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Climate change and specialty 
coffee potential in Ethiopia
Abel Chemura1*, Bester Tawona Mudereri2,3, Amsalu Woldie Yalew1,4 & Christoph Gornott1,5

Current climate change impact studies on coffee have not considered impact on coffee typicities 
that depend on local microclimatic, topographic and soil characteristics. Thus, this study aims to 
provide a quantitative risk assessment of the impact of climate change on suitability of five premium 
specialty coffees in Ethiopia. We implement an ensemble model of three machine learning algorithms 
to predict current and future (2030s, 2050s, 2070s, and 2090s) suitability for each specialty coffee 
under four Shared Socio-economic Pathways (SSPs). Results show that the importance of variables 
determining coffee suitability in the combined model is different from those for specialty coffees 
despite the climatic factors remaining more important in determining suitability than topographic and 
soil variables. Our model predicts that 27% of the country is generally suitable for coffee, and of this 
area, only up to 30% is suitable for specialty coffees. The impact modelling showed that the combined 
model projects a net gain in coffee production suitability under climate change in general but losses 
in five out of the six modelled specialty coffee growing areas. We conclude that depending on drivers 
of suitability and projected impacts, climate change will significantly affect the Ethiopian speciality 
coffee sector and area-specific adaptation measures are required to build resilience.

Agricultural commodities face substantial risk from climate change because of their sensitivity to and depend-
ence on weather variables1. One such commodity is coffee, a crop and beverage of importance in international 
trade. The two species of coffee with economic importance are the Robusta coffee (Coffea canephora Pierre) and 
Arabica coffee (Coffea arabica Linnaeus). Arabica coffee has relatively higher demand (over 70% of the world 
coffee market) due to its higher beverage quality2. Worldwide, there are five key agroecological zones suitable 
for producing Arabica coffee, classified on the basis of temperature and rainfall characteristics. These areas are 
between latitude 20° N and 25° S at altitudes ranging between 700 and 2000 m.a.s.l3. Arabica coffee is more 
sensitive to climatic factors than robusta coffee and thus is expected to be affected more by climate change4. This 
is because Arabica coffee is grown in specific climatic and biophysical envelopes coupled with a narrow genetic 
diversity5. As such, there is evidence that climate change is reducing area suitable for coffee4,6,7, limiting yield8,9, 
and increasing the risks of pests and disease10–12. These biophysical impacts eventually impinge on the livelihoods 
of 25 to 30 million smallholder coffee farmers who produce the majority of the world’s coffee13.

In addition to the general requirements for Arabica coffee production, and perhaps most importantly, coffee 
quality profiles are strongly influenced by local climatic (rainfall, temperature, humidity and radiation), topologi-
cal (elevation, slope angle and aspect), and edaphic (soil depth, acidity/alkalinity and fertility) factors14,15. These 
give the coffee distinctive characteristics specific to production areas. The combination of these factors is unique 
to each region and thus difficult to replicate, and slight modifications will affect the eventual profile of the coffee, 
but impact studies on this important aspect are missing. The effect is such that even when the same coffee variety 
is planted in different areas, the profiles will be different16–18. This terroir influence in coffee is so strong that it can 
be detected by chemical traces18–20. As such, grading and classification of coffee on the global market are based 
on the roast appearance and cup quality (flavour, flagrance, acidity and body), bean physiognomies (size, shape 
and colour), the density of beans and number of defects21,22. All of these characteristics are heavily influenced 
by the geographic characteristics (climate, altitude and soils) of the area of cultivation, the botanical variety and 
to some extent the preparation (washed or unwashed)23–25. In addition, the use of geographical indicators of 
origin as proxies of product and process quality have grown immensely in the single-origin coffee markets26,27. 
The demand for specialty coffee is increasing across world markets, especially as they are used also in blending 
with lower quality coffees to create instant coffees. This creates opportunities for coffee growing countries and 
smallholder communities to receive a premium price of about + 20 to + 50% compared to regular coffee beans28,29.
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Despite the fact that coffee profiles are dependent on specific climatic and biophysical conditions, there are 
limited studies on the impacts of climate change on individual coffee types30,31. Although it is hypothesised that 
warming under climate change will reduce coffee quality23,31, integrated spatially-explicit quantitative impact 
studies remain unavailable. For example, it is reported that coffee quality will decrease as mean temperatures rise. 
This is because the maturation process of the coffee cherry speeds up faster than the development of the bean, 
leading to lighter and lower quality berries30. However, how these translate to potential of specific coffee types is 
not well established, which in turn makes the associated economic and livelihoods impact assessments difficult.

