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Abstract
Sulfonamide (or sulphonamide) functional group chemistry (SN) forms the basis of several groups of drug. In vivo sulfonamides
exhibit a range of pharmacological activities, such as anti-carbonic anhydrase and anti-t dihydropteroate synthetase allowing
them to play a role in treating a diverse range of disease states such as diuresis, hypoglycemia, thyroiditis, inflammation, and
glaucoma. Sulfamethazine (SMZ) is a commonly used sulphonamide drug in veterinary medicine that acts as an antibacterial
compound to treat livestock diseases such as gastrointestinal and respiratory tract infections. Sulfadiazine (SDZ) is another
frequently employed sulphonamide drug that is used in combination with the anti-malarial drug pyrimethamine to treat toxo-
plasmosis in warm-blooded animals. This study explores the research findings and the work behaviours of SN (SMZ and SDZ)
drugs. The areas covered include SN drug structure, SN drug antibacterial activity, SN drug toxicity, and SN environmental
toxicity.
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Introduction

Sulfonamides (SN) or sulfanilamides belong to an important
class of synthetic antimicrobial drugs that are pharmacologi-
cally used as broad spectrum for the treatment of human and
animal bacterial infections (Seydel 1968; Supuran et al. 2003).
SN structures are organo-sulphur compounds containing the -
SO2NH2 and/or -SO2NH- group and are characteristic of the
existence of sulfanilamide group and a distinct 6- or 5-
membered heterocyclic rings. SNs are not readily biodegrad-
able and have potential to cause various unfavourable side
effects including diseases of the digestive and respiratory
tracts (Sultan 2015) (with some of the SN drug non-allergic
reactions include diarrhoea, nausea, vomiting, dizziness, can-
didiasis, folate deficiency, and headaches (Mathews et al.
2015)). When used in large doses, SN drugs may cause a
strong allergic reaction with two of the most serious being
Stevens–Johnson syndrome and toxic epidermal necrolysis
(Shah et al. 2018). The overall incidence of adverse drug

reactions to sulfanamide allergy is approximately 3–8%, close
to that seen for penicillin (Giles et al. 2019; Warrington et al.
2018). A key determinant feature of this allergic response
involves substitution at the N4 arylamine group position such
as is found in sulfamethoxazole, sulfasalazine and sulfadia-
zine (Dibbern and Montanaro 2008; Tilles 2001). Other SN
drugs which do not contain the arylamine group tend not to
induce the allergic response and may therefore be safely taken
(Giles et al. 2019; Khan et al. 2019). As a result of this allergy
effect, SNs are classified into two groups: (i) anti-bacterial
sulfonamides (with an aromatic amine) and (ii) non-
antibacterial sulphonamides (without an aromatic amine)
(Igwe and Okoro 2014; Yousef et al. 2018; Zawodniak et al.
2010).

SN-derived drugs developed up till the present include sul-
famethazine, sulfadiazine, sulfamethoxazole, sulfasalazine,
sulfisoxazole, sulfamerazine, sulfadimethoxine, sulfafurazole,
and sulphanilamide (“Antibacterial Agents, Sulfonamides”
1944; Hehui et al. 2021; Supuran 2017) (Table 1). Among
these SN derivatives, the first to be developed in 1906 was
sulphanilamide, although it was not used as an antimicrobial
agent until the late 1930s (Ballentine 1981; Fernández-Villa
et al. 2019). Sulfamethazine (SMZ) and sulfadiazine (SDZ)
are among the derivatives of sulphonamides group of antibi-
otic drugs that contain the aromatic amine group. SMZ and
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SDZ are commonly used in veterinary medicine as an antibac-
terial compound to treat livestock diseases such as gastroin-
testinal and respiratory tract infections (Rama et al. 2017).
SMZ has been used in animal feeds or feed additives to pro-
mote growth in animals (Awaisheh et al. 2019; Burbee et al.
1985; Chattopadhyay 2014; Dixon-Holland 1992). SDZ on
the other hand is used primarily on the treatment of infection
caused by the burn wounds (Banerjee et al. 2019; Dai et al.
2010; Hosseini et al. 2007). SDZ is also used in combination
with the anti-malarial drug pyrimethamine to treat toxoplas-
mosis in mammals (Hossein Eshghia et al. 2011; Islam et al.
2013; Winters and Janney 2015). There are several reports
about SN, SMZ, and SDZ that deal with its environmental
effects, antibacterial effects, and its interactions with specific
bio-macromolecules (Bendjeddou et al. 2016; Biošić et al.
2017; Chen et al. 2012; Genç et al. 2008a; Islam et al. 2016;
Qadir et al. 2015). It is the intention of the present review
article to critically assess these reports.

