Skip to main content
. 2021 Apr 1;8:661358. doi: 10.3389/fmed.2021.661358

Table 1.

Model learning (cross validation results K = 10) of all the models tested in the different experiments.

PCs used F1-Score Sensitivity (TPR) Specificity (TNR) Accuracy
XGBOOST SVM XGBOOST SVM XGBOOST SVM XGBOOST SVM
Experiment 1 n = 5 0.625 ± 0.041 0.595 ± 0.073 0.658 ± 0.093 0.780 ± 0.115 0.684 ± 0.062 0.580 ± 0.113 0.677 ± 0.043 0.626 ± 0.078
n = 10 0.620 ± 0.043 0.639 ± 0.056 0.580 ± 0.084 0.580 ± 0.110 0.716 ± 0.066 0.739 ± 0.065 0.678 ± 0.043 0.695 ± 0.056
n = 50 0.587 ± 0.045 0.558 ± 0.057 0.283 ± 0.098 0.238 ± 0.094 0.890 ± 0.055 0.891 ± 0.033 0.679 ± 0.065 0.703 ± 0.048
Experiment 2 (VTM1 results) n = 5 0.749 ± 0.066 0.759 ± 0.086 0.538 ± 0.168 0.525 ± 0.150 0.946 ± 0.033 0.950 ± 0.051 0.852 ± 0.039 0.832 ± 0.070
n = 10 0.793 ± 0.116 0.826 ± 0.088 0.646 ± 0.242 0.652 ± 0.176 0.939 ± 0.070 0.969 ± 0.031 0.884 ± 0.069 0.879 ± 0.065
n = 50 0.754 ± 0.132 0.700 ± 0.160 0.548 ± 0.275 0.487 ± 0.319 0.961 ± 0.058 0.937 ± 0.071 0.876 ± 0.075 0.845 ± 0.080
Experiment 2 (VTM2 results) n = 5 0.433 ± 0.080 0.418 ± 0.104 0.273 ± 0.081 0.285 ± 0.200 0.618 ± 0.119 0.588 ± 0.196 0.494 ± 0.082 0.491 ± 0.139
n = 10 0.482 ± 0.106 0.515 ± 0.110 0.241 ± 0.162 0.381 ± 0.206 0.762 ± 0.138 0.688 ± 0.133 0.581 ± 0.111 0.594 ± 0.107
n = 50 0.511 ± 0.120 0.476 ± 0.093 0.158 ± 0.172 0.135 ± 0.148 0.914 ± 0.063 0.925 ± 0.075 0.711 ± 0.083 0.654 ± 0.098
Experiment 3 n = 5 0.891 ± 0.109 0.979 ± 0.048 0.922 ± 0.127 0.974 ± 0.076 0.872 ± 0.157 0.988 ± 0.054 0.897 ± 0.109 0.980 ± 0.044
n = 10 0.950 ± 0.050 0.947 ± 0.066 0.930 ± 0.070 0.987 ± 0.040 0.970 ± 0.090 0.918 ± 0.110 0.981 ± 0.052 0.950 ± 0.063
n = 50 0.868 ± 0.109 0.968 ± 0.055 0.911 ± 0.106 0.989 ± 0.484 0.832 ± 0.214 0.941 ± 0.118 0.882 ± 0.093 0.972 ± 0.045
Robustness analysis n = 5 0.647 0.964 0.956 1.000 0.377 0.923 0.687 0.964
n = 10 0.609 0.945 0.922 0.964 0.346 0.923 0.654 0.945
n = 50 0.690 0.902 0.956 1.000 0.446 0.795 0.719 0.902

Bold values represent the best model for each experiment using the selected metric F1-score.