

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Contents lists available at ScienceDirect

Digestive and Liver Disease

journal homepage: www.elsevier.com/locate/dld

Liver, Pancreas and Biliary Tract

Liver fibrosis in patients with metabolic associated fatty liver disease is a risk factor for adverse outcomes in COVID-19

Alejandro Campos-Murguía^a, Berenice Monserrat Román-Calleja^a,

Israel Vicente Toledo-Coronado^b, José Alberto González-Regueiro^a,

Alberto Adrián Solís-Ortega^a, Deyanira Kúsulas-Delint^a, Mariana Cruz-Contreras^a,

Nabila Cruz-Yedra^a, Francisco Javier Cubero^{c,d}, Yulia Alexandrowna Nevzorova^{c,d,e},

Carlos Fernando Martínez-Cabrera^ª, Paulina Moreno-Guillén^ª, Oscar Arturo Lozano-Cruz^f,

Mónica Chapa-Ibargüengoitia^b, Alfonso Gulías-Herrero^f, Carlos Alberto Aguilar-Salinas^{g,h},

Astrid Ruiz-Margáin^{a,i,j}, Ricardo Ulises Macías-Rodríguez^{a,i,j,*}

^a Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico

^b Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico

^c Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid, Spain

^d 12 de Octubre Health Research Institute (IMAS12), Madrid, Spain

^e Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany

^f Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico

^g Division of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico

h Metabolic Diseases Research Unit (UIEM), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico

ⁱ Liver Fibrosis and Nutrition lab (LFN-Lab), Mexico City, Mexico

^j MICTLÁN Network: mechanisms of liver injury, cell death and translational nutrition in liver diseases-research network

ARTICLE INFO

Article history: Received 21 September 2020 Accepted 24 January 2021 Available online 2 February 2021

Keywords: liver steatosis computed tomography SARS-CoV-2 prognosis

ABSTRACT

Background: Metabolic diseases are risk factors for severe Coronavirus disease (COVID-19), which have a close relationship with metabolic dysfunction-associated fatty liver disease (MAFLD).

Aims: To evaluate the presence of MAFLD and fibrosis in patients with COVID-19 and its association with prognosis.

Methods: Retrospective cohort study. In hospitalized patients with COVID-19, the presence of liver steatosis was determined by computed tomography scan (CT). Liver fibrosis was assessed using the NAFLD fibrosis score (NFS score), and when altered, the AST to platelet ratio index (APRI) score. Mann-Whitney U, Studentś t-test, logistic regression analysis, Kaplan-Meier curves and Cox regression analysis were used. *Results:* 432 patients were analyzed, finding steatosis in 40.6%. No differences in pulmonary involvement on CT scan, treatment, or number of days between the onset of symptoms and hospital admission were found between patients with and without MAFLD. The presence of liver fibrosis was associated with higher severity scores, higher levels of inflammatory markers, requirement of mechanical ventilation, incidence of acute kidney injury (AKI), and higher mortality than patients without fibrosis.

Conclusion: The presence of fibrosis rather than the presence of MAFLD is associated with increased risk for mechanical ventilation, development of AKI, and higher mortality in COVID-19 patients.

© 2021 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Coronavirus disease (COVID-19) caused by the SARS-CoV-2 virus, was first reported in December 2019 and the initial cases were reported in Wuhan, China; currently, this pandemic is seen all over the world, affecting more than 92.1 million people globally, from which more than 1 973 000 patients have died to date [1]. The mortality rate among patients with severe COVID-19 ranges from 21% to 30%, varying according the population studied [2]. The

^{*} Corresponding author at: Department of Gastroenterology, Liver Fibrosis and Nutrition lab, MICTLÁN Network, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico.

E-mail address: ricardomacro@yahoo.com.mx (R.U. Macías-Rodríguez).

known risk factors associated with the development of complications and mortality in patients with COVID-19 include the presence of obesity, hypertension, type 2 diabetes mellitus (T2DM), cardiovascular diseases, chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), as well as other diseases causing immunosuppression (human immunodeficiency virus (HIV), transplantation, malignancy, chemotherapy), although the role of immunosuppression is still controversial [3–5]. No curative treatment is available to date, the only drug that has proven a decrement in mortality is dexamethasone [6]. Predicting which patients will develop a severe disease based on the known risk factors (as well as the upcoming predictors), is highly important to timely allocate the available resources to the patients at the higher risk, and possibly, modify their outcome.

On the other hand, non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated fatty liver disease (MAFLD), is the main cause of liver disease globally, and due to its close relationship with features of the metabolic syndrome, including obesity and insulin resistance, it is becoming one of the main etiologies of chronic liver disease in the world [7–10]. A common factor in the pathophysiology with other metabolic diseases, including MAFLD, is the presence of systemic chronic inflammation [11], that in turn promotes the development and progression of liver fibrosis. In terms of liver fibrosis, according to the National Health and Nutrition Examination Survey, up to 10% of the patients with MAFLD have advanced fibrosis [12], and importantly, its presence is associated with the presence of concomitant diseases (e.g. infections), and increases the risk of both liver related and nonliver related adverse clinical outcomes [13]. (Alejandro WJG) Regarding this, pneumonia is one of the most common infections in patients with advanced liver fibrosis, and in fact, respiratory virus are detected in up to 20% of cirrhotic patients admitted in critical care units, exhibiting a higher mortality rate [14].

