
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8110  | https://doi.org/10.1038/s41598-021-87644-7

www.nature.com/scientificreports

A deep learning model 
for the classification 
of indeterminate lung carcinoma 
in biopsy whole slide images
Fahdi Kanavati1,6, Gouji Toyokawa2,6, Seiya Momosaki3, Hiroaki Takeoka4, Masaki Okamoto4, 
Koji Yamazaki2, Sadanori Takeo2, Osamu Iizuka5 & Masayuki Tsuneki1,5*

The differentiation between major histological types of lung cancer, such as adenocarcinoma 
(ADC), squamous cell carcinoma (SCC), and small-cell lung cancer (SCLC) is of crucial importance 
for determining optimum cancer treatment. Hematoxylin and Eosin (H&E)-stained slides of small 
transbronchial lung biopsy (TBLB) are one of the primary sources for making a diagnosis; however, a 
subset of cases present a challenge for pathologists to diagnose from H&E-stained slides alone, and 
these either require further immunohistochemistry or are deferred to surgical resection for definitive 
diagnosis. We trained a deep learning model to classify H&E-stained Whole Slide Images of TBLB 
specimens into ADC, SCC, SCLC, and non-neoplastic using a training set of 579 WSIs. The trained 
model was capable of classifying an independent test set of 83 challenging indeterminate cases 
with a receiver operator curve area under the curve (AUC) of 0.99. We further evaluated the model 
on four independent test sets—one TBLB and three surgical, with combined total of 2407 WSIs—
demonstrating highly promising results with AUCs ranging from 0.94 to 0.99.

Lung cancer is the leading cause of cancer-related death in many countries, and its prognosis still remains 
unsatisfactory1. Although surgical resection remains the primary treatment option for patients with lung cancer, 
novel therapeutic options, such as molecular-targeted therapy and immunotherapy, have greatly improved the 
prognosis of patients with advanced lung cancer, as such therapies are based on the given the tumour genetics 
and micro-environment. Treatment approaches differ substantially based on the type of malignant tumour; 
therefore, accurate histopathological diagnosis is of great importance2,3.

For therapeutic purposes, lung carcinomas fall into two major groups: small cell lung cancer (SCLC) and 
non-small cell lung cancer (NSCLC). The latter category is mainly composed of adenocarcinoma (ADC) and 
squamous cell carcinoma (SCC)3. The carcinoma subtypes differ in their malignant behaviours and responses to 
treatments, so histopathological typing is clinically of considerable importance. Pathologists typically diagnose 
lung cancers based on Hematoxylin and Eosin (H&E) staining of small transbronchial lung biopsies (TBLB)4,5; 
however, on some TBLB specimens, H&E staining is not enough to reach a diagnosis, and pathologists frequently 
use immunohistochemical (IHC) staining of the specimen to confirm a definitive diagnosis6.

The pathologists’ typical workflow for lung carcinoma diagnosis is as follows: they start by visually examining 
the H&E-stained TBLB specimen. If the specimen contains well-differentiated cancer cells, then the pathologists 
can easily classify the cancer subtype; however, if the specimen solely contains poorly-differentiated cancer cells, 
then the pathologists find that distinguishing between subtypes is particularly challenging. The incidence of 
such cases is non-negligible at about 28% of the population7. In order to confirm the diagnosis for a challenging 
specimen, pathologists tend to perform further investigations via IHC stainings8–11 and/or deferred to surgical 
resections. It can be difficult to subclassify poorly differentiated carcinoma as ADC or SCC11. This is because 
well-differentiated SCC shows prominent keratinization throughout the cells whereas poorly-differentiated carci-
nomas which lack keratinization and/or intercellular bridges require careful scrutiny. Histopathological diagnosis 
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from surgical resection specimens are more accurate. This is due to the considerable variation of cancer cells in 
the large tissue area of surgical specimens, and so there is a high likelihood of the presence of well-differentiated 
carcinoma cells which are easier to classify.

Whole slide images (WSI) are the digitised counterparts of glass slides and are obtained at magnifications 
up to x40, resulting in massive high-resolution images with billions of pixels. Due to their size, some WSIs can 
be tedious to visually inspect exhaustively. This is where computational pathology comes in as a tool to assist 
pathologists, where image analysis methods based on machine and deep learning have found many successful 
applications12–25. In particular, for lung histopathology, deep learning has been applied primarily on lung surgical 
resections to classify lung carcinoma and/or subtypes as well as predicting mutations12,18,19,26,27. Coudray et al.19 
evaluated their deep learning model that was trained on surgical resection WSIs obtained from The Cancer 
Genome Atlas (TCGA)28 on a test set of biopsies (n = 102, 51 ADC, 51 SCC) achieving receiver operator curve 
(ROC) area under the curves (AUC) of 0.871 and 0.928 for ADC and SCC, respectively. However, the algorithm 
had a relatively poor performance on the poorly-differentiated biopsy specimens (n=34), where the ROC AUCs 
were 0.809 (CI 0.639–0.940) and 0.822 (CI, 0.658–0.951) for ADC and SCC, respectively.

