subsets of 

strongly correlated antagonists. Plants may thereby anticipate the nature of future attack 

when interacting with the current herbivore. Orange: The interaction with an initial 

antagonist may result in the enhanced probability of interacting with a subsequent antagonist 

which has direct impacts on plant fitness. For example, a leaf feeding caterpillar enhances 

probability of seed weevil attack. Plant responses induced by initial herbivory may thus 

culminate to indirectly affect plant fitness. Plant traits that are key in mediating the initial 

and subsequent interactions are thus under the same selection pressure. This may result in 

heritability (h) of defence traits against different herbivores to be strongly linked.
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