The poor outcome in patients with COVID-19 and metabolic disorders could be a consequence of an "acute on chronic inflammation" process, where perhaps the chronic basal inflammation milieu of patients with metabolic disorders such as MAFLD and even more in those with MAFLD and liver fibrosis could increase the risk of a hyperinflammatory response in patients with COVID-19. Recognizing an additional risk factor for adverse outcomes among patients with metabolic diseases could help to accurately allocate those with known MAFLD and those with high risk of MAFLD and liver fibrosis into a closer monitoring and early treatment. Therefore, the aim of the study was to evaluate the prevalence of MAFLD and liver fibrosis in patients with COVID-19 and its association with the development of complications, inflammatory markers, higher values in severity scores, increased risk of requirement mechanical ventilation, and overall mortality.

2. Materials and methods

This was a retrospective cohort study performed in a tertiary care center in Mexico City (Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán), from March to May 2020. The study was conducted according to the Declaration of Helsinki and was approved by the Institutional Ethics and Research Committees (Ref. Number 3405).

2.1. Patients

All patients admitted to our center from March 1st to May 19th, 2020, older than 18 years old, any gender, with a confirmed diagnosis of SARS-CoV-2 infection by real-time polymerase chain reaction (RT-PCR) [15] were included in the study. Only patients with severe disease requiring treatment with oxygen were included. Patients transferred from or to another hospital, those who solicited

voluntary discharge or those lacking follow-up data were not included. Patients with known liver disease at admission, or positive for viral hepatitis or relevant alcohol intake were excluded from the analysis.

2.2. Biochemical tests

Upon admission, every patient underwent a blood draw and the following measurements were done: complete blood count, glucose, creatinine, serum electrolytes, acute phase reactants (ferritin, C-reactive protein, lactate dehydrogenase (LDH)), liver function tests, creatine phosphokinase (CPK), arterial blood gases, Ddimer, high-sensitivity troponin I (hsTpI), and fibrinogen. HIV test and viral hepatitis panel (HBV, HCV) were also performed. All tests were performed according to the standards of the Institutional central laboratory which is accredited by the College of American Pathologists (CAP).

2.3. Computed tomography

Upon admission, a non-contrast thorax CT scan was performed in all patients to evaluate the extent of lung damage. For the purposes of the study, only CT scans with images from the liver at the level of the right portal vein branch and from the upper pole of the spleen to the splenic hilum were included. All CT scans were performed with the same device (CT, Revolution EVO, General Electric Healthcare, Waukesha, WI, USA); the employed protocol was low dose CT for thorax assessment and includes the following parameters: helicoidal acquisition, acquisition field from the thoracic outlet to the L1 vertebral body, 120 kV voltage, 2-6 mAs, 1.5 pitch, 0.4 s rotation time, and 5 mm helicoidal thickness.

A single highly trained radiologist blinded to the patients'status evaluated the CT scans, aiming to quantitatively detect the presence of liver steatosis, according to the following criteria: a) attenuation coefficient \leq 40 Hounsfield units (HU), in an area of 20cm² between the segments VII and VIII in the liver; and b) attenuation coefficient \geq 10 HU in an area of 5 cm² in the splenic parenchyma than in the area previously described in the liver; to better illustrate the described evaluation, representative images are shown in Supplementary Figure 1. Furthermore, a qualitative assessment was also performed, evaluating the presence of liver steatosis by comparing the density of the liver versus the spleen; when the liver attenuation was lower that the splenic attenuation was considered as liver steatosis.

To assess the degree of fatty liver infiltration, the liver/spleen ratio (L/S ratio) <0.70 was used as a cutoff value to discriminate between patients with or without severe liver steatosis, as described previously [16].

2.4. Estimation of liver fibrosis

In order to estimate the presence of liver fibrosis, a bi-step approach was done in patients with diagnosis of liver steatosis by CT scan, using as a first evaluation the NAFLD fibrosis score (NFS) [17]. The participants with values > -1.455 - 0.675 (indeterminate) or > 0.675 (severe fibrosis F3,F4) were further analyzed by the AST to Platelet Ratio Index (APRI) [18], and when the result in this index was > 1.0, the individuals were finally classified as high-risk of severe liver fibrosis.

2.5. Statistical analysis

The sample size was estimated according to a previous study in patients with COVID-19, where mortality in the non-diabetic population admitted to hospital was 17.5%, vs 29.6% in people with diabetes [19]. At our center, the general mortality is around 20%

in COVID patients. We assumed an increase in mortality of 15% in those patients with MAFLD. Finally, with α y β error of 0.05 and 0.2, the final number was 151 patients per group (302 patients in total).

The normality of the data was evaluated using Shapiro-Wilk test. Data is presented as mean \pm SD, median (P25-P75), or absolute frequencies. Results at baseline and final evaluations in each group (paired data) were analyzed with the Wilcoxon signed-rank test. For comparisons between groups, Mann-Whitney U or Students' t-test were used. Logistic regression analysis was used to assess clinical outcomes, and time dependent survival analysis including Kaplan-Meier curves and Cox regression analysis was performed to assess overall mortality. To ensure that the patients in the analysis had proportional risks, those patients with inhospital stay longer than 28-days (n=5) were excluded, survival analysis both by Kaplan-Meier and by multivariate analysis (Coxproportional hazards regression) was conducted for 28-day prognosis.

Statistical analysis was carried out with the package software SPSS version 20.0 (IBM, Armonk, NY, USA).

3. Results

Hospital records from March to May 2020, showed 547 patients with the diagnosis of COVID-19, from which 53 were excluded for lack of complete follow-up or negative RT-PCR. From the eligible patients 19 did not have an appropriate CT scan (showing artifacts, post-surgical findings, or not reaching the proposed level at the liver and spleen), therefore we included and collected data from 475 patients. To ensure the validity of the data we eliminated records from patients with known or recent diagnosis of liver disease different from MAFLD (e.g. autoimmune liver diseases, alcohol, hepatitis C or B infections, history of liver transplantation) and those with cancer, HIV or use of drugs that could cause fatty liver, thus analyzing 432 patients.