This study aims to fill this gap. We present evidence of the impact of climate change on the agro-ecological 
suitability for distinct coffee types, using Ethiopia as a case. Agro-ecological suitability is a measure of the abil-
ity of climatic and other biophysical characteristics of an area to sustain a crop production cycle and/or to meet 
current or expected targets32,33. Ethiopia is the largest coffee producer in Africa and the third-largest Arabica 
coffee producer in the world by volume and value following Brazil and Colombia34. Almost all of the coffee is 
produced by about 5 million smallholder farmers in forest or agroforestry systems, producing an average of 400 
000 tonnes with an estimated export value of over US$1 billion35,36. In addition, over 10% of the total cropland 
for commercial agriculture is allocated to coffee production, with coffee exports contributing about a third of all 
agricultural exports36,37. The country also has the largest domestic market for coffee in Africa38.

In the elite class of premium single-origin coffees such as Hawaiian Kona Coffee, Indonesian Toraja coffee, 
or Jamaican Blue Mountain are distinct Ethiopian coffees such as Yirgacheffe, Sidamo, Harar/Mocca, Nekemte, 
and Limu among others39,40. These coffees are recognized in the trade circuits of the world coffee market. These 
Ethiopian specialty coffees are accorded the best commercial class as “exemplary quality” coffees which have a 
high intrinsic value with a fine or unique cup and of limited availability compared to the demand of such coffees21. 
Ethiopia is thus a key player in the global specialty coffee industry where the country markets its coffee as dis-
tinct based on microclimatic conditions, native heirloom varieties or landraces and other socio-environmental 
factors41. The specific tone/flavour, notes, acidity and body of these are described in Table SI1. Recent studies on 
climate impacts on coffee show increases in coffee suitability under climate change4,42. However, these studies did 
not consider individual coffee types, with impact studies on wild Arabica coffee showing significant impacts43,44.

In this study, we assess the impacts of climate change on five distinct coffee types in Ethiopia. We apply an 
ensemble modelling approach with three machine learning algorithms driven by six global climate models 
(GCMs) under four Shared Socio-economic Pathways (SSPs) for four future periods (2030s, 2050s, 2070s and 
2090s). We specifically sought to investigate the potential distribution of specialty coffee areas in Ethiopia, identify 
the important determinants of each specialty coffee, and to quantify the climate change impacts on each specialty 
coffee. Such climate risk assessment on the specialty coffee sector are imperative to generate scientific evidence 
on the impacts of climate change on unique economic opportunities for specific geographic regions and most 
vulnerable communities. In addition to informing policy and trade, this assessment is a first step to identify and 
undertake, within planetary boundaries, adaptation measures tailored to each coffee type.

Results
Model fitting and performance.  The performance of individual models was satisfactory for all the mod-
elling exercises, being exceptional for some specialty coffees (Yirgacheffe and Limu) and high for the rest of the 
coffees. The lowest AUC and TSS was for Harar model (0.90 and 0.77 respectively), with the combined model 
for the TSS (0.78) and a higher AUC (0.94). Overall, our model evaluation showed that the modelling of all 
specialty coffees in Ethiopia was based on model skill and not random chance in identifying coffee areas (Fig. 1). 
There was a very strong correlation between the area modelled as suitable by the combined model and by the 
individual coffee models (Figure SI3). The combined model however, slightly overestimated speciality coffee 
areas in all cases as all specialty coffee types were below the 1:1 line. The high correlation between the combined 
and individual models, in addition to the high TSS and AUC values provides confidence to apply the model for 
examining the coffee suitability under current and future climatic conditions.

Determinants of specialty coffee distribution in Ethiopia.  The importance of climatic, soil and top-
ographical factors driving the suitability of coffee production in Ethiopia is shown in Fig. 2. The figure indicates 
that for the combined model, no specific individual factors dominate suitability whereas there are dominant 
variables driving suitability for each specialty coffee. Climatic factors are more important in determining the 
suitability of coffee in Ethiopia in general (61:39) and for the suitability of all specialty coffees except for Nekemte 
coffee (48:52) (see also Fig. 2), which is influenced by more by soil factors. The most important factor in deter-
mining suitability for all coffee in Ethiopia is soil bulk density (BD) (16.8%) followed by precipitation seasonality 
(Bio15) (12.7%), with coffee preferring areas with lower soil BD and precipitation coefficient of variation (CV). 
Isothermality (Bio3) (10.8%) also contributed to coffee suitability among climatic variables (Fig. 2). Soil organic 
carbon (OC) (9.8%) and elevation (7.6%) are also important topographical and soil determinants of coffee suit-
ability while the least important were soil CEC (0.3%) for soil factors, and slope aspect (0.5%) for topographical 
factors and precipitation of wettest month (Bio13) for climatic factors (2.5%).

