Skip to main content
. 2021 Jan 14;100(4):100977. doi: 10.1016/j.psj.2020.12.074

Table 2.

Binary logistic regression models to predict woody breast (WB) condition in broiler carcasses using image measurements.

Prediction model1 Data set2 Fit details
Parameter estimates and odds ratio (OR)
Gen. R2 RMSE MAD MR (%) TPR (%) FPR (%) AUC Parameter Estimate Std. Error Pr > χ2 OR
Model 1 Training 0.65 0.26 0.13 9.05 63.21 3.44 0.95 M1 1.39 0.30 <0.0001 4.03
Validation 0.61 0.26 0.13 8.52 71.11 4.44 0.94 M2 −7.55 1.00 <0.0001 5.24 × 10−4
M3 1.83 0.28 <0.0001 6.23
Model 2 Training 0.62 0.27 0.14 9.84 60.38 3.82 0.95 M1 1.68 0.29 <0.0001 5.38
Validation 0.58 0.27 0.15 9.63 64.44 4.44 0.93 M2 −4.40 0.99 <0.0001 1.23 × 10−2
M4 0.33 0.06 <0.0001 1.38
Model 3 Training 0.62 0.26 0.14 10.00 60.38 4.01 0.95 M1 1.76 0.28 <0.0001 5.82
Validation 0.58 0.27 0.14 8.52 68.89 4.00 0.93 M2 −9.45 1.06 <0.0001 7.91 × 10−5
M6 0.31 0.06 <0.0001 1.37
Model 4 Training 0.60 0.27 0.14 10.00 56.60 3.24 0.94 M9 8.86 1.30 <0.0001 7.07 × 103
Validation 0.58 0.27 0.15 10.00 57.78 3.56 0.93 M11 26.28 6.55 <0.0001 2.60 × 1011
Model 5 Training 0.63 0.26 0.14 10.79 58.49 4.58 0.95 M1 0.63 0.11 <0.0001 1.87
Validation 0.56 0.27 0.14 9.26 66.67 4.44 0.92 M9 11.10 1.22 <0.0001 6.62 × 104
Model 6 Training 0.63 0.26 0.14 10.00 60.38 4.01 0.95 M3 1.09 0.15 <0.0001 2.99
Validation 0.61 0.26 0.14 8.52 73.33 4.89 0.94 M11 48.08 6.31 <0.0001 7.59 × 1020

M1, M2, …, Mn are the independent predictor variables (image measurements), α is the intercept, and β1, β2, …, βn are the regression coefficients.

Abbreviations: AUC, area under the ROC (receiver operating characteristic) curve; FPR, false positive rate; MAD, mean absolute deviation; MR, misclassification rate; RMSE, root mean square error; TPR, true positive rate (sensitivity–ST)

1

Model 1 = Logit (p) = α + β1 M1 + β2 M2 + β3 M3. Model 2 = Logit (p) = α + β1 M1 + β2 M2 + β3 M4. Model 3 = Logit (p) = α + β1 M1 + β2 M2 + β3 M6. Model 4 = Logit (p) = α + β1 M9 + β2 M11. Model 5 = Logit (p) = α + β1 M1 + β2 M9. Model 6 = Logit (p) = α + β1 M3 + β2 M11.

2

Training {n = 630: No [WB scores 0.0 or 0.5 (n = 376), and 1.0 or 1.5 (n = 148)], and Yes [WB scores 2.0 or 2.5 (n = 76), and 3.0 (n = 30)]} and validation {n = 270: No [WB scores 0.0 or 0.5 (n = 160), and 1.0 or 1.5 (n = 65)], and Yes [WB scores 2.0 or 2.5 (n = 35), and 3.0 (n = 10)]}.