The baseline characteristics of the total population and according to the presence or absence of MAFLD are shown in Table 1. In total, 432 patients were analyzed, from which 40.6% had fatty liver by CT scan assessment (Supplementary Figure 2). Most of the patients were men, with an average age of 51 ± 13 years. When classified by body mass index (BMI), 44.6% of the population had obesity of some degree. The prevalence of other features of the metabolic syndrome was high, with 24% of T2DM and 27.8% of hypertension. The presence of other comorbidities (CKD, COPD, immunosuppression, etc.) was <5% in the total population with the same distribution among the groups. Severity scores, as well as markers of inflammation, were increased in total population, where 80.8% of the patients had a moderate or severe pulmonary involvement on CT scan.

When the population was analyzed according to the presence of fatty liver on CT scan, patients with MAFLD were found to be younger, with higher BMI, and a higher proportion of grade 2 or 3 obesity, metabolic syndrome and T2DM. Regarding severity scores, only the SOFA score was statistically different in patients with MAFLD, although this result probably has no clinical relevance. In general, inflammatory markers showed a trend towards higher levels in patients with MAFLD, however, only CPK showed statistical significance. The PaO2/FiO2 ratio was lower in patients with MAFLD. Finally, there were no differences in the distribution of pulmonary involvement on CT scan, treatment, or the number of days between the onset of symptoms and hospital admission.

In order to fully assess the severity of the disease in patients with MAFLD by CT scan, a newly proposed cutoff of <0.7 in the liver/spleen ratio was set to classify patients as severe fatty liver infiltration [16]. This resulted in 108 (61.4%) patients being classify

sified as severe fatty liver infiltration and 68 (38.6%) as mildmoderate fatty liver.

On the other hand, the presence of liver fibrosis was addressed by a successive evaluation using the NFS score first, and when altered, APRI score was calculated. The probability of liver fibrosis according to NFS score in patients with liver steatosis was low in 8.5% (n=15), intermediate in 32.4% (n=57), and high in 54% (n=95), 9 patients had no BMI data, therefore the score was not calculated. When the APRI score was calculated at the same time, 22.7% of patients (n=40) were classified as high probability of liver fibrosis. And when the successive approach above mention was used, where only patients with intermediate and high probability of fibrosis by NFS had APRI calculated, 21% of patients (n=37) met the criteria for high risk of liver fibrosis.

In MAFLD patients, the presence of liver fibrosis was associated with higher values in severity scores such as NEWS score, and the recently developed population-specific Bello-Chavolla et al. score [20] as well as higher levels of inflammatory markers including LDH, CPK, fibrinogen, and ferritin, and higher levels of transaminases and leukocytes; interestingly, vitamin D levels were lower in the group of patients with fibrosis. Also, patients with fibrosis required mechanical ventilation more frequently, had a higher incidence of acute kidney injury (AKI) and had higher mortality. (Table 2)

With the aim of delimiting the specific role of liver fibrosis in the different outcomes of patients with COVID-19 and MAFLD, we constructed different logistic regression models, including demographic and biochemical variables as well as prognostic scores and markers and a combined model. Fibrosis by NFS/APRI was associated with the need for orotracheal intubation independently of demographic characteristics [OR: 2.59 (1.18-5.66)], biochemical markers [OR: 2.86 (1.18-6.97)], severity scores [OR: 2.60 (1.11-6.08)] and in the combined model [OR: 3.24 (1.35-7.76)]. With regards to the development of AKI, several variables were associated with the development of AKI, including age, gender, LDH, systolic blood pressure and PaO2/FiO2 ratio, while fibrosis showed statistical significance in all the constructed models. (Table 3)

Finally, to further assess the implications of liver disease in the prognosis of COVID-19 patients accounting for time-dependence, we conducted survival analysis in which first Kaplan-Meier curves were created to evaluate the effect of both MAFLD and liver fibrosis on the survival of patients with MAFLD and COVID-19, where fibrosis rather than MAFLD was significantly associated with 28-day mortality (p=0.036) (Fig. 1). Then a Cox regression analysis was performed, specifically to evaluate if the role of fibrosis in mortality was truly independent of other variables; Table 4, shows both univariate and multivariate analysis where four different models were created to avoid collinearity and saturation of the models. These results show fibrosis by NFS/APRI remained independently associated with mortality independently of demographic characteristics [HR: 2.33 (1.07-5.25)] and severity scores and markers [HR: 2.90 (1.14-7.37)], as well as in the combined model [HR: 2.54 (1.14-5.63)], however it lost statistical significance in the model with AKI and endotracheal intubation, where only the last two remained statistically significant associated with mortality.

4. Discussion

In the present study from a tertiary care center, reconverted for the care of COVID-19 patients, we present the outcomes of patients with COVID-19 and MAFLD diagnosed by CT scan. The overall prevalence of MAFLD was 40.6%, which is similar to the prevalence in the Hispanic population, thus perhaps the presence of MALFD *per se* does not imply an increased risk of hospitalization in patients with COVID-19 [21]. Likewise, we did not find significant differences in the outcomes of hospitalized patients with MAFLD and

Baseline characteristics of the total population and according to MAFLD presence.

