Table 7.
Predictive performance of the selected binary logistic regression model for detecting woody breast (WB) condition in broiler carcasses by strain at different live weights using image measurements.
Strain | Live weight (kg) | Data set1 | Fit details2 |
Parameter estimates and odds ratio (OR) |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gen. R2 | RMSE | MAD | MR (%) | TPR (%) | FPR (%) | AUC | Parameter | Estimate | Std. Error | Pr > χ2 | OR | |||
High breast-yielding (HBY) | <3.402 | Training | 0.62 | 0.19 | 0.07 | 4.43 | 61.54 | 1.38 | 0.96 | M1 | 2.27 | 1.03 | 0.0265 | 9.72 |
Validation | 0.74 | 0.16 | 0.06 | 4.76 | 60.00 | 1.72 | 0.99 | M2 | −9.37 | 3.38 | 0.0055 | 8.49 × 10−5 | ||
M3 | 2.11 | 0.80 | 0.0086 | 8.26 | ||||||||||
≥3.402 | Training | 0.62 | 0.31 | 0.19 | 12.41 | 71.62 | 6.25 | 0.93 | M1 | 1.56 | 0.38 | <0.0001 | 4.75 | |
Validation | 0.61 | 0.32 | 0.19 | 11.50 | 77.42 | 7.32 | 0.92 | M2 | −8.92 | 1.52 | <0.0001 | 1.34 × 10−4 | ||
M3 | 1.75 | 0.35 | <0.0001 | 5.74 | ||||||||||
Standard breast-yielding (SBY) | ≥3.402 | Training | 0.57 | 0.24 | 0.11 | 8.09 | 56.25 | 3.33 | 0.96 | M1 | 1.49 | 0.66 | 0.0243 | 4.43 |
Validation | 0.66 | 0.22 | 0.09 | 7.94 | 57.14 | 3.57 | 0.97 | M2 | −7.04 | 2.39 | 0.0032 | 8.77 × 10−4 | ||
M3 | 1.54 | 0.53 | 0.0038 | 4.65 |
Abbreviations: AUC, area under the ROC (receiver operating characteristic) curve; FPR, false positive rate; MAD, mean absolute deviation; MR, misclassification rate; RMSE, root mean square error; TPR, true positive rate (sensitivity, ST).
Training (HBY, < 3.402 kg: n = 158; HBY, ≥ 3.402 kg: n = 266; SBY, ≥ 3.402 kg: n = 136) and validation (HBY, < 3.402 kg: n = 63; HBY, ≥ 3.402 kg: n = 113; SBY, ≥ 3.402 kg: n = 63).
The model used for WB prediction (model 1): Logit (p) = α + β1 M1 + β2 M2 + β3 M3.