Skip to main content
. 2021 Jan 14;100(4):100977. doi: 10.1016/j.psj.2020.12.074

Table 7.

Predictive performance of the selected binary logistic regression model for detecting woody breast (WB) condition in broiler carcasses by strain at different live weights using image measurements.

Strain Live weight (kg) Data set1 Fit details2
Parameter estimates and odds ratio (OR)
Gen. R2 RMSE MAD MR (%) TPR (%) FPR (%) AUC Parameter Estimate Std. Error Pr > χ2 OR
High breast-yielding (HBY) <3.402 Training 0.62 0.19 0.07 4.43 61.54 1.38 0.96 M1 2.27 1.03 0.0265 9.72
Validation 0.74 0.16 0.06 4.76 60.00 1.72 0.99 M2 −9.37 3.38 0.0055 8.49 × 10−5
M3 2.11 0.80 0.0086 8.26
≥3.402 Training 0.62 0.31 0.19 12.41 71.62 6.25 0.93 M1 1.56 0.38 <0.0001 4.75
Validation 0.61 0.32 0.19 11.50 77.42 7.32 0.92 M2 −8.92 1.52 <0.0001 1.34 × 10−4
M3 1.75 0.35 <0.0001 5.74
Standard breast-yielding (SBY) ≥3.402 Training 0.57 0.24 0.11 8.09 56.25 3.33 0.96 M1 1.49 0.66 0.0243 4.43
Validation 0.66 0.22 0.09 7.94 57.14 3.57 0.97 M2 −7.04 2.39 0.0032 8.77 × 10−4
M3 1.54 0.53 0.0038 4.65

Abbreviations: AUC, area under the ROC (receiver operating characteristic) curve; FPR, false positive rate; MAD, mean absolute deviation; MR, misclassification rate; RMSE, root mean square error; TPR, true positive rate (sensitivity, ST).

1

Training (HBY, < 3.402 kg: n = 158; HBY, ≥ 3.402 kg: n = 266; SBY, ≥ 3.402 kg: n = 136) and validation (HBY, < 3.402 kg: n = 63; HBY, ≥ 3.402 kg: n = 113; SBY, ≥ 3.402 kg: n = 63).

2

The model used for WB prediction (model 1): Logit (p) = α + β1 M1 + β2 M2 + β3 M3.