Unlike for all coffee suitability, one variable contributed at least more than 25% to specialty coffees suitability 
in Ethiopia. For example, for Harar coffee, 67% of its suitability of the model fit is influenced by precipitation of 
warmest quarter (bio18), 79% of Sidamo coffee by precipitation of driest month (Bio14) and 57% of Yirgacheffe 
coffee by temperature seasonality (Bio4). Conversely, Limu (34%) and Nekemte (29%) coffee distribution are 
more explainable by soil pH, with temperature seasonality (Bio4) the second most important for both coffees 
(21 and 14% respectively, Fig. 2). The variation of the factors influencing the suitability of all coffee and specialty 
coffee indicate that there are localized factors that explain individual coffee suitability, after general factors that 
determine the suitability of coffee in Ethiopia.
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The geographic distribution of specialty coffee areas in Ethiopia.  The combined model shows 
that 27% (299,193 km2) of Ethiopia is suitable for coffee under current climatic conditions, with the highest area 
(63%, which is 188,652 km2) outside the five specialty coffee zones (Fig. 3a, Table 1). Of the 27% that is suitable 
for coffee in Ethiopia, only about 30% (91,122 km2) is suitable for specialty coffee production. The individual 
specialty coffee models show that the Nekemte coffee has the largest suitable area (32,648 km2, 11.8%) in the 
western parts of the country, followed by Sidamo coffee with 9.6% of the suitable area for coffee (26,478 km2) in 
the southern parts of the Ethiopian highlands. The smallest range is for Yirgacheffe coffee which is only suitable 
in 1.2% of the suitable area for coffee in the combined model (3,736 km2, Table 1). The most significant overlaps 
were for Sidamo and Yirgacheffe coffee where 65% (2411 km2) of the Yirgacheffe was modelled as suitable for 
Sidamo coffee while 16% (5,170 km2) of the Sidamo coffee area was modelled as suitable for also producing 
Yirgacheffe coffee (Fig. 3, Table 1).

The impacts of climate change on specialty coffee in Ethiopia.  The impacts of climate change on 
each specialty coffee and the combined effects are shown in Fig. 4. The results show that the area that is suit-
able for coffee in the country will increase gradually until 2090s from the combined model (Fig. 4a). In the near 
future (2030s), the area suitable for coffee will remain stable under all scenarios (less than 1% average change in 
suitable area). For the 2050s, under SSP126 and SSP245 scenarios, the area suitable is projected to increase on 
average by 2.9% and 2.3% respectively but remain stable under SSP370 scenario (+ 0.4%) and decrease in the 
SSP585 scenario (− 1.3%). The area suitability is projected to increase by the 2070s and 2090s under all SSPs. 
Except for SSP370 where coffee suitability is projected to remain stable, it is projected that coffee suitability will 
increase on average in the 2070s by 2.3, 3.0 and 1.5% under SSP126, SSP245 and SSP585 respectively. The highest 
average increase of 4.5% is projected under SSP245 in 2090s (Fig. 4a, Table SI3).

Depending on the scenario and the time-period, the area suitable for all specialty coffee types is projected 
to decline under climate change except for Nekemte, which is projected on average to increase its suitable area 
(Figs. 4b–f, 5). Largest decrease in the suitable area are projected for the Harar and the Yirgacheffe coffees which 
are projected to lose, on average, more than 40% of their suitable areas by 2090s under the worst case scenario 
(SSP585) (Fig. 5, Table SI3). The projected decreases in the area suitable for specialty coffee in Ethiopia contrast 
the results of the combined general model which shows an increase. The country-level change in the area suitable 
is, therefore, more influenced by the Nekemte coffee which has the highest area suitable for coffee under current 
climatic conditions. This implies that the national-level results mask the impacts of climate change on the suit-
ability of specialty coffee in Ethiopia. In other words, country-level studies may reveal little about region-specific 
socio-economic consequences of ensuing impacts of climate impacts on specialty coffees.

Discussion
The impacts of climate change on the quality and quantity of coffee production has gained recent attention. Nev-
ertheless, previous studies have hardly addressed the impacts of climate change on specialty coffee, an important 
aspect of the global coffee sector. In this study, we developed an ensemble model to project the suitability of 
specialty coffee in Ethiopia under climate change, and thus to quantitatively and spatially gauge the impacts of 

Figure 1.   Performance evaluation of the individual models in the ensemble according to (A) TSS and AUC (B) 
ROC plots.
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climate change on the coffee types. For this purpose, five specialty coffee types—Harar, Limu, Nekemte, Sidamo 
and Yirgacheffe—were modelled under current and future climatic conditions.

Our study provides further specific information about climate change impacts on the coffee sector by look-
ing at specific coffee systems. This is an advancement from previous studies which were limited to the applica-
tion of suitability models to understand the geographic range and climate change impacts on the overall coffee 

Figure 2.   The importance of a variable in explaining coffee suitability for all coffee and five specialty coffees in 
Ethiopia. Data is obtained from averages of the three individual models. Note the ‘Bio’ variable notations are 
following the notations used in the WorldClim database, our original database for bioclimatic variables. See SI3 
Table for full variable names.