Structure and nomenclature

The typical structure of a tertiary SN involves a central sulfur
atom, with two doubly bonded oxygens, that is also bonded to a
nitrogen atom (existing as a substituted amine) and an aniline
group (Fig. 1a) in which R1/R2 may also be hydrogen, alkyl,
aryl, or hetero aryl groups. An alternative means of describing
the prototypical SN drug structure is an organic compound
consisting of aniline derivatized with a sulfonamide group
(Pareek et al. 2013; Sonu et al. 2017). The difference in the
derivative structure of SN (Fig. 1a) between SMZ and SDZ
(Fig. 1 b and c) lies in the extra dimethyl group that is present
in the 4th and 6th carbon of the pyridine ring. The IUPACname

of SN is 4-aminobenzenesulfonamide, and the two derivative
drugs are 4-amino-N-(4, 6-dimethylpyrimidin-2-yl) benzene
sulphonamide for SMZ and 4-amino-N-(pyrimidin-2-yl)
benzene-1-sulphonamide for SDZ respectively (Robertson
et al. 2020; “Sulfamethazine and Its Sodium Salt” 2001).

Synthetic aspect

There are a number of published methods for the synthesis of
sulfonamides in different research papers (Naredla and Klumpp
2013; Shah et al. 2018) yet the most frequent and common
method involves a reaction of aliphatic or aromatic sulfonyl
chloride with ammonia which produces a greater yield as com-
pared with that of other methods (Bahrami et al. 2009;
Dominique Guianvarc’h et al. 2004). The initial compound for
the sulphonamide synthesis is benzene which follows six more
steps to procure the product. Benzene undergoes nitration to
give nitrobenzene which is then reduced by the reducing agent
tin and hydrochloric acid to give anilinium ion and is further
converted to aniline using sodium hydroxide. Acetanilide pro-
duced via acetylation in the aqueous medium then reacts with
chlorosulfonic acid to give 4-acetamidobenzenesulfonyl chlo-
ride. The intermediate thus formed gives 4-acetamidobenzene
sulphonamide in the presence of ammonia. The final step of the
synthesis involves hydrolysis in acidic medium to form 4-
aminobenzenesulfonamide (sulphanilamide). The schematic
representation for the synthesis of sulfonamide drug is shown
in Fig. 2 (Tacic et al. 2017). Further derivativeswere synthesized
using 4-acetamidobenzenesulfonyl chloride with 4,6-
dimethylpyrimidin-2-amine (obtained from reacting pentane-
2,4-diol with gaunidine) for SMZ (Lu and Rohani 2010; Ross
and Plainfield 1968) and pyrimidine-2-amine (obtained from

Table 1 Summary of DFT study on SN, SMZ, and SDZ

Sl no. Molecule/Complex Method Basis set Energy gap/Magnetic
moment (μeff)

Year Reference

1 Sulfonamide in gas and DMSO phase DFT B3LYP/6-31G (d, p) 6.10 eV, 6.14 eV 2014 Boufas et al. (2014)

2 Sulfonamide moiety Geometry
optimization

M06-2X/6-311+G (d,p) 0.27 a.u(singlet)
0.21 a.u(triplet)

2018 Ge et al. (2018)

3 Sulfonamide I and II DFT B3LYP/6-31G (d, p) 5.38 eV, 5.33 eV 2019 Arshad et al. (2019)

4 Sulfadiazine DFT B3LYP/6-31G++(d,p) - 2009 Ogruc-ildiz et al. (2009)

5 Sulfadiazine DFT B3LYP/6-31G (d, p) 4.347 eV 2019 Dubey and Patel (2019)

6 Sulfadiazine Ru(II) and Rh(III)
complexes

DFT B3LYP/6-31G (d, p) - 2020 Mansour and Radacki
(2020)

7 Sulfamethazine Fe(III) complexes
(binary and ternary)

TD-DFT DFT/B3LYP 6.05 μB

6.16 μB

2014 Mansour (2014)

8 Sulfamethazine Cu(II) TD-DFT DFT/B3LYP/LANL2DZ 1.53 μB 2015 Mansour and Mohamed
(2015)

9 Sulfamethazine DFT B3LYP/6-31+G(d,p) 4.979 eV 2015 Won et al. (2015)

10 Sulfamethazine in water DFT B3LYP/6-31+G(d) - 2018 Hazhir et al. (2018b)
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reacting malonaldehyde with gaunidine) for SDZ (Donizete
et al. 2005; Ma et al. 2015; Shun-ichi Yamada et al. 1950)
respectively, as shown in Fig. 3.