In this study, we demonstrate that a deep learning model, consisting of a convolutional neural network (CNN) 
and a recurrent neural network (RNN), can be trained to predict lung carcinoma subtypes in indeterminate TBLB 
specimens. These are specimens consisting of poorly-differentiated carcinomas that pathologists typically find 
challenging to diagnose from H&E-stained slides alone, and these either require further immunohistochemistry 
or are deferred to surgical resection for definitive diagnosis. We trained a deep learning model to classify WSIs 
into ADC, SCC, SCLC, and non-neoplastic using a training set of 579 WSIs of TBLB specimens. We evaluated 
the model on a test set of indeterminate specimens (n=83) achieving an AUC of 0.99. We then evaluated the 
model on four additional test sets of which one was TBLB specimens (n=502) and three were surgical resections 
obtained from different medical institutions (combined total of 2,407). These results suggest that computational 
algorithms might be useful as adjunct diagnostic tests to help with sub-classification of primary lung neoplasms.

Results
A deep learning model for lung subtype carcinoma TBLB WSI classification.  The aim of this 
study was to develop a deep learning model to classify lung carcinoma subtypes from WSIs of TBLB specimens, 
in particular with the aim of evaluating it on a challenging test set of indeterminate cases. These are cases for 
which diagnoses were confirmed via IHC stainings and/or after surgical resections. To this end, we used a train-
ing set consisting of 579 WSIs of TBLB specimens from Kyushu Medical Centre, and we used it to train a deep 
learning model to classify carcinoma subtypes (ADC, SCC, and SCLC) and non-neoplastic with a pipeline as 
outlined in Fig. 1. The training set consisted of 534 WSIs for which the diagnosis was determined by patholo-
gists from visual inspection of the H&E slides and of 45 WSIs of indeterminate cases. We then evaluated the 
models on five independent test sets (see Table 2 for distribution of WSIs). For each test set, we computed the 
ROC AUC of two approaches for obtaining the WSI diagnosis: (1) our main method of using a CNN model to 
obtain tile predictions followed by an RNN model to aggregate the tile predictions into a single WSI diagnosis, 
and (2) using the CNN model only and max-pooling the probabilities of all the tiles to obtain a WSI diagnosis 
(see Methods for details). These results are summarised in Table 1. Figure 2 shows the ROC curves of on all the 
test sets for each label from using the main method only.

Deep learning model can distinguish between ADC and SCC on indeterminate TBLB test 
set.  We applied the model on an indeterminate test set consisting of 83 H&E-stained WSIs of TBLB speci-
mens from Kyushu Medical Centre. Pathologists determined the final diagnoses either via IHC and/or examina-
tion of surgically resected specimens. This resulted in confirmed diagnoses of 64 ADCs and 19 SCCs (Table 2). 
Table 3 presents detailed case by case findings from the IHC and/or after surgical resection as well as the predic-
tions from our deep learning model. Overall, the model (CNN+RNN) achieved an AUC of 0.993 (CI 0.971-1.0) 
and 0.996 (0.981-1.0) for ADC and SCC, respectively. Figures 3 and 4 show probability heatmaps for a repre-
sentative true positive ADC prediction as well as two false positive predictions of SCC.

Deep learning model can classify subtypes on TBLB test set.  We applied our model on a test set 
consisting of 502 WSIs of TBLB specimens from Kyushu Medical Centre, the same source as the training set. 
Pathologists were able to diagnose these cases from visual inspection of the H&E-stained slides alone. The model 
(CNN+RNN) achieved an ROC AUC of 0.964 (CI 0.942–0.978), 0.968 (CI 0.941–0.99), and 0.995 (CI 0.99–
0.999) for ADC, SCC, and SCLC, respectively. In addition, when grouping all the labels to perform a classifica-
tion of neoplastic vs non-neoplastic, the model achieved an AUC of 0.979 (CI 0.968–0.988).

Deep learning model can predict carcinomas on practical surgical sections.  Even though we 
trained the model using only TBLB specimens, we tested the model on surgically-resected lung specimens to 
further evaluate its generalisation. The primary difference between biopsies and surgical resections is the sheer 
size of the tissue area. To this end, we obtained a test set of surgical specimens (n=500) from Kyushu Medical 
Centre—the same source as the training set—and two test sets from external sources: Mita Hospital (n=500) 
and TCGA (n=905). For the Kyushu Medical Centre test set, the model (CNN+RNN) achieved an AUC of 0.975 
(0.95-0.995), 0.974 (0.937-0.994), and 0.996 (0.991-1.0) for ADC, SCC, and SCLC, respectively. For the Mita 
Hospital test set, the model (CNN+RNN) achieved an AUC of 0.974 (0.951-0.993), 0.981 (0.966-0.993), and 
0.999 (0.993-1.0), respectively. And finally, for the TCGA test set, the model (CNN+RNN) achieved an AUC 
of 0.940 (CI, 0.923-0.952), 0.961 (CI, 0.944-0.976) for ADC and SCC, respectively. The TCGA test set did not 
contain any SCLC cases (see Table 2). Figure 5 (a–c) show serial sections of surgical specimens containing ADC, 