Figure 3.   Suitability for coffee production under current climatic conditions in Ethiopia modelled with the 
(a) combined model and (b) individual specialty model. The model results were exported into ArcGIS Sofware 
Version 10.2 (http://​deskt​op.​arcgis.​com/​en/​arcmap) to generate the map in this figure.

http://desktop.arcgis.com/en/arcmap
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sector6,44–47. Our projected area of coffee production match the observed and previously reported ranges for 
coffee production in Ethiopia including the original habitats and the primary and secondary production areas 
on either side of the rift valley42,48,49. Our finding that only about 30% of the coffee producing area is suitable for 
specialty coffees concurs with current estimates that around 20% of coffee production in Ethiopia is specialty 
coffee50. Assuming similar yield levels between general and specialty coffee, in line with the generalist nature of 
suitability models, we believe our suitable area simulations are therefore very reliable.

There are no verifiable records about coffee production amounts or ranking according to each specialty type. 
Yet, with the decent match of our combined and individual model in projecting these areas, we conclude that we 
have provided a robust estimate of the potential areas for the aforementioned coffee types. We, however, notice 
an increase of projected coffee suitability in the south-western part of the country which is beyond current 
established production areas. This is expected as the suitability maps capture the potential production areas, 
some of which have not yet been used as coffee production areas.

We find that the factors that influence the suitability of coffee, in general, vary with those that give geographi-
cal typicality. We find that there is an almost equal contribution of temperature and precipitation factors in deter-
mining the suitability of coffee in Ethiopia, confirming findings from other studies42. Conversely, in a global study, 
temperature factors were identified mainly as determinants of Arabica coffee suitability4 while in a national study 

Table 1.   Area and percentage suitable for growing coffee under current climatic conditions.

Coffee typicity

Combined model Individual models

Area (km2) Percentage Area (km2) Percentage

Harar 18,029 6.0 13,120 14.4

Nekemte 38,165 12.8 32,648 35.8

Limu 19,050 6.4 15,944 17.5

Sidamo 31,562 10.5 26,479 29.1

Yirgacheffe 3736 1.2 2932 3.2

Other 188,652 63.1 n/a n/a

Total 299,193 100 91,122 100

Figure 4.   Simulated impacts of climate change on specialty coffee suitability in Ethiopia by 2030s, 2050s, 2070s 
and 2090s. The bar plots show the range of projected changes using the ensemble model and the variability from 
the six GCMs.
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elsewhere identified mostly precipitation-based factors in determining suitability6. Such variations are explained 
by differences in scale and geography respectively, indicating that the potential for coffee can be influenced by 
local and regional factors. This explains our finding that specialty coffee types are influenced by different factors 
giving them different chemical properties and profiles. For example, Tolessa, et al.51 finds that coffee specialty cup 
quality attributes (overall cup preference, acidity, body, flavour and aftertaste) were influenced more by altitude. 
It is important to note that the altitude is not a direct production parameter for coffee but strongly influences 
climatic and soil characteristics that in turn influence the coffee quality. The reasons for higher quality at higher 
altitude is the slow coffee bean development associated with cooler high-altitude temperatures, which allow for 
slow bean filling and can result in more flavour profiles and body6. In addition, coffee cultivars are different for 
each specialty coffee zone41,49 and yet coffee varieties respond differentially to climate change impacts52.

Although we include, for the first time in modelling suitability of coffee, soil and topographic factors we 
find that climatic factors are more important in determining suitability except for the Nekemte coffee in which 
soil factors are the most important. In addition, we explore the factors explaining the geographical provenance 
of Ethiopian coffee, confirming that the current branding and individual marking of these specialty coffees 
is justifiable based on the different climatic, soil and topographic factors that influence them. These distinct 
influences manifest in the cupping profiles and elements in the coffee from other assessment methods18–20. This 
demonstrates the importance of the different environmental determinants of coffee profiles as similarly reported 
for wine quality53. Chemometric methods have, for example, shown that environmental conditions during the 
development of coffee beans have a strong influence on the distribution of coffee bean fatty acid composition, 

Figure 5.   Maps showing the projected changes in the area suitable for growing specialty coffee in Ethiopia in 
the 2030s, 2050s, 2070s and 2090s. The results are obtained from four scenarios obtained from the ensemble 
model. The model results were exported into ArcGIS Software Version 10.2 (http://​deskt​op.​arcgis.​com/​en/​
arcmap) to generate the map in this figure.

http://desktop.arcgis.com/en/arcmap
http://desktop.arcgis.com/en/arcmap
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an important indicator of quality54. This further strengthen the need for protecting and promoting coffees that 
are linked to origin and not just to postharvest processimg. This also underlines the importance of assessments 
specific to individual coffee types calling for more localized climate impact studies compared to general ‘all-in-
one-basket’ approaches.

