Skip to main content
. 2021 Jan 14;100(4):100977. doi: 10.1016/j.psj.2020.12.074

Table 3.

Predictive performance of the selected binary logistic regression model for detecting woody breast (WB) condition in broiler carcasses by strain using image measurements.

Strain Data set1 Fit details2
Parameter estimates and odds ratio (OR)
Gen. R2 RMSE MAD MR (%) TPR (%) FPR (%) AUC Parameter Estimate Std. Error Pr > χ2 OR
High breast-yielding (HBY) Training 0.65 0.28 0.15 9.76 68.54 3.93 0.95 M1 1.53 0.35 <0.0001 4.64
Validation 0.62 0.27 0.15 8.89 73.53 4.79 0.93 M2 −8.03 1.19 <0.0001 3.24 × 10−4
M3 1.84 0.31 <0.0001 6.30
Standard breast-yielding (SBY) Training 0.59 0.21 0.09 5.71 60.00 2.11 0.96 M1 1.37 0.62 0.0277 3.95
Validation 0.65 0.19 0.08 5.56 62.50 2.44 0.98 M2 −7.95 2.12 0.0002 3.53 × 10−4
M3 1.84 0.50 0.0003 6.31

Abbreviations: AUC, area under the ROC (receiver operating characteristic) curve; FPR, false positive rate; MAD, mean absolute deviation; MR, misclassification rate; RMSE, root mean square error; TPR, true positive rate (sensitivity, ST).

1

Training (HBY: n = 420; SBY: n = 210) and validation (HBY: n = 180; SBY: n = 90).

2

The model used for WB prediction (Model 1): Logit (p) = α + β1 M1 + β2 M2 + β3 M3.