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8110  | https://doi.org/10.1038/s41598-021-87644-7

www.nature.com/scientificreports/

SCC, and SCLC with their correct diagnoses and the predicted WSI diagnoses, while Fig. 5 (d–f) show repre-
sentative heatmap prediction outputs for ADC, SCC, and SCLC.

Discussion
Our study has demonstrated that a deep learning model, composed of a CNN and an RNN, can be trained to pre-
dict lung carcinoma subtypes even on H&E-stained TBLB specimens which solely contain poorly-differentiated 
carcinomas. These are specimens that are more difficult to diagnose by pathologists. The model almost perfectly 

Figure 1.   (a) shows representative WSIs from the training set for each of the four labels: ADC, SCC, SCLC, and 
non-neoplastic. (b) shows a higher level overview of the training method, where tiles are randomly sampled, in 
a balanced manner, from the training WSIs and provided as input to train the CNN model. The CNN model is 
then used as a feature extractor by passing in the outputs from the penultimate layer of the CNN as input to the 
RNN model. All the tiles from a given WSI are fed into the RNN to provide a final WSI diagnosis.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8110  | https://doi.org/10.1038/s41598-021-87644-7

www.nature.com/scientificreports/

classified the indeterminate test set with an AUC of 0.99. The AUCs for previous reported results for indeter-
minate cases (n=34)19 of ADC and SCC were 0.809 (CI 0.639–0.940) and 0.822 (CI, 0.658–0.951). In addition, 
we evaluated the model on one test set of TBLB specimens (n=502) and three test sets of surgical specimens 
(n=500,500,905) achieving high ROC AUCs in the range of 0.94 to 0.99.

The model performed the least well for ADC on the TCGA test set. The primary reason for this could be due 
to the difference in image type and quality between the training set and the TCGA test set. The TCGA test set 
consisted of a mix of formalin fixed paraffin embedded (FFPE) surgical specimens as well as frozen section speci-
mens. In addition, there was a large variation in appearances present due to crushed/scratched tissues, bubbles, 
and non-consistent staining colour. On the other hand, the training TBLB set consisted only of FFPE specimens 
and were all obtained with a consistent quality. Training on specimens that have similar characteristics to WSIs 
in the TCGA test set will most likely lead to an improvement in performance on TCGA.

We have found that using an RNN model to obtain the WSI diagnosis as opposed to using a simple max-
pooling was highly beneficial for distinguishing between ADC and SCC in the presence of poorly-differentiated 
cancer cells. For instance, on the indeterminate test set, there is a large difference in AUC (0.814 vs 0.993). A 
visual inspection of the cases in the test set revealed that, when using the max-pooling approach, a significant 
number of SCC cases were also being predicted as ADC, and the areas being predicted as ADC in the SCC cases 
were tiles with exclusively poorly-differentiated cancer cells. A primary cause of this is most likely due to the way 
our training dataset was annotated. An ADC case that had both well-differentiated and poorly-differentiated 
cancer cells present had all the cells labelled as ADC, similarly for SCC. When encountering a poorly differenti-
ated cell amongst well-differentiated cells then the pathologists automatically labelled it the same label as the 
surrounding well-differentiated cells. However, if those poorly differentiated cells were looked at in isolation 
without the bias of information from the well-differentiated cells, then for some of them, there would have been 
ambiguity in what their label should be. In addition, our training dataset contained more ADC than SCC cases; 
therefore, when viewed in isolation, only within the scope of a 224x224 tile, this skewed the prediction of poorly-
differentiated cells towards ADC. On the other hand, the RNN model allows integrating information from all 
the tiles before making a WSI diagnosis. The RNN model significantly improved the distinction between ADC 
and SCC for cases with poorly-differentiated cancer cells resulting in a reduction in false positives; however, this 
led to a minor reduction in the overall neoplastic prediction for all test sets (e.g., Kyushu Medical Centre (TBLB) 
AUC reduced from 0.992 to 0.979; see 4th sub-row in Table 1). The RNN model corrected a large number of false 
positives, and, as a side effect, led to a minor increase in false negatives.

While we have not adopted the approach here, a hybrid approach could be used to minimise false negatives by 
first detecting all the neoplastic cases using the max-pooling approach, regardless of subtype, and then applying 
the RNN model as a second stage to attempt to distinguish between subtypes.