The results show that we can expect an overall increase in coffee growing potential in Ethiopia but a decrease 
in most specialty coffees (except Nekemte) by climate change from the near-future to the 2090s. Similar posi-
tive changes in general coffee suitability in Ethiopia were reported4,42. On the other hand, studies that focused 
on wild coffee Arabica reported decreases of up to 50% in areas suitable in Ethiopia42,44, implying the possible 
differences in suitability in wild and cultivated distribution of coffee in Ethiopia. The implications of changes 
in wild Arabica coffee suitability attribute more to losses in genetic diversity which may affect future breeding 
programs while losses in production area suitability for cultivated coffee are directly related to socio-economic 
factors. Specifically, losses in the production potential of specialty coffee indicate losses in lucrative specialty 
markets as coffee move into generic (bitter) coffee categories in terms of quality profiles (e.g. similar production 
potential can be achieved but with a changed taste profile).

The overall impact of lost specialty status is lost market premiums, which disincentives some farmers from 
continuing with specialty coffee production as they move to alternative crops. In many cases once the specialty 
status of the coffee has been lost it is difficult for the farmers to continue viably producing the coffee because 
they will not be able to compete with industrial coffee production systems elsewhere that are more efficient but 
produce generic coffees. This will have impacts on both the local and national economy. Our study concurs with 
some estimates that up to half of the current specialty coffee growing areas could be significantly altered by cli-
mate change with effects on production and local society35,42,55. Broadly, this study underscores the importance 
of understanding the dimensions of impacts of climate change in impact assessments. We conclude that rainfall 
increases may favour coffee production in general but changes in specific climatic characteristics has more sig-
nificant effect on specialty coffee types and this has significant and downstream impacts on the local and global 
coffee sector. Therefore, impact studies should also consider such dimensions.

Some studies show that coffee can respond positively to carbon CO2 fertilization5,56. Nevertheless, it is dif-
ficult to account for interactions between elevated CO2 and environmental conditions in empirical models such 
as those used in this study. CO2 fertilization may expand (or offset) the increases (or the decrease) in suitability 
by an unknown extent. Besides, climate change impact was calculated as the change in area suitable relative to 
the current (baseline) and not as absolute change. In addition, smaller or emerging specialty areas that were not 
represented in the modelling points could have been under-estimated in our study. Crop suitability modelling 
also allocates similar weight to all the points and yet these points may vary in their suitability from highly suit-
able to marginally suitable, which is not reflected in this study.

We believe that results from this study provide a scientific evidence which underpins both national and 
subnational adaptation planning for a climate-resilient speciality coffee sector. The fact that the information 
is spatially explicitly also means that various adaptation measures can be suggested for different areas thereby 
reducing the risks of maladaptation. For example for coffee types where temperatures are most important, 
enhanced agroforestry systems can be suggested to regulate canopy temperature while irrigation is important 
for those where rainfall factors are most important. Future research should integrate the results of such stud-
ies with economic models to get a better picture on both the biophysical and economic consequences (e.g., on 
employment, sectoral and regional GDP, export earnings and trade balances) of climate change-induced area 
suitability changes on speciality coffees in the country.

Conclusions
In this study, we apply an ensemble of three models the current and future suitability of specialty single-origin 
coffees in Ethiopia to understand and identify areas and opportunities for adaptation. Three important conclu-
sions can be drawn from the study results. First, there are differences in factors determining all coffee suitability 
and specialty coffee suitability with factors influencing each type being different among specialty zones. Second, 
the projected gain in coffee suitability is highly influenced by changes in the largest specialty zone as five out 
of the six modelled zones are projected to lose their suitability for their respective specialty coffee type. Third, 
the magnitude of the impacts of climate change depends on the radiative forcing (GHG emission) scenario and 
socio-economic pathway and the time period with worst results expected under the highest emission scenario 
(RCP8.5) around the end of the century (i.e., 2090s). We conclude that the specialty coffee sector faces production 
risks from climate change but there are opportunities for adaptation strategies to build resilience for the sector.

Methods
Coffee farm locations.  We first obtained and digitized maps of the specialty coffee production areas in 
Ethiopia48. We then identified 8 specialty coffee types, namely, Bale, Guji, Harar, Keffa, Nekemte, Limu, Sidamo 
and Yirgacheffe. Then, we compiled GPS coordinates of coffee farms in Ethiopia from the following four sources:

•	 CABI Crop Protection Compendium, (CABI-CPC, https://​www.​cabi.​org/​cpc/): The compendium is an ency-
clopaedic resource with a collection of science-based information on all aspects of crops that have been 
sourced from experts, independent scientific organizations, and specialist organizations in the form of images, 
maps, and geographic coordinates57. We, therefore, searched for reports on “Coffea arabica” for Ethiopia and 
retrieved all coordinates.