	All(n=432)	No MAFLD (n=256)	MAFLD $(n=176)$	p value
Demographic features Sex (% Male / Female)	64.6 / 35.4	61.2 / 38.8	69.5 / 30.5	0.083
Age	54.6 / 35.4 51 ± 13	51.2 + 38.8 52 ± 14	48 ± 12	0.000
BMI	29.4 (26.7 - 33)	28.3 (25.3 - 31.4)	30.5(28.2 - 34.3)	0.000
Comorbidities (n / %)				
Malnutrition	12 (2.9)	8 (3.3)	6 (3.5)	0.000
Normal Weight	55 (13.3)	49 (20.2)	4 (2.4)	
Dverweight	162 (39.2)	98 (40.3)	64 (37.6)	
Obesity G1	120 (29.1)	58 (23.9)	62 (36.5)	
Obesity G2 Obesity G3	43 (10.4) 21 (5.1)	22 (9.1) 8 (3.3)	21 (12.4)	
r2DM	21 (5.1) 104 (24)	50 (19.5)	13 (7.6) 54 (30.5)	0 .008
Hypertension	121 (27.8)	66 (25.7)	55 (31.1)	0.232
Chronic Kidney disease	8 (1.8)	5 (1.9)	3 (1.7)	1.000
Pulmonary obstructive disease	3 (0.7)	0 (0)	3 (1.7)	0.67
Autoimmune disease	7 (1.6)	3 (1.2)	4 (2.3)	
mmunosuppression	2 (0.5)	2 (0.8)	0 (0)	
Jse of steroids	7	3 (1.7)	4 (2.3)	0.307
Metabolic syndrome	152 (35.1)	69 (26.9)	83 (47.2)	0.000
P rognostic scores ₁ SOFA	1 (0 - 1)	1 (0 - 1)	1 (0 - 1)	0.672
SOFA	2(1-2)	2(1-2)	2(1-3)	0.012
NEWS	7(5-8)	7(5-8)	7(5-8)	0.252
PSI/PORT	62 (50 - 81)	65 (51 - 81)	59 (48 - 74)	0.34
SMART COP	3 (2 - 4)	3 (2 - 4)	3 (2 - 4)	0.317
Bello-Chavolla et al. score	7 (6 - 7)	7 (6 – 7)	7 (6 - 8)	0.419
Biochemical values				0.45-
CRP	13.2 (6.4 – 20.1)	12.8 (6.3 - 19.6)	13.7 (6.5 – 21.5)	0.166
(Ref. value: 0 - 1mg/dL) Ferritin	578 (286 - 997)	515 (261 028)	672 (334 - 1048)	0.054
Ref. value: 11 – 306.8ng/mL)	578 (286 - 997)	515 (261 - 938)	672 (334 - 1048)	0.054
D-dimer	647 (420 - 1102)	665 (417 - 1138)	605 (420 - 997)	0.645
Ref. value: 0- 500ng/mL)	017 (120 1102)	005 (117 1150)	003 (120 337)	0.015
LDH	348 (267 - 458)	342 (257 - 455)	363 (291 - 472)	0.068
(Ref. value: 120 - 246U/L)				
Troponins	4.9 (3.2 - 9.4)	4.8 (3.2 - 10.6)	4.9 (3.2 - 7.1)	0.469
(Ref. value: <15pg/mL)				
CPK	108 (59 – 237)	97 (54 - 197)	141 (73 – 320)	0.000
(Ref. value: 30 -233U/L)	05 (04 07)	0.5 (0.4 0.8)		0.101
Bilirubin (Paf yalua: 0/2 1mg/dL)	0.5 (0.4 - 0.7)	0.5 (0.4 - 0.8)	0.6 (0.5 - 0.8)	0.191
(Ref. value: 0/3- 1mg/dL) ALT	37 (25 - 54)	33 (22 - 52)	42 (29 - 60)	0.000
(Ref. value: 7-52U/L)	57 (25 - 54)	55 (22 - 52)	42(25-00)	0.000
AST	42 (30 - 60)	40 (27 - 57)	45 (32 - 66)	0.009
(Ref. value: 13 - 39U/L)	(,			
Globulins	3.3 ± 0.4	3.3 ± 0.4	3.2 ± 0.4	0.945
(Ref. value: 1.9 – 3.7g/dL)				
Albumin	3.4 ± 0.5	3.7 ± 0.5	3.8 ± 0.4	0.004
(Ref. value: 3.5-5.7g/dL)				0.010
ALP	85 (70 - 109)	86 (70 - 113)	85 (67 - 105)	0.216
(Ref. value: 34-104U/L) Creatinine	0.9 (0.7 - 1.1)	0.9 (0.8 - 1.0)	09(07 11)	0.773
Ref. value: 0.6 0 1.2mg/dL)	0.5(0.7 - 1.1)	0.5 (0.8 - 1.0)	0.9 (0.7 – 1.1)	0.775
Glucose	116 (101-143)	112 (99 - 132)	123 (105-175)	0.001
[Ref. value: 70-99 mg/dL)		()		
Leukocytes	7.3 (5.5 - 9.6)	7.1 (5.4 - 9.6)	7.6 (5.7 - 10)	0.375
[Ref. value: $4-12 \times 10^{3}/\text{uL}$]				
Lymphocytes	811 (615 - 1058)	781 (577 – 1020)	875 (653 - 1139)	0.020
(Ref. value: $1 - 3.9 \times 10^{3}/\text{uL}$)				c
Platelets	215 (174 - 277)	221 (176 – 284)	207 (172 – 268)	0.081
(Ref. value: 150 - 450K/uL) 25 (HO) vitamin D	21 (16 - 27)	21 (16 - 26)	21 (15 - 28)	0.788
(Ref. value: 30 - 100ng/mL)	21 (10 - 27)	21 (10 - 20)	21 (13 - 20)	0.700
Triglycerides	147 (114 - 189)	142 (114 - 190)	150 (115 - 189)	0.930
[Ref. value: <150mg7dL)	. (100)	()		
CT results				
Mild (Ref <20%)	83 (19.2)	51 (19.9)	32 (18.1)	
Moderate (20 – 50%)	161 (37.2)	97 (37.9)	64 (36.2)	
Severe (>50%)	189 (43.6)	108 (42.2)	81 (45.8)	
Freatment n(%)	422 (07.7)		170 (00)	
Antibiotics	422 (97.7)	252 (98.8) 81 (21.4)	170 (96)	
Antimalarials Tocilizumab	146 (33.6) 56 (12.9)	81 (31.4) 31 (12)	65 (36.7) 25 (14.1)	
Remdesivir	2 (0.5)	2 (0.8)	23 (14.1) 0 (0)	
Other	2 (0.0)	2 (0.0)	0 (0)	
PaO2/FiO2 ratio	233 (155-286)	240 (171-289)	220 (133-276)	0.032
Neutrophil/Lymphocyte ratio	7.1 (4.4-11.8)	7.3 (4.6-12.3)	6.6 (4.0-10.6)	0.156
Days between the beginning of	7 (5 - 10)	8 (5 - 10)	7 (5 - 10)	0.179