Figure 3B shows a case where the model had strong predictions for both ADC and SCC. A reinspection of 
this case by pathologists found that it was difficult to be able to conclusively decide between ADC and SCC for 
this case based on the H&E-stained slide alone. The true diagnosis of this case is ADC as confirmed by IHC. 
Figure 3A shows a probability heatmap of a true positive prediction of ADC on a case from the indeterminate 
TBLB specimen. Similarly, a reinspection by pathologists found this case particularly challenging to decide 
between ADC and SCC. Despite that, our model was able to predict the correct diagnosis as confirmed via IHC.

Table 1.   ROC AUCs for ADC, SCC, and SCLC computed on the test sets in which they are present, with the 
WSI diagnosis obtained with either the RNN model or max-pooling. The ROC AUCs were also computed for 
the neoplastic label by grouping ADC, SCC, and SCLC.

ROC AUC w/RNN ROC AUC w/max-pool

ADC

Kyushu Medical Centre (TBLB) 0.964 (0.942–0.978) 0.922 (0.901–0.944)

Kyushu Medical Centre (TBLB-indeterminate) 0.993 (0.971—1.0) 0.814 (0.684-0.891)

Kyushu Medical Centre (surgical) 0.975 (0.95—0.995) 0.97 (0.954-0.984)

Mita Hospital (surgical) 0.974 (0.951–0.993) 0.987 (0.978–0.995)

TCGA (surgical) 0.94 (0.923–0.952) 0.822 (0.798–0.848)

SCC

Kyushu Medical Centre (TBLB) 0.968 (0.941–0.99) 0.974 (0.959–0.987)

Kyushu Medical Centre (TBLB-indeterminate) 0.996 (0.981–1.0) 0.989 (0.957–1.0)

Kyushu Medical Centre (surgical) 0.974 (0.937–0.994) 0.985 (0.975–0.994)

Mita Hospital (surgical) 0.981 (0.966–0.993) 0.979 (0.965–0.994)

TCGA (surgical) 0.961 (0.944–0.976) 0.959 (0.944–0.97)

SCLC

Kyushu Medical Centre (TBLB) 0.995 (0.99–0.999) 0.994 (0.998–0.999)

Kyushu Medical Centre (surgical) 0.996 (0.991–1.0) 0.995 (0.991–1.0)

Mita Hospital (surgical) 0.999 (0.993–1.0) 0.999 (0.992–1.0)

Neoplastic

Kyushu Medical Centre (TBLB) 0.979 (0.968–0.988) 0.992 (0.987–0.997)

Kyushu Medical Centre (surgical) 0.978 (0.967–0.989) 0.988 (0.979—0.995)

Mita Hospital (surgical) 0.983 (0.974–0.99) 0.995 (0.991–0.999)

TCGA (surgical) 0.963 (0.947–0.975) 0.983 (0.976–0.99)
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The performance of the model on the indeterminate test set of TBLB specimens is highly promising; how-
ever, the main limitation is that the indeterminate test set is small and originated from the same source as the 
WSIs used to train the model. Further evaluations on test sets of poorly-differentiated TBLB specimens from a 
variety of sources with varied case distributions are required to validate the model for use in a clinical setting. 
An incorrect diagnosis resulting from mixing up between ADC and SCC can lead to a patient receiving an inap-
propriate anticancer treatment. Therefore, it is important that the model is exhaustively validated retrospectively 
and prospectively. Another limitation of this study is that the model was presented with a constrained diagnostic 
classification question—classifying between four labels—which is not the same as the diagnostic question typi-
cally facing a pathologist when they examine these specimens in clinical practice. In effect, we had excluded 
cases that had large cell carcinoma, adenosquamous carcinoma, and sarcomatoid carcinoma/carcinosarcoma 
from this study, while pathologists must consider these tumor types in their differential diagnosis. Pathologists 

Figure 2.   ROC curves for the five tests sets for each output label (a) ADC, (b) SCC, (c) SCLC. The neoplastic 
label (d) is a grouping of ADC, SCC, and SCLC and effectively evaluates the classification of carcinoma 
regardless of subtype.
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may be performing IHC on indeterminate lung biopsies in part to rule out these entities - if pathologists were 
posed the same constrained diagnostic classification question as the algorithm, then they might not have felt the 
need to order IHC to make the distinction.

In addition, we found the performance of SCLC prediction highly promising, where we reserved a larger 
number of the collected cases for the test set; however, we had the smallest sample size for it compared to ADC 
and SCC. It is more difficult to collect a larger sample size of SCLC given that the proportion of SCLC cases occurs 
at approximately less than 10%29 in the overall population while NSCLC occurs at approximately 85%1,30. None 
of the SCLC cases we obtained were indeterminate, and they were relatively easy to diagnose by pathologists.