Density functional theory study

Density functional theory (DFT) is a computational method
that is frequently employed for theoretical simulation of an
organic compound’s electronic in structure (Karataş et al.
2017; Van Mourik et al. 2014; Verma 2018). The frontier
molecular orbital (FMO) analysis is a useful property to de-
termine molecular reactivity and electronic structure, as well
as providing information on electronic transitions within mol-
ecules (Arshad et al. 2015). The chemical stability of mole-
cules can be explained on the basis of energy gap between
electronic transitions of HOMO (highest occupied molecular
orbital) and LUMO (lowest unoccupied molecular orbital)
(Huang et al. 2017; Mathammal et al. 2013; Xu et al. 2020).
A higher HOMO–LUMO energy gap reflects high kinetic
stability and low chemical reactivity (stable towards oxidation
and reduction reactions) (Farooq et al. 2019; Khan et al. 2018;
Rasool et al. 2016). The calculated energy of the HOMO
orbital relates to the ionization energy (I. E.), whereas the
lower energy LUMO reflects the electron affinity (E. A.)
(Ullah et al. 2015). Figures 4 and 5 describe the optimized
molecular structure and the electronic transitions (HOMO-
LUMO) of the drug SN and its derivatives SMZ and SDZ
respectively. Some reports based on DFT simulation of SN,
SMZ, and SDZ molecules describing the basis set used and
their energy gap difference were reviewed with this informa-
tion summarized in Table 1. The energy gap gives the relative
idea of the stability with the molecule with SMZ being com-
paratively more stable than that of its parent molecule SN and
its fellow derivative SDZ. The observed effective magnetic

moment (μeff) values obtained for SMZ are also in the accept-
able range for non-interacting magnetically diluted iron and
copper complexes (Kato et al. 1964; Kohout and Krätsmár-
Šmogrovič 1968).

Antibacterial activity

Sulphonamides are an important class of antibiotic drugs with
a wide range of activity, being very effective against gram-
positive and certain gram-negative bacteria (White and
Cooper 2003). Some of the susceptible gram-negative bacteria
include Klebsiella, Salmonella, Escherichia coli, and
Enterobacter species; however, sulfonamides show no inhib-
itory activity (bacterial resistance) against Pseudomonas
aeruginosa and Serratia species.(Lavanya 2017).
Sulphonamides are utilized in the treatment of tonsillitis,
septicemia, meningococcal meningitis, bacillary dysentery,
and number of infections of urinary tract (Seneca 2015;
Wiedemann et al. 2014). Sulfonamides also show inhibitory
activity against some fungi (Pneumocystis carinii) and proto-
zoa (Toxoplasma, Coccidia) (Chio et al. 1996; McFarland
et al. 2016). There are many published reports showing anti-
bacterial action by sulphonamide, sulfamethazine, and sulfa-
diazine drugs (Blanchard et al. 2016; Majewsky et al. 2014;
Peng et al. 2015; Reddy et al. 2012; Tailor and Patel 2015;
Ueda et al. 2020). SN and its derivatives showed pronounced
antimicrobial activity when used against bacterial infections
caused by Nocardia, Staphylococcus aureus and Escherichia
coli (Genç et al. 2008b; Isik and Özdemir-Kocak 2009a).
Increased antibacterial activity of the SN drug group was seen
upon substitution with electron withdrawing groups such as
the nitro group (Genç et al. 2008a; Isik and Özdemir-Kocak
2009b; Radha Mothilal and Thamaraichelvan 2016; Tailor
and Patel 2015; Vagdevi 2018).