BMI, body mass index; T2DM, type 2 diabetes mellitus; CRP, c-reactive protein; LDH, lactate dehydrogenase; CPK, creatine phosphokinase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase.

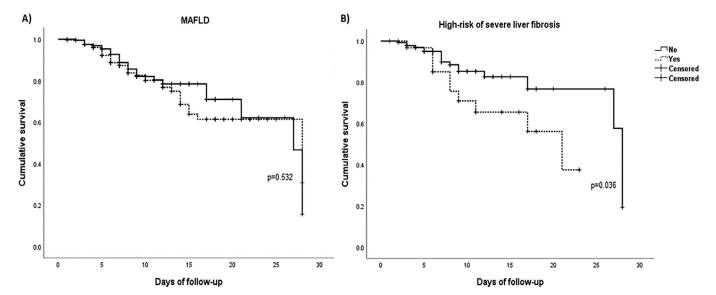
Characteristics and outcomes in patients with and without liver fibrosis in the MAFLD group.

	No fibrosis (n=139)	Severe fibrosis (n=37)	p value
Demographic features			
Age (years)	47.4 ± 12	50.7 ± 12	0.153
BMI (kg/m ²)	31.3 ± 4.6	33.3 ± 8.7	0.196
Fibrosis scores			
NFS	0.49 ± 1.56	2.34 ± 1.58	0.000
APRI	0.57 ± 0.59	1.47 ± 0.84	0.000
Prognostic scores			
qSOFA	1.0 (0-1)	1 (1-1)	0.346
SOFA	2 (1-2)	2 (1-3)	0.202
NEWS	7 (5-8)	8 (6-9)	0.033
PSI/PORT	59 (48-74)	65 (50-76)	0.572
SMART COP	3 (3-4)	3 (2-4)	0.590
Bello-Chavolla et al. score	6 (5-7)	7 (6-8)	0.026
Biochemical values			
CRP (ref: 0-1mg/dl)	15.0±10.3	14.5 ± 8.1	0.743
Ferritin (ref: 11- 306.8ng/ml)	755 ± 641	936 ± 721	0.157
D-dimer (ref: 0-500ng/ml)	1606 ± 7055	1173 ± 2183	0.732
LDH (ref: 120 - 246u/l)	380 ± 148	470 ± 200	0.004
Troponins (ref:<15pg/ml)	8.5 ± 18.4	14.0±26.9	0.199
CPK (ref: 30-223u/l)	224 ± 271	526 ± 738	0.032
Bilirubin (ref: mg/dl)	0.66 ± 0.22	0.71 ± 0.36	0.169
ALT (ref: 7-52u/l)	45.8 ± 40.3	67.7 ± 38.2	0.005
AST (ref:13-39u/l)	48.2± 38.3	83.0 ± 30.3	0.000
Globulins (ref: 1.9-3.7g/dl)	3.2 ± 0.4	3.3 ± 0.4	0.669
Albumin (ref:3.5 -5.7g/dl)	3.7 ± 0.4	3.8 ± 0.4	0.888
ALP (ref: 34-104u/l)	90±35	94±39	0.522
Creatinine (ref: 0.6-1.2mg/dl)	0.98 ± 0.47	0.99 ± 0.33	0.917
Glucose (ref:70-99 mg/dl)	123 (105-165)	125 (104-188.5)	0.802
Leukocytes (ref: $4-12 \times 10^3/ul$)	8.4 ± 3.5	7.1 ± 2.5	0.021
Lymphocytes (ref: $3.9 \times 10^3/ul$)	930±435	926±377	0.956
Platelets (ref: 150-450k/ul)	238±76	160±53	0.000
25 oh vitamin D (ref: 30-100ng/ml)	22.3 ± 8.5	19.2 ± 6.8	0.078
Triglycerides (ref:<150mg7dl)	162 ± 124	172±70	0.698
PaO2/FiO2 ratio	224 (137-276)	191 (112-277)	0.435
Neutrophil/Lymphocyte ratio	7.0 (4.1-12.1)	6.1 (3.9-9.0)	0.191
Other (n / %)			
Metabolic syndrome	63 (45.3)	20 (54.1)	0.529
Severe COVID-19	100 (72.5)	26 (78.8)	0.459
Admission to ICU	32 (22.9)	13 (39.4)	0.051
Discharge from ICU	15 (46.9)	5 (38.5)	0.607
Acute kidney injury	28 (20.1)	11 (33.3)	0.104
Thrombotic event	1 (0.7)	1 (3.0)	0.346
Death	21(15.0)	10(32.3)	0.024
Days between the beginning of symptoms and hospitalization	7 (5-9)	8 (6-10)	0.287
Length of hospital stay (days)	8 (4-12)	9 (6-16)	0.297
Days in ICU	12 (7-23)	10 (4-12)	0.061
Days between the beginning of hospitalization and death	8 (5-20)	8 (6-14)	0.919
Days between ICU requirement and death	5 (3-8)	7 (6-12)	0.264

