Skip to main content
. 2021 Jan 14;100(4):100977. doi: 10.1016/j.psj.2020.12.074

Table 4.

Predictive performance of the selected binary logistic regression model for detecting woody breast (WB) condition in broiler carcasses by sex using image measurements.

Sex Data set1 Fit details2
Parameter estimates and odds ratio (OR)
Gen. R2 RMSE MAD MR (%) TPR (%) FPR (%) AUC Parameter Estimate Std. Error Pr > χ2 OR
Female Training 0.69 0.18 0.07 4.44 68.97 1.75 0.97 M1 2.07 0.58 0.0003 7.94
Validation 0.65 0.18 0.07 4.44 60.00 1.60 0.98 M2 −9.91 2.14 <0.0001 4.99 × 10−5
M3 2.30 0.64 0.0003 10.02
Male Training 0.64 0.30 0.18 13.65 71.43 8.82 0.93 M1 1.47 0.37 <0.0001 4.37
Validation 0.63 0.31 0.17 14.81 74.29 11.00 0.93 M2 −8.03 1.21 <0.0001 3.25 × 10−4
M3 1.36 0.28 <0.0001 3.90
As-hatched Training 0.65 0.26 0.13 9.05 63.21 3.44 0.95 M1 1.39 0.30 <0.0001 4.03
Validation 0.61 0.26 0.13 8.52 71.11 4.44 0.94 M2 −7.55 1.00 <0.0001 5.24 × 10−4
M3 1.83 0.28 <0.0001 6.23

Abbreviations: AUC, area under the ROC (receiver operating characteristic) curve; FPR, false positive rate; MR, misclassification rate; MAD, mean absolute deviation; RMSE, root mean square error; TPR, true positive rate (sensitivity, ST).

1

Training (n = 315) and validation (n = 135). As-hatched group included all data set (n = 900) divided into 2 sets of training (n = 630) and validation (n = 270).

2

The model used for WB prediction (model 1): Logit (p) = α + β1 M1 + β2 M2 + β3 M3.