Studies aiming to measure the diagnosis agreement between pathologists for lung carcinomas report highly 
different ranges, from as low as 0.25 to as high as 0.88 as measured by the kappa statistic31–36, with the agree-
ment being typically lower for poorly-differentiated cases. In current clinical workflows, IHC is typically used 
to attempt to reach a diagnosis when encountering poorly-differentiated cases; however, IHC is not always suf-
ficient (IHC has a reported AUC of 0.9411). In those cases, further investigations, such as surgical examinations 
and computed tomography-guided biopsies, are needed to reach a definitive diagnosis. The integration of an AI 
model in a clinical workflow to be used instead of IHC or to supplement it as a form of double- or triple-checking 
would be beneficial in supporting pathologists to reach a diagnosis with shorter delays and fewer errors. Cur-
rent pathologists’ workflows are not error free; there have been reported cases of errors in diagnosis from small 
biopsies37, as well as cases of delayed diagnosis38 and missed diagnosis39 in lung cancer. Moreover, there exist 
several problems regarding pathological diagnosis, such as the shortage of pathologists, disproportion of patholo-
gists between urban and rural areas. These problems may have a negative effect on the quality of the pathological 
diagnosis and the time needed for the pathological diagnosis. It is the hope that supporting pathologists with 
AI-assistive tools would be of benefit for both the patients and the pathologists.

For future work, we are planning to validate and refine our model on a large cohort of TBLB and surgical 
specimens by conducting retrospective and prospective multi-centre studies. We will also attempt to predict 
genetic alterations and the response of immune checkpoint inhibitor therapy40 on HE-stained TBLB and surgi-
cal specimens.

Methods
Clinical cases and pathological records.  For the present retrospective study, we obtained 1,723 cases 
(1,223 TBLB and 500 surgical specimens) of human pulmonary lesions H&E-stained histopathological speci-
mens from the surgical pathology files of Kyushu Medical Center after histopathological review of those speci-
mens by surgical pathologists. In addition, we obtained 500 cases of human pulmonary lesions HE-stained 
surgical specimens from International University of Health and Welfare, Mita Hospital (Tokyo) after histopatho-
logical review and approval by surgical pathologists. Pathological records, including histopathological definitive 
diagnoses for TBLB and surgical specimens, and immunohistochemical results for a subset of TBLB specimens 
were analyzed in this study. Only cases that either had ADC, SCC, SCLC, or non-neoplastic (any tissue that does 
not contain tumour cells) were included, and any case that had large cell carcinoma, adenosquamous carcinoma, 
sarcomatoid carcinoma/carcinosarcoma, pulmonary blastoma, and endodermal tumour were excluded. The 
experimental protocols were approved by the Institutional Review Board (IRB) of the Kyushu Medical Center 
(No. 20C036) and International University of Health and Welfare (No. 19-Im-007). All research activities com-
plied with all relevant ethical regulations and were performed in accordance with relevant guidelines and regu-
lations in Kyushu Medical Center and International University of Health and Welfare, Mita Hospital. Informed 
consent to use histopathological samples and pathological diagnostic reports for research purposes had previ-
ously been obtained from all patients prior to the surgical procedures at both hospitals, and the opportunity 
for refusal to participate in research had been guaranteed by an opt-out manner. The test cases were selected 
randomly, so the ratio of carcinomas (ADC, SCC, and SCLC) to non-neoplastic cases in test sets was reflective 
of the case distributions at the providing institutions. All WSIs from both Kyushu Medical Center and Mita were 
scanned at a magnification of x20.

Among specific IHC markers for pulmonary epithelium, thyroid transcription factor-1 (TTF1) is the most 
widely used. Up to 94% of pulmonary ADC have been reported to express TTF141, while TTF1 is rarely or only 
minimally expressed by poorly differentiated SCC42. Studies have shown that most poorly differentiated SCC 

Table 2.   Distribution of subtype labels in the training set and the five test sets.

ADC SCC SCLC Non-neoplastic Total

Training
Kyushu Medical Centre (TBLB) 76 48 17 393 534

Kyushu Medical Centre (TBLB-indeterminate) 28 17 0 0 45

Validation Kyushu Medical Centre (TBLB) 18 7 4 30 59

Test

Kyushu Medical Centre (TBLB) 180 85 57 180 502

Kyusyu Medical Centre (TBLB-indeterminate) 64 19 0 0 83

Kyushu Medical Centre (surgical) 110 37 4 349 500

Mita Hospital (surgical) 152 36 4 308 500

TCGA (surgical) 433 226 0 246 905

Total 1061 475 86 1506 3128
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Case No. Immunohistochemistry (IHC) Surgical specimen diagnosis TBLB-final diagnosis TBLB-AI prediction