Fig. 1 Chemical structures of a a
generic tertiary sulfonamide (SN),
b sulfamethazine (SMZ), and c
sulfadiazine (SDZ)
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Mechanism and mode of action

Antibiotics are chemotherapeutic agents used to inhibit or kill
bacteria. Sulphonamides are competitive antagonists and struc-
tural analogues of p-aminobenzoic acid (PABA) in the synthe-
sis of folic acid which is essential for the further production of
DNA in the bacteria (Zessel et al. 2014). Similarity between the
structures (Fig. 5) of SN and PABA allows SN to inhibit and
replace PABA in the enzyme dihydropteroate synthetase
(whose activity is important for the production of folate) and
eventually inhibits the formation of dihydrofolate, tetrahydro-
folate and also subsequently inhibits bacterial DNA growth and
cell division or replication (Fig. 6) (Pareek et al. 2013). SN
drugs along with trimethoprim are used to prevent the synthesis
of tetrahydrofolate which further stops DNA replication. The
effects of the drug give rise to hindrances in cell division, mak-
ing the SN drugs bacteriostatic rather than bactericidal (Bohni
1976; Nemeth et al. 2015; Wood and Austrain 1941).

Folic acid (vitamin B9) is essential for the body cell
growth and development in humans as it is required for
the synthesis, repair, and methylation of DNA (Mahmood
2014). As a consequence, folic acid is critically important
for women during pregnancy for a healthy foetus and also
for men to improve sperm counts and motility (Dunlap
et al. 2011; Gao et al. 2016). Sulfa drugs do not cause
disruption in animal cells because they do not synthesize
folate, but rather they consume it in the form of dietary
requirement, with folic acid performing its functions only
after its conversion to tetrahydrofolic acid by dihydrofolate
reductase (which is believed to be slow in humans) (Bailey
and Ayling 2009). Disturbances in the production of tetra-
hydrofolate by the SN type drugs can cause abnormality in
the DNA by not providing sufficient methyl groups for
methylation thereby limiting DNA synthesis which can
potentially lead to carcinogenesis (Weinstein et al. 2003)
(Fig. 7).

Fig. 2 Schematic representation
of the synthesis of sulphonamide
in aqueous medium at room
temperature (Tacic et al. 2017)
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Bacterial resistance to sulphonamides

Antimicrobial resistance poses an ever increasing threat to
mankind, animal, and environmental health (Prestinaci et al.

2015; Taneja and Sharma 2019). A major cause of antimicro-
bial resistance is the overuse of these medications; another
factor is the unavailability and/or lack of new drugs to over-
come the problem (Aslam et al. 2018; Ventola 2015). Bacteria

Fig. 3 Schematic representation for the synthesis of sulfamethazine in acetone and pyridine (Banes 1974) and sulfadiazine in acetic acid solution
(Abraham 1966; Shun-ichi Yamada et al. 1950)
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can resist antibiotic medicines in two different ways—either
by endogenous vertical evolution or by exogenous horizontal
evolution (Courvalin 2008; Laws et al. 2019). Vertical evolu-
tion refers to the gaining of resistance frommutation occurring
spontaneously within the bacterial genome that subsequently
transfers to its offspring, whereas horizontal evolution de-
scribes the transfer of resistance genes between non-related
bacteria (Laws et al. 2019). Bacterial resistance to SN has
been frequently reported with some of the reported resistance
cases being due to (i) resistance bacterial genes to
trimethoprim-sulfamethoxazole (used as prophylaxis for the
treatment of severe respiratory tract infect ions)

(Pneumocystis carinii)(Pentti Huovinen 2001), (ii) resistance
genes to SDZ resulted in phenotypic conversion showing a
lack of sensitivity to polymyxin B for Serratia marcescen
(Greenfield and Feingold 2014), (iii) resistance bacterial genes
to SN spread and distributed in soils and were detected around
poultry farms in China (Wang et al. 2014), (iv) resistance
bacterial genes to SN discovered in environment (Razavi
et al. 2017), and (v) trimethoprim-SN resistance spread among
pathogenic bacteria (Huovinen et al. 1995). With increasing
antibiotic resistance to SN drugs, considerable effort needs to
be directed to the development of new and effective
medicines.

Fig. 4 DFT optimized structure
of a sulphonamide, b
sulfamethazine, and c
sulfadiazine (Arshad et al. 2019;
Hazhir et al. 2018a; Huschek et al.
2008).