•	 Global Biodiversity Information Facility (GBIF, www.​gbif.​org): The GBIF was established in 2001 to publish 
primary biodiversity data using community-driven and agreed standards and tools. It facilitates open access 

https://www.cabi.org/cpc/
http://www.gbif.org
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to biodiversity data worldwide for scientific research, conservation and sustainable development with over 
one billion occurrence records of species.

•	 Integrated Digital Collection (iDigBio, www.​idigB​io.​org): iDigBio is an online resource for specimen digitiza-
tion and digital data mobilization for researchers to visualize, analyse, and model species with possibilities 
for big data strategies. Millions of specimen-based occurrence data are available on this portal.

•	 Scientific publications: To supplement the presence points obtained from the databases, coffee points were 
also digitized from two scientific publications that have coffee presence points for Ethiopia. These were 
Ridley38 and Moat, et al.42.

We cleaned the data by removing records (1) without or with incorrect geographic coordinates, (2) older than 
the year 2000 since they may have positional errors (3) with a reported uncertainty higher than 50 km, and (4) 
within 5 km of another point to avoid extracting same pixels with same points.

After these steps of data cleaning, a total of 267 valid geographic points were obtained and used for the model-
ling. Using the specialty coffee zone shapefile, the points were clipped to each specific zones for suitability model-
ling of specialty coffee and all points used together without distinction for the combined model (Figure SI1). We 
further did an area-weighted elimination of presence points so that the modelling is not biased by some specialty 
areas having more points than other areas. We were finally left with only five coffee specialty zones which are 
Harar, Nekemte, Limu, Sidamo and Yirgacheffe (see also Table SI1). The use of these presence points is based on 
the assumption that coffee farmers grow coffee in the most suitable agro-ecological areas with varieties/landraces 
and production systems significantly different for each specialty coffee type. There are between 6000 and 10,000 
regional heirloom coffee varieties in Ethiopia in addition to the over 40 hybrids that have been developed for 
each region mostly for higher yields and pest and disease resistance. The modelling captures distribution of these 
genetic material as points from each coffee speciality zone represent specific varieties that vary between regions. 
Therefore, the modelled suitability for the coffee types is the ability of a region’s climatic and other conditions to 
sustain production of current varieties and achieving current production levels.

Fitting the suitability models uses the presence points and background absence data. The coffee presence 
points provided the locations of coffee farms and there was a need to sample for background absence data. We 
developed a background sampling protocol that (a) gives a balance between the numbers of absences relative to 
the number of presences in the modelling dataset as this leads to overfitting and inflation of model performance 
metrics, (b) limits the loss of important information, and (c) preserves the observed prevalence. To achieve this, 
we settled for a presence to absence ratio of 1:10 in the dataset for the combined model and the individual spe-
cialty coffee models which is also recommended in literature58,59. The background sampling was applied outside 
a buffer of 10 km of presence points to limit them to the outside known coffee areas.

Agro‑ecological variables for suitability modelling.  Three types of agro-ecological variables were 
used in modelling the current and projected suitability of distinct specialty coffee types in Ethiopia. These were 
climatic variables, topographical variables and soil variables. The variables were selected on their known agro-
nomic significance to coffee production.

Climatic variables.  The 19 climatic variables available from the WorldClim v2.1 database (www.​world​clim.​
org) at ~ 5 km × 5 km spatial resolution were downloaded and clipped for Ethiopia. These variables are derived 
from monthly values of precipitation and temperature throughout the year into agronomically and ecologically 
useful variables for primary production-based species modelling. The WorldClim database curates these data 
interpolated from more than 115,000 climate stations from the global climatic database such as FAOCLIM, the 
Global Historical Climate Network (GHCN) and other sources60. The climatic variables, therefore, represent 
annual tendencies such as average annual temperature and precipitation values and their variations, seasonal 
characteristics such as temperature and precipitation ranges in the wettest, driest, hottest, and coldest quarters 
and extremes such as temperature in the coldest month or precipitation in the wettest month. Detailed informa-
tion of each variable are given in the Table SI2.

Topographical variables.  Three topographic variables (elevation, slope angle and aspect) were included 
in the modelling as these also influence coffee suitability and local characteristics of specialty coffee types. The 
GTOPO30 global digital elevation model (DEM) was downloaded from United States Geological Survey (USGS) 
for deriving the topographic variables. The GTOPO30 was developed by the USGS’s EROS Data Centre (EDC) 
and provides elevations at 30 arc-seconds (~ 1 km). In addition to using the elevation (m.a.s.l) as a variable, slope 
aspect (1–12 directional values) and slope angle (degrees) were derived from the DEM as additional variables. 
We hypothesised that, since the amount of radiation received varies depending on the direction the slope is fac-
ing, this may influence the development of distinct characteristics of the coffee. We also hypothesised that slope 
angle has an influence on water accumulation and soil depth which in turn may influence not just the suitability 
of coffee but the development of its specific profile. Slope and angle variables were derived using the R program-
ming language61 after the variables were aggregated to the resolution of the climatic variables.