ADC-001 ADC ADC ADC

ADC-002 ADC ADC ADC

ADC-003 TTF1 (+), Napsin-A (-), p40 (-), CK5/6 (-) ADC ADC ADC

ADC-004 ADC ADC ADC

ADC-005 TTF1 (+) No surgery ADC ADC

ADC-006 ADC ADC ADC

ADC-007 ADC ADC ADC

ADC-008 ADC ADC ADC

ADC-009 TTF1 (+), p40 (-) No surgery ADC SCC, ADC

ADC-010 ADC ADC ADC

ADC-011 ADC ADC ADC

ADC-012 ADC ADC ADC

ADC-013 ADC ADC ADC

ADC-014 TTF1 (+) No surgery ADC ADC

ADC-015 ADC ADC ADC

ADC-016 TTF1 (+), Napsin-A (+), p40 (-), CK5/6 (-) No surgery ADC ADC

ADC-017 ADC ADC ADC

ADC-018 TTF1 (+), p40 (-) No surgery ADC ADC

ADC-019 ADC ADC ADC

ADC-020 TTF1 (+), p40 (-), CK5/6 (-) No surgery ADC ADC

ADC-021 TTF1 (+), CK20 (-), p63 (-), Uroplakin II (-), Thrombomodulin (-) ADC ADC ADC

ADC-022 ADC ADC ADC

ADC-023 ADC ADC ADC

ADC-024 ADC ADC ADC

ADC-025 TTF1 (+), Napsin-A (+), p40 (-), CK5/6 (-) No surgery ADC ADC

ADC-026 ADC ADC ADC

ADC-027 ADC ADC ADC

ADC-028 TTF1 (+), Napsin-A (+), p40 (-), CK5/6 (-) No surgery ADC ADC

ADC-029 TTF1 (+), SP-A (-), p40 (-), CK5/6 (-) No surgery ADC SCC

ADC-030 ADC ADC ADC

ADC-031 ADC ADC ADC

ADC-032 ADC ADC ADC

ADC-033 ADC ADC ADC

ADC-034 ADC ADC ADC

ADC-035 ADC ADC ADC

ADC-036 TTF1 (+), CEA (+), SP-A (-), p40 (-), CK5/6 (-), p63 (-) No surgery ADC ADC

ADC-037 ADC ADC ADC

ADC-038 ADC ADC ADC

ADC-039 ADC ADC ADC

ADC-040 ADC ADC ADC

ADC-041 ADC ADC ADC

ADC-042 ADC ADC ADC

ADC-043 ADC ADC ADC

ADC-044 TTF1 (+), Napsin-A (+) No surgery ADC ADC

ADC-045 TTF1 (+), SP-A (+) No surgery ADC ADC

ADC-046 TTF1 (+), SP-A (+), CEA (+), CK5/6 (-), p40 (-), p63 (-) No surgery ADC ADC

ADC-047 TTF1 (+), SP-A (+), CEA (+), CK5/6 (-), p40 (-), p63 (-) ADC ADC ADC

ADC-048 ADC ADC ADC

ADC-049 CEA (+), CK5/6 (-), p40 (-), p63 (-) No surgery ADC ADC

ADC-050 ADC ADC ADC

ADC-051 CEA (+), CK5/6 (-), p40 (-), p63 (-) ADC ADC ADC

ADC-052 ADC ADC ADC

ADC-053 CK7 (+), TTF-1 (+), SP-A (+), MUC1 (+) ADC ADC ADC

ADC-054 TTF1 (+), MUC1 (+), MUC2 (-), MUC5AC (+), MUC6 (+) ADC ADC ADC

ADC-055 ADC ADC ADC

ADC-056 ADC ADC ADC

Continued
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will stain for p63, whereas SCLCs demonstrate the opposite pattern of immunoreactivities (p63-negative, high 
molecular weight keratin-negative, and TTF1-positive)41,42. Staining of ADC is more variable. Similarly, most 
poorly differentiated SCC will stain for high molecular weight keratin, whereas SCLCs will not stain42. Moreover, 
TTF1 (ADC marker), and p40 (SCC marker), have been reported to be the most precise differential diagnostic 
markers to discriminate carcinoma subtypes43,44.

A surgical section is excised from a surgically-resected lung specimen. To address cancer characteristics (e.g., 
size, location within lobe and segment, relation with bronchi, extension to pleura) precisely, usually several sec-
tions (e.g., tumour sections including one showing relationship to bronchus, non-neoplastic lung sections, and 
bronchial line of cross-sections) are examined for pathological diagnoses on routine practical surgical resection 
specimens45. This is what can be seen in Fig. 5.