Fig. 5 DFT HOMO-LUMO energy levels of a sulphonamide, b sulfamethazine, and c sulfadiazine (Acar Selçuki et al. 2020; Krawczyk 2015; Mekala
and Mathammal 2012).
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Environmental effect

The ability of antibiotics to fight against bacterial infections
plays an important role in the management of infectious dis-
eases in humans, animals, and microorganisms. However, the
overuse and misuse of antibiotics and their release into the
environment can potentially pose a threat to animals and mi-
crobial communities in soil and aquatic environment (Cycoń
et al. 2019; Ding and He 2010; Kraemer et al. 2019). As
mentioned, SNs are frequently used antibiotics for animals

(e.g. cattle and pigs) and humans for the treatment of bacterial
diseases. Both after and during the use of these medicines a
high fraction of the drug/medicine is excreted without metab-
olism through the urine or faeces, with these excretions then
released into the environment as manure or sewage (Lin and
Tsai 2009). Such observations provide grounds for investiga-
tion into SN drugs, covering their detection and distribution in
the surrounding environment. SN drugs were also found to
exist in low, but detectable levels, in the edible tissues of
meat-producing animals treated with SN drugs (Bjurling

Fig. 6 Structural similarity
between PABA and
sulphonamide (Tacic et al. 2017)

Fig. 7 Synthesis of
tetrahydrofolic acid and the mode
of sulfonamide action on the
synthesis of tertahydrofolic acid
(Lavanya 2017; Pareek et al.
2013)
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et al. 2000; Hruska and Franek 2012; Poirier et al. 1999).
These poorly metabolized antibiotics also accumulate within
the soil which can impact soil microbial communities and
functions (Thiele-Bruhn and Beck 2005; S. Wang et al.
2021). The sorption of SMZ antibiotics within the soil by
black carbon has also been reported as a possible form of
bioremediation (Chen et al. 2012). Trace determination of
such antibiotics like SMZ and SDZ in animal feeds, human
urine, and wastewater (aquatic environment) using different
techniques have been variously reported (Blakemore and
Thompson 1981; Ji et al. 2012; Mcardell et al. 2004). The
environmental behaviour of SMZ and SDZ as reported by
Biošić et al. (2017) concluded that their metabolites can
bioaccumulate in the aquatic environment if they are not ex-
posed to sunlight (Biošić et al. 2017).

Toxicological effect

Any drug used as medication can cause side effects.
Antibiotics are sometime used in a manner which does not
provide any benefit and can potentially cause harm (e.g. when
used against certain viral infections such as common cold). As
such antibiotics are not always the preferred solution as asso-
ciated toxicological side effects may place the patient in un-
necessary hazard. Some of the factors influencing the toxico-
logical effect of SN drugs include duration and dosage of the
drug, existence of the heterocyclic ring in N1 substituted SN,
its solubility in blood and in other biological fluids, kidney
state, age, and nutritional status of patient.(Shmukler et al.
2000) A research report by Boufas et al. (2014) outlined that
SNs are somewhat toxic for blood cells, with sulphanilamide

Table 2 Summary on SN-bio-macromolecule binding study

Sl
no.

Complex Technique Binding constant (M−1) No. of binding
sites

Year Reference

1 Sulfonamide-bovine carbonic
anhydrase

Fluorescence spectroscopy 2.5 × 107 (dissociation
constant)

- 1967 Chen and Kernohan
(1967)

2 Sulfonamide-erythrocyte protein Michaelis-Menten method - - 1989 Matsumoto (1989)

3 Sulfonamides-human carbonic
anhydrase I enzyme

Crystallography - - 1994 Chakravarty and
Kannan (1994)

4 Sulfonamide substituted
8-hydroxyquinoline-DNA

UV-Vis spectroscopy, gel
electrophoresis

- - 2011 Ixit et al. (2011)

5 Sulfonamide-human serum albumin Isothermal titration
calorimetry

2.2 × 106 1 2012 Behbehani et al. (2013)

6 Aryl bis-sulfonamides-enzyme IspF Mass spectrometry, molecular
docking

- - 2013 Katharina Root et al.
(2013)

7 Sulfonamide derivatives- bovine
serum albumin

Fluorescence spectroscopy 4.8 × 104 to 1.5 × 105 1 2014 Zhang et al. (2014)