BMI, body mass index; NFS, NAFLD fibrosis score; APRI, AST to platelet ratio index; CRP, c-reactive protein; LDH, lactate dehydrogenase; CPK, creatine phosphokinase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; COVID-19, coronavirus disease 2019; ICU, Intensive care unit.

those without MAFLD. However, we did find a significant increase in the risk of mechanical ventilation requirement, acute kidney injury, and mortality in patients with MAFLD and advanced liver fibrosis diagnosed using the combined approach of high NFS and APRI. The role of MAFLD in the outcomes of patients with COVID-19 is still controversial, with some studies reporting unfavorable outcomes in all patients with MAFLD, while others, like the present study, report worse outcomes only when liver fibrosis is present [22–24].

In a recently published retrospective study where the outcome of patients with chronic liver disease and COVID-19 was evaluated, MAFLD was found in 15% of the population, and was independently associated with an increase in ICU admission (OR 2.3) and mechanical ventilation (OR 2.1), and the presence of cirrhosis was an independent predictor of mortality (OR 12.5) [22]. Another study conducted at four sites in Zhejiang Province, China, between January and February 2020, evaluated 310 patients hospitalized with COVID-19 finding 30.3% patients with MAFLD. The presence of MAFLD was diagnosed by CT scan and the presence of fibrosis was evaluated using the originally validated cut-points for fibrosis-4 (FIB-4) index and the NFS score. This study found that patients with MAFLD and fibrosis had an increased risk of having severe COVID-19 illness, irrespective of other metabolic comorbidities [23]. In another study reported by Dong Ji et al. patients with MAFLD had a higher risk of disease progression, higher likelihood of abnormal liver tests, and longer viral shedding time compared to patients without MAFLD [24].


Our results are coherent with the fact that, in general, the prognosis of MALFD is determined by the severity of liver fibrosis rather than by the presence of steatosis or steatohepatitis, which it is seen as well in the context of COVID-19 [12,25]. This could be explained by a more pronounced baseline systemic inflammation profile in patients with liver fibrosis influencing different organs and systems and the interaction between them, leading to further inflammation and activation of the immune response, contributing to higher inflammation when SARS-CoV-2 is added [26].

In our cohort, patients with MALFD were younger and had a higher BMI with a higher proportion of grade 2 or 3 obesity, and

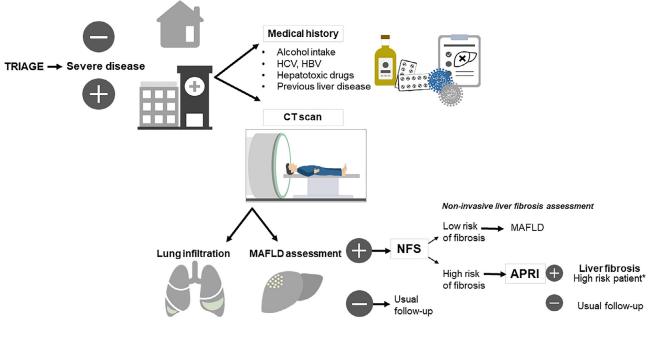
Logistic regression analysis to evaluate the association of fibrosis with clinical outcomes.