Dataset and annotations.  The datasets obtained from Kyushu Medical Centre and International Univer-
sity of Health and Welfare, Mita Hospital, consisted of 1,723 and 500 WSIs, respectively. In addition, we used a 
total of 905 WSIs from The Cancer Genome Atlas (TCGA) ADC and SCC projects (TCGA-LUAD and TCGA-
LUSC). The pathologists excluded cases from those projects that were inappropriate or of poor quality for this 
study. The diagnosis of each WSI was verified by two pathologists specialized in pulmonary pathology. Table 2 
breaks down the distribution of the datasets into training, validation, and test sets. The training set was solely 
composed of WSIs of TBLB specimens. The patients’ records were used to extract the WSIs’ pathological diag-
noses. The final diagnoses were either reached by visual inspection of the HE-stained slides or by further inves-
tigations via immunohistochemical and/or histopathological examination of the surgically resected tumour 
samples. Cases that had further investigations performed were placed into the indeterminate subsets. 215 TBLB 
WSIs from the training and validation sets had a neoplastic diagnosis (122 ADCs, 72 SCCs, and 21 SCLCs). 
They were manually annotated by a group of three surgical pathologists who perform routine histopathological 
diagnoses. The pathologists carried out detailed cellular-level annotations by free-hand drawing around well-dif-
ferentiated and poorly-differentiated carcinoma cells that corresponded to ADC, SCC, or SCLC. The specimens 
in the indeterminate sets were exclusively composed of poorly-differentiated carcinoma cells where it was dif-
ficult to distinguish between ADC and SCC. Poorly-differentiated does not always imply indeterminate as some 
poorly-differentiated cases can be distinguished. The indeterminate sets did not contains such cases. The rest of 
the sets contained either well-differentiated or a mix of poorly- and well-differentiated carcinoma cells within 
the same slide. The non-neoplastic subset of the training and validation sets (423 WSIs) was not annotated and 

Case No. Immunohistochemistry (IHC) Surgical specimen diagnosis TBLB-final diagnosis TBLB-AI prediction

ADC-057 ADC ADC ADC

ADC-058 ADC ADC ADC

ADC-059 AE1/AE3 (+), TTF1 (+), Vimentin (-), LCA (-) ADC ADC ADC

ADC-060 ADC ADC ADC

ADC-061 ADC ADC ADC

ADC-062 ADC ADC ADC

ADC-063 ADC ADC ADC

ADC-064 ADC ADC ADC

SCC-001 TTF1 (-), SP-A (-), CK5/6 (+), p63 (+), p40 (+), CEA (-) SCC SCC SCC

SCC-002 TTF1 (-), SP-A (-), CK5/6 (+), p63 (+), p40 (+), CEA (+), involcrin (+) No surgery SCC SCC

SCC-003 SCC SCC SCC

SCC-004 SCC SCC SCC

SCC-005 SCC SCC SCC

SCC-006 CK5/6 (+), p63 (+), p40 (+), CEA (-), CD56 (-), Synaptophysin (-), Chromogranin 
A (-) No surgery SCC SCC

SCC-007 CK5/6+, CK7+, p63+, TTF-1-, SP-A- No surgery SCC SCC

SCC-008 SCC SCC SCC

SCC-009 CK5/6 (+),p63 (+), CEA (+), Involucrine (+), TTF1 (-) No surgery SCC SCC

SCC-010 SCC SCC SCC

SCC-011 SCC SCC SCC

SCC-012 CK14 (+), CK7 (+), CK5/6 (+), p63 (+), TTF1 (-), SP-A (-), ER (-), PgR (-) No surgery SCC SCC

SCC-013 SCC SCC SCC

SCC-014 SCC SCC SCC

SCC-015 TTF1 (-), SP-A (-), p63 (+), CK7 (-) SCC SCC SCC

SCC-016 SCC SCC SCC

SCC-017 SCC SCC SCC

SCC-018 TTF1 (-) No surgery SCC SCC

SCC-019 TTF1 (-) No surgery SCC SCC

Table 3.   Detailed IHC, surgical, and AI prediction for the 83 cases in the indeterminate test set.
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Figure 3.   (A) shows a true positive ADC case (ADC-046) from the indeterminate TBLB test set. Heatmap 
images (a) and (c) show true positive predictions of ADC cells, and they correspond respectively to (b) and 
(d). The high magnification (e) and (f) subimages show spindle shaped and poorly differentiated morphology. 
Pathologists found it challenging to distinguish between ADC and SCC based on H&E histology alone. (B) 
shows a case (ADC-009) that was predicted as indeterminate, with the model showing strong predictions 
for both ADC and SCC. The (g) and (j) areas are almost overlapped, and based on the histology it is poorly 
differentiated and is impossible to decide between ADC and SCC. (k) and (l), and (h) and (i) have similar 
morphologies to poorly differentiated SCC and ADC, respectively, and the model strongly predicted them as 
such, respectively. In the heatmap colour spectrum, red indicates high probability, blue indicates low.
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the entire tissue areas within the WSIs were used. Each annotated WSI was observed by at least two pathologists, 
with the final checking and verification performed by a senior pathologist.

Deep learning model.  Our deep learning model consisted of two separately-trained components: a CNN 
tile classifier and an RNN tile aggregator for WSI diagnosis.