Soil variables.  In addition to the climatic and topographic variables, four soil variables were also included. 
These were soil pH (has a measure of soil acidity or alkalinity levels), soil cation exchange capacity (CEC) soil 
apparent bulk density (BD) and soil organic carbon (OC). These were obtained from the International Soil Ref-
erence and Information Centre (ISRIC) Africa soils database that is a 1-km soil map of properties and soil classes 
obtained from advanced regression analysis of thousands of published and compiled soil profiles from many 

http://www.idigBio.org
http://www.worldclim.org
http://www.worldclim.org
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sources62. Soil variables were included because soil type and related factors are important determinants of coffee 
production63,64. The soil variables were also aggregated to the resolution of the climatic variables.

Collinearity test for variable selection.  A stack with a total of 26 variables was therefore created from 
the climatic, topographic and soil variables. To remove correlated variables (Figure SI2) that do not provide 
additional unique information to the modelling, the variance inflation factor (VIF) method was used for col-
linearity test and variable selection and for improving model stability, robustness and computing efficiency. VIF 
measures the inflation of the variances for the parameters above what is expected if there is less multicollinearity 
among the independent variables65. The VIF is directly calculated from the linear model with the focal numeric 
variable as response using Eq.(1):

where R2 is the regression coefficient of determination of the linear model. A VIF value greater than 10 often 
suggests a collinearity problem within a model, and therefore 10 is used as the elimination threshold66.

Modelling approach.  We built and applied an ensemble modelling approach to deal with uncertainties 
involved in individual model performance and prediction. After the exploratory model runs, three machine 
learning algorithms, Random Forest (RF), Boosted Regression Trees (BRT) and Support Vector Machine (SVM) 
outperformed 15 other algorithms in terms of accuracy and were used for building the ensemble model.

Random forest.  Random forest is an ensemble classifier that consists of many decision trees developed by 
Breiman67. The algorithm operate by constructing a multitude of decision trees at training time and outputting 
the class that is the mode of the classes or mean prediction of the individual trees while internally correcting for 
decision trees’ habit of overfitting to their training set. Thus, RF is not sensitive to the problem of overfitting as it 
can handle large datasets and runs efficiently without variable deletion67. Random forest is therefore one of the 
most accurate learning algorithms with high performance in predicting species distributions.

Boosted regression trees.  Boosted regression trees (BRT) is a machine learning that combines boosting 
method with classification and regression trees (CART). BRT combine the strengths of regression trees (models 
that relate a response to their predictors by recursive binary splits) and boosting (an adaptive method for com-
bining many simple models to give improved predictive performance)68. The final BRT model is as an additive 
regression model in which individual terms are simple trees, fitted in a forward, stage wise fashion with much 
better prediction performance than its weaker predecessors69,70.

Support vector machine.  The SVM is a universal machine learning method for cogent prediction based 
on structural risk minimization and statistical learning theory71. The SVM algorithm maps the original data into 
a high dimensional feature space where a hyperplane is constructed from training data and uses a kernel func-
tion to transform the data into a SVM. Samples located in the boundaries (support vectors) are identified and 
used to compute an optimal decision boundary72. The optimal linear hyperplane is used in order to separate the 
original input space71.

Building an ensemble model.  An ensemble modelling approach was used. This approach combines pre-
dictions from each model and often results in better model predictions than relying on individual models73. We 
used a weighted averaging approach based on Area Under the Curve (AUC) statistics to assign how much each 
of the three individual models contributes to the final model when its AUC is above 0.75 (Eq. 2):

where, E is ensemble, AUC​i is the AUC value of the ith single model (Mi).
Finally, we used the predict function of R to project the models both to current environmental conditions 

across the study area and to future environmental scenarios for each model for Ethiopia. The suitability maps were 
converted into binary suitable and unsuitable based on the specificity-sensitivity sum maximization approach.

Variable importance.  Variable importance was calculated to determine to what extent each predictor vari-
able contributes to the predictions made by the model. The variable importance of each predictor was extracted 
from each SDM. This method is a randomization procedure that measures the correlation between the predicted 
values of a model with the original predictors, and predictions of the same model with a randomly permutated 
dataset under evaluation. If the contribution of a variable to the model is high, then it is expected that the permu-
tation would affect the prediction, and consequently, the correlation is low and vice-versa. Using this approach, 
‘1 –correlation’ is considered as a measure of variable importance and was used to assess the importance of each 
predictor to the combined coffee model and individual specialty coffee models. The individual variable impor-
tance values are dependent on the individual algorithm used, mean values for the three models were calculated 
to provide relative information on predictor importance within the model.