	raphic variables OR	CI 95%	β	p valu
Fibrosis APRI/NFS	2.595	1.187 - 5.662	0.954	0.017
Gender (Female)	0.478	0.202 - 1.131	-0.738	0.093
Age	0.980	0.969 - 0.991	-0.020	0.001
BMI > 30 kg/m ²	0.788	0.409 - 1.519	-0.238	
		: 0.257; Nagelkerke R ² : 0.342; Hosmer an		0.477
Endotracheal intubation – Biochen		, , , , , , , , , , , , , , , , , , , ,		
	OR	CI 95%	β	p valu
Fibrosis APRI/NFS	2.869	1.181 - 6.970	1.054	0.020
LDH	1.000	0.997 - 1.002	0.001	0.889
CRP	1.038	0.993 - 1.086	0.038	0.009
CPK	1.000	0.999 - 1.001	0.000	0.514
fotal lymphocytes 2 log likelihood →block 0: 227.34	0.998 5. block 1:195.675: Cox & Spell R	0.997 – 0.999 2: 0.302; Nagelkerke R ² : 0.402; Hosmer a	-0.002 nd Lemeshow: 0.202	0.000
		. 0.302, Nagelkerke K . 0.402, Hoshier a	ind Lemeshow. 0.202	
Endotracheal intubation –Severity	oR	CI 95%	β	p valu
				•
ibrosis APRI/NFS	2.601	1.112 - 6.084	0.956	0.027
PSI/PORT score	0.992	0.980 - 1.004	-0.008	0.185
SOFA score	3.288	1.380 - 7.836	1.190	0.007
aO2/FiO2 ratio	0.992	0.989 - 0.995	-0.008	0.000
ILR	1.003	0.973 - 1.035	0.003	0.827
2 log likelihood \rightarrow block 0: 238.44	4, block 1:169.73; Cox & Snell R ²	: 0.329; Nagelkerke R ² : 0.439; Hosmer an	d Lemeshow: 0.359	
ndotracheal intubation – Combin			0	
	OR	CI 95%	β	p valı
ibrosis APRI/NFS	3.243	1.355 - 7.760	1.176	0.008
lge	0.974	0.953 - 0.995	-0.026	0.017
otal lymphocytes	1.000	0.999 - 1.001	0.000	0.690
SOFA	5.067	2.002 - 12.825	1.623	0.001
aO2/FiO2 ratio	0.994	0.990 - 0.997	-0.006	0.001
2 log likelihood \rightarrow block 0: 239.82	2, block 1:163.66; Cox & Snell R ²	: 0.356; Nagelkerke R ² : 0.475; Hosmer an	d Lemeshow: 0.154	
Acute kidney injury - Demographi				
Acute kidney injury - Demographi	c variables OR	CI 95%	β	p valı
Acute kidney injury - Demographi 			β 0.925	p valı 0.025
ibrosis APRI/NFS	OR 2.522	1.123 - 5.665	0.925	0.025
ibrosis APRI/NFS Gender (Female)	OR 2.522 0.281	1.123 - 5.665 0.102 - 0.773	0.925 -1.268	0.025
ribrosis APRI/NFS Gender (Female) Age	OR 2.522 0.281 0.982	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994	0.925 -1.268 -0.018	0.025 0.014 0.002
Fibrosis APRI/NFS Gender (Female) Age BMI > 30 kg/m ²	OR 2.522 0.281 0.982 0.622	1.123 - 5.665 0.102 - 0.773	0.925 -1.268 -0.018 -0.476	•
ibrosis APRI/NFS Gender (Female) Age 3MI > 30 kg/m ² 2 log likelihood →block 0: 243.98	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ²	$\begin{array}{r} 1.123 - 5.665 \\ 0.102 - 0.773 \\ 0.971 - 0.994 \\ 0.314 - 1.231 \end{array}$	0.925 -1.268 -0.018 -0.476	0.025 0.014 0.002
ibrosis APRI/NFS Gender (Female) Age MI > 30 kg/m ² 2 log likelihood →block 0: 243.98	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ²	$\begin{array}{r} 1.123 - 5.665 \\ 0.102 - 0.773 \\ 0.971 - 0.994 \\ 0.314 - 1.231 \end{array}$	0.925 -1.268 -0.018 -0.476	0.025 0.014 0.002 0.173
Fibrosis APRI/NFS Gender (Female) MI > 30 kg/m ² 2 log likelihood →block 0: 243.9 Acute kidney injury –Biochemical	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR	1.123 – 5.665 0.102 – 0.773 0.971 – 0.994 0.314 – 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an Cl 95%	0.925 -1.268 -0.018 -0.476 d Lemeshow: 0.868 β	0.025 0.014 0.002 0.173 p val
ibrosis APRI/NFS Gender (Female) MI > 30 kg/m ² 2 log likelihood → block 0: 243.9 Acute kidney injury –Biochemical	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an Cl 95% 1.031 - 6.732	0.925 -1.268 -0.018 -0.476 d Lemeshow: 0.868 β 0.968	0.025 0.014 0.002 0.173 p val
ibrosis APRI/NFS iender (Female) kge MI > 30 kg/m ² 2 log likelihood → block 0: 243.90 kcute kidney injury -Biochemical ibrosis APRI/NFS DH	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an Cl 95% 1.031 - 6.732 1.001 - 1.007	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \hline \end{array}$	0.025 0.014 0.002 0.173 p val 0.043 0.019
ibrosis APRI/NFS Gender (Female) MI > 30 kg/m ² 2 log likelihood →block 0: 243.98 Acute kidney injury –Biochemical DH CRP	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an <u>CI 95%</u> 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091	0.925 -1.268 -0.018 -0.476 d Lemeshow: 0.868 β 0.968 0.004 0.093	0.025 0.014 0.002 0.173 p val 0.043 0.015 0.118
ibrosis APRI/NFS Gender (Female) Ige BMI > 30 kg/m ² 2 log likelihood →block 0: 243.99 Acute kidney injury -Biochemical Dibrosis APRI/NFS DH CRP CPK	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an <u>CI 95%</u> 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001	0.925 -1.268 -0.018 -0.476 d Lemeshow: 0.868 β 0.968 0.004 0.093 0.000	0.025 0.014 0.002 0.173 p val 0.043 0.019 0.118 0.994
ibrosis APRI/NFS Gender (Female) gge 2 log likelihood →block 0: 243.99 Acute kidney injury -Biochemical ibrosis APRI/NFS DH CPK Glucose	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 1.002	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007	0.925 -1.268 -0.018 -0.476 d Lemeshow: 0.868 β 0.968 0.004 0.093	0.025 0.014 0.002 0.173 p val 0.043 0.019 0.118 0.994 0.413
ibrosis APRI/NFS Gender (Female) MI > 30 kg/m ² 2 log likelihood → block 0: 243.99 Acute kidney injury -Biochemical ibrosis APRI/NFS DH IRP DH IRP Glucose BP	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 1.002 0.967	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an Cl 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.997 - 1.001 0.997 - 1.007 0.955 - 0.980	$0.925 \\ -1.268 \\ -0.018 \\ -0.476 \\ d Lemeshow: 0.868 \\ \beta \\ 0.968 \\ 0.004 \\ 0.093 \\ 0.000 \\ 0.002 \\ -0.033 \\ 0.003 \\ $	0.025 0.014 0.002 0.173 p val 0.043 0.019 0.118 0.994 0.413