To apply the CNN classifier on the WSIs, we performed slide tiling, where a given WSI at a magnification 
of x10 was divided into overlapping tiles of 224x224 pixels, with a stride of 112x112 pixels. We only used tiles 
from the tissue regions, and we did this by performing a thresholding on a grayscale WSI using Otsu’s method46, 
which eliminated most of the white background which typically occupies a large proportion of the biopsy WSI. 
We then sampled tiles from the WSIs for training. If the WSI contained any cancer cells, then we only sampled 
from the annotated regions such that the centre point of the tile was within the annotation region. We did not 
sample tiles from unannotated regions of WSIs with cancer, as their label could still be ambiguous given that that 
the pathologists did not exhaustively annotate each WSI. On the other hand, if the WSI did not contain cancer 
cells (non-neoplastic), then we freely sampled from the WSI.

For the CNN tile classifier, we used the EfficientNet-B147 architecture with a global-average pooling layer 
followed by a softmax classification layer with four outputs: ADC, SCC, SCLC, and non-neoplastic.

During testing, we apply the model on the entire tissue within a WSI. We did this by tiling the tissue areas, and 
then feeding all the tiles into the CNN tile classifier resulting in four output probabilities per tile. WSI diagnosis 
probabilities can be obtained by using a simple max-pooling approach where for each label the WSI probability 
is computed as the maximum of the tile probabilities; however, such an approach is more prone to yielding false 
positives in some cases, as all it would take is a single false positive tile to alter the WSI diagnosis. A WSI can 
have more than one label predicted if the probability for that label is larger than the threshold (typically 0.5).

We trained the CNN model using fully-supervised learning and transfer learning. We used balanced sampling 
of tiles to ensure that there was equal representation of all labels in a training batch, given that the training set 
was imbalanced (see Table 2). We did this by having four queues, where each held the WSIs of each label. We 
then went in turn randomly sampling batch size

4
 tiles from each queue to form a single batch. Whenever a queue 

reached its end, it was repopulated and reshuffled. An epoch ended when all the WSI were at least seen once.
In addition, we performed data augmentation by randomly transforming the input tiles with flipping, 90 

degree rotations, and shifts in brightness, contrast, hue, and saturation. We used the categorical cross entropy 
loss function, and we trained the model with the Adam optimisation algorithm48 with the following parameters: 

Figure 4.   The true diagnosis of this case (ADC-029) is ADC; however, it was predicted as SCC. (a) shows 
probability heatmap for SCC. The ADC cells highlighted in (d) and (e) from the (b) fragment are floating in a 
single-cell manner within necrotic tissue, which is potentially the source of confusion for the model. (c) shows 
non-neoplastic necrotic tissue without any cancer cells. In the heatmap colour spectrum, red indicates high 
probability, blue indicates low.
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Figure 5.   (a–c) show representative surgical serial sections for ADC (#1-#9), SCC (#1-#8), and SCLC (#1-
#8), respectively, and their associated diagnosis (D) and prediction (P) by our model. (a) #5 is a false negative 
prediction while all the rest are true positives. (d–f) show representative true positive probability heatmaps for 
ADC (d), SCC (e), and SCLC (f), respectively. Histopathologically, all the detected areas correspond to cancer 
cells. In the heatmap colour spectrum, red indicates high probability, blue indicates low.
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beta1 = 0.9 , beta2 = 0.999 , batch size of 32, and a learning rate of 0.001 with a decay of 0.95 every 2 epochs. We 
tracked the performance of the model on a validation set, and the model with the lowest loss on the validation set 
was chosen as the final model. The CNN model weights were initialised with pre-trained weights on ImageNet49, 
and for the first epoch we froze all the base layers and only trained the final classification layer. After the first 
epoch, all the weights were unfrozen, allowing them to train.

For the RNN model, we used an architecture with a single hidden layer of a gated recurrent unit (GRU)50 
with a size of 128 followed by a classification layer with a sigmoid activation and three outputs (ADC, SCC, and 
SCLC). The inputs to the RNN model were the feature representation vectors obtained from the global-average 
pooling layer of the CNN classifier. All the feature vectors were fed into the RNN model to obtain the final WSI 
diagnosis. We trained the RNN model after the CNN model finished training. We extracted a set of feature 
vectors for all the WSIs in the training set using the CNN model as a feature extractor. Each WSI had a variable 
number of feature vectors and an associated WSI diagnosis. We trained the model with the Adam optimisation 
algorithm, with similar hyperparameters as the CNN training, except with a batch size of one.

Software and statistical analysis.  We implemented the deep learning model using TensorFlow51. We 
calculated the AUCs and log losses in python using the scikit-learn package52 and performed the plotting using 
matplotlib53. We performed image processing, such as the thresholding with scikit-image54. We computed the 
95% CIs estimates using the bootstrap method55 with 1000 iterations. We used openslide56 to perform real-time 
slide tiling.

Data availability
Due to specific institutional requirements governing privacy protection, the majority of datasets used in this 
study are not publicly available. The external lung TCGA (TCGA-LUAD and TCGA-LUSC project) is publicly 
available through the Genomic Data Commons Data Portal (https://​portal.​gdc.​cancer.​gov/).
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