(1)VIF =

1

1− R
2
i

(2)E =

∑
n

i=1
(AUCi ∗Mi)

∑
n

i=1
AUCi
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Model evaluation.  To assess model performance, the modelling data were divided into a training data set 
(70%) and testing data set (30%). The training data set was used for model calibration, and the testing data set 
was used for out-of-sample model performance. One hundred replicates were run for each model with resa-
mpling methods for subsampling. The area under the receiver operating characteristic curve (AUC), which 
measures overall discrimination capacity and the true skill statistic (TSS), which balances the capacity to cor-
rectly predict presences and pseudo-absences, were used to measure the accuracy74. A perfect model would have 
an AUC and TSS of 1. The AUC varies from 0 to 1, while the TSS varies from − 1 to 1, with values above 0.75 
showing good model skill for both75. All model calibration, evaluation and projection were done with the sdm-R 
package version 1.0–897476. All modelling as much as possible confirmed to recommended standards in species 
modelling77. The model results were exported for producing map figures in ArcGIS 10.6 (Environment Systems 
Research Institute, Redlands, CA)78.

Assessing the impacts of climate change.  One of the advantages of suitability models is that models 
fitted in current conditions can be transferred to novel periods under emissions scenarios projections to under-
stand and quantify potential variations in species ranges due to climate change. To project future combined 
and individual coffee suitability, the topographic and soil predictors were considered unchanging, while for 
independent climatic predictors we used those extracted by six bias-adjusted Coupled Model Inter-comparison 
Project (CMIP6) available from the WorldClim v2,1 database at a spatial resolution of 2.5 min79.

Six GCMs were used for projected climatic conditions. These were Beijing Climate Centre China Mete-
orological Administration (China, BCC-CSM2-MR), Centre National de Recherché Meteorologiques (France, 
CNRM-ESM2-1), Canadian Centre for Climate Modelling and Analysis (Canada, CanESM5), Institut Pierre 
Simon Laplace (France, IPSL-CM6A-LR), and Center for Climate System Research (Japan, MIROC6) and Mete-
orological Research Institute (Japan MRI-ESM2-0). These GCMS were selected because they have complete 
bias-corrected data for all the periods that were under consideration (2030s, 2050s, 2070s and 2090s).The bias 
correction was performed through delta downscaling method following Navaro80. In this approach, a change 
factor or ‘delta’ is derived from the GCM, and then added onto the observations to provide a bias-corrected and 
high-resolution representation of the mean climates. GCM-based model uncertainty was calculated by determin-
ing the number of models agreeing in the prediction of the direction of the climate change trend.

The impact of climate change on specialty coffee in Ethiopia was assessed from projected climate and socio-
economic conditions defined based on the combination of the Representative Concentration Pathways (RCPs) 
and the Shared Socio-economic Pathways (SSPs). The RCPs provide future climate simulation through consider-
ing the impact of future greenhouse gas emission trajectories on the climate system81. There are four RCPs -RCP 
2.6, RCP 4.5, RCP 6.0 and RCP 8.5—on the basis of the forcing until the end of twenty-first century. The SSPs 
represent a distinct set of narratives about the future of the world through a wide range of plausible trajectories 
of population growth, economic growth, technological development, trade development and implementation 
of environmental policies82,83. The five SSPs are commonly referred as the most sustainable development (SSP1), 
middle-of-the-road development (SSP2), regional rivalry (SSP3), inequality (SSP4) and full fossil-fuelled devel-
opment (SSP5) pathways.

The combination of RCPs and SSPs, therefore, represent a wide range of plausible future scenarios that are 
more probable by the integration of radiative forcing and socioeconomic development influences84, providing a 
more comprehensive scenario matrix. This is because each SSP is broadly aligned with one or two RCPs, allowing 
easy integration of SSPs and RCPs. The four combinations chosen were SSP1-RCP2.6 (SSP126), SSP2-RCP4.5 
(SSP245), SSP3-RCP7.0 (SSP370) and SSP5-RCP8.5 (SSP585) and these linear combinations were chosen to 
enable comparison in similar studies that apply the same combinations. We ran the models for four future periods 
which are 2030s (2021–2040), 2050s (2041–2060), 2070s (2061–2080), and 2090s (2081–2100).

Data availability
The data that support the findings of this study can be found in the related cited articles and/or from the cor-
responding author upon reasonable request.

Code availability
The compiled code and files used in the model setup, validation and projections are freely available for download 
at GitHub: https://​github.​com/​achem​ura/​Speci​alty-​coffee-​Ethio​pia.
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