8 Sulfonamides-Ovalbumin Fluorescence spectroscopy 1.20 to 30.66 × 105 1 2019 Carolina et al. (2019)

9 Cobalt complex sulfonamide-DNA UV-Vis spectroscopy 1.6 × 105 1 2019 Pandya et al. (2019)

Table 3 Summary on SMZ-bio-macromolecule binding study

Sl no. Complex Technique Binding constant
(M−1)

No. of binding
sites

Year Reference

1 Sulfamethazine-lysozyme Fluorescence spectroscopy - 1 1984 Atef et al. (1984)

2 Sulfamethazine-immunoglobulin G Purification 106 (dissociation
constant)

- 2003 Liu et al. (2003)

3 Sulfamethazine- bovine serum albumin Fluorescence spectroscopy 2 × 106 1 2011 Dawoud Bani-Yaseen
(2011)

4 Sulfamethazine- human serum albumin Fluorescence spectroscopy 1.09 × 104 1.14 2012 Chen et al. (2012)

5 Sulfamethazine-human immunoglobulin G Fluorescence spectroscopy 2 × 104 1 2015 Wang et al. (2015)

6 Sulfamethazine- bovine serum albumin,
adenine

Fluorescence spectroscopy 1.32 × 105

2.11 × 104
0.98
0.92

2015 Rajendiran and
Thulasidhasan (2015)

7 Sulfamethazine N-acetylation-human
N-acetyltrasferase-2

HPLC - - 2015 Tahir et al. (2016)

8 Sulfamethazine-cyclodextrins Fluorescence spectroscopy - - 2019 Ameen and Szente 2019)
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derivative being more toxic comparatively among the SN
group of drugs while sulfadiazine was reported the least harm-
ful. SN drugs can produce serious acute haemolytic anaemia
(destruction of the red cells) causing agranulocytosis which is
capable of depressing blood platelets (Kracke 1944). The po-
tential for toxicity of SMZ in the environment is extant espe-
cially when occurring near to water (De Liguoro et al. 2009;
Liu et al. 2019; Wood et al. 1957). Toxicity tests in animals of
SDZ suggested that it is less toxic in comparison with other
SNs while still being highly effective against common patho-
gens and as such has been exploited for the treatment of hu-
man bacterial infections (Finland et al. 1941; Kouroumkis
et al. 1974). The measured toxicity of SDZ in water and water
bodies suggested a possible increase in its toxic antimicrobial
effects following its pH dependent chemical degradation, with
a decrease in toxicity at higher pH values (Liu et al. 2016;
Taylor et al. 2014).

Bio-macromolecule binding interaction study

SN type drugs, such as SMZ and SDZ, are widely used anti-
biotics with a plethora of drug targets (Islam et al. 2013; Lv
et al. 2013; Sajid and Hamad 2013; Uhlemann et al. 2021).
The study of which bio-macromolecules these drugs show
affinity for helps us to understand their effect on humans,
animals, and microorganisms. Tables 2, 3, and 4 summarize
SN, SMZ, and SDZ interaction studies with a range of bio-
macromolecules. The nature of the binding is principally de-
scribed using the parameters of binding affinity and number of
binding sites (with the target bio-macromolecule shown in the
left hand column). Strong drug binding affinity to the target of

> 106M−1 can result in inhibition however the opposite can be
expected for weak interaction with the target (binding affini-
ties < 104 M−1).

Conclusion

SNs are widely used synthetic antimicrobial drugs due to the
fact that they that can be used for diverse purposes (such as
treating bacterial infections and also promoting livestock
growth). There are various forms of SN drug derivatives that
have been produced of which SMZ and SDZ are the most
frequently used. The purpose of this review was to examine
SN drug structure, function, and toxicity in treated human and
animal patients as well as the environment. This study has
made clear the drug mode of action in its inhibition of bacteria
through its competitive inhibition of bacterial DNA synthesis.
The nomenclature and structure of the drugs (at the DFT level
of approximation) have been discussed. Literature of its toxi-
cological effect upon the environment, animals and human
beings has also been reviewed.

Funding JB received financial assistance from UGC-DAE, Mumbai
Centre, BARC, Mumbai (grant no. CRS-M-266), DBT GOI (sanction
no. BT/PR25026/NER/95/963/2017), and TEQIP-III Seed Grant, NIT
Nagaland.
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