ibrosis APRI/NFS Gender (Female) gge 2 log likelihood → block 0: 243.99 Acute kidney injury -Biochemical ibrosis APRI/NFS DH CPK Glucose BP 2 log likelihood → block 0: 221.89	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 1.002 0.967 0, block 1: 138.47; Cox & Snell R	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$	0.025 0.014 0.002 0.173 p valu 0.043 0.019 0.118 0.994 0.413
ibrosis APRI/NFS Gender (Female) gge 2 log likelihood → block 0: 243.99 Acute kidney injury -Biochemical ibrosis APRI/NFS DH CPK Glucose BP 2 log likelihood → block 0: 221.89	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 1.002 0.967 0, block 1: 138.47; Cox & Snell R res and markers	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ \text{ nd Lemeshow: } 0.176\\ \end{array}$	0.025 0.014 0.002 0.173 p valu 0.043 0.019 0.118 0.994 0.413 0.000
ibrosis APRI/NFS iender (Female) ige iMI > 30 kg/m ² 2 log likelihood → block 0: 243.98 icute kidney injury –Biochemical ibrosis APRI/NFS DH iRP PK Glucose BP 2 log likelihood → block 0: 221.86 icute kidney injury - Severity sco	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 1.002 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95%	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ \text{nd Lemeshow: } 0.176\\ \end{array}$	0.025 0.014 0.002 0.173 p val 0.043 0.015 0.118 0.994 0.413 0.000 p val
Fibrosis APRI/NFS Gender (Female) Age BMI > 30 kg/m ² 2 log likelihood →block 0: 243.99 Acute kidney injury -Biochemical Fibrosis APRI/NFS DH CRP CPK Slucose BP 2 log likelihood →block 0: 221.80 Acute kidney injury - Severity sco Fibrosis APRI/NFS	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 1.002 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ nd \text{ Lemeshow: } 0.176\\ \end{array}$ $\begin{array}{c} \beta\\ \end{array}$ $0.971\\ \end{array}$	0.025 0.014 0.002 0.173 p val 0.043 0.019 0.118 0.994 0.413 0.000 p val 0.000
ibrosis APRI/NFS Gender (Female) Age MI > 30 kg/m ² 2 log likelihood →block 0: 243.94 Acute kidney injury -Biochemical ibrosis APRI/NFS DH 2 log likelihood →block 0: 221.86 Acute kidney injury - Severity sco ibrosis APRI/NFS iOFA	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.009 1.000 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ \text{nd Lemeshow: } 0.176\\ \end{array}$ $\begin{array}{c} \beta\\ \end{array}$ $\begin{array}{c} 0.971\\ 0.156\\ \end{array}$	0.025 0.014 0.002 0.173 p val 0.043 0.019 0.118 0.994 0.413 0.000 p val 0.000 p val
ibrosis APRI/NFS Gender (Female) Age MI > 30 kg/m ² 2 log likelihood →block 0: 243.94 Acute kidney injury -Biochemical ibrosis APRI/NFS DH 2 log likelihood →block 0: 221.86 Acute kidney injury - Severity sco ibrosis APRI/NFS iOFA	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 1.002 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440 0.865 - 1.095	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ nd \text{ Lemeshow: } 0.176\\ \end{array}$ $\begin{array}{c} \beta\\ \end{array}$ $0.971\\ \end{array}$	0.025 0.014 0.002 0.173 p val 0.043 0.019 0.118 0.994 0.413 0.000 p val 0.000 p val
ibrosis APRI/NFS Gender (Female) MI > 30 kg/m ² 2 log likelihood → block 0: 243.99 Acute kidney injury -Biochemical ibrosis APRI/NFS DH IRP 2 log likelihood → block 0: 221.80 Acute kidney injury - Severity sco ibrosis APRI/NFS OFA tello-Chavolla score	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.009 1.000 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ \text{nd Lemeshow: } 0.176\\ \end{array}$ $\begin{array}{c} \beta\\ \end{array}$ $\begin{array}{c} 0.971\\ 0.156\\ \end{array}$	0.025 0.014 0.002 0.173 p val 0.043 0.019 0.118 0.994 0.413 0.000 p val 0.000 p val 0.034 0.143 0.034
ibrosis APRI/NFS iender (Female) ge MI > 30 kg/m ² 2 log likelihood →block 0: 243.94 icute kidney injury –Biochemical ibrosis APRI/NFS DH RP PK ilucose BP 2 log likelihood →block 0: 221.84 icute kidney injury - Severity sco ibrosis APRI/NFS OFA ello-Chavolla score aO2/FiO2 ratio	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169 0.973	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440 0.865 - 1.095	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ \text{nd Lemeshow: } 0.176\\ \end{array}$ $\begin{array}{c} \beta\\ \end{array}$ $\begin{array}{c} 0.971\\ 0.156\\ -0.027\\ \end{array}$	0.025 0.014 0.002 0.173 p valu 0.043 0.019 0.118 0.994 0.413 0.000 p valu 0.034 0.034 0.143 0.655 0.000
ibrosis APRI/NFS iender (Female) ige iMI > 30 kg/m ² 2 log likelihood → block 0: 243.99 icute kidney injury -Biochemical ibrosis APRI/NFS DH iRP PK Glucose BP 2 log likelihood → block 0: 221.80 icute kidney injury - Severity sco ibrosis APRI/NFS OFA ello-Chavolla score iaO2/FiO2 ratio ILR	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 1.002 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169 0.973 0.991 1.021	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an <u>CI 95%</u> <u>1.031 - 6.732</u> 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an <u>CI 95%</u> <u>1.077 - 6.470</u> 0.965 - 1.095 0.987 - 0.994	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.021\\ \end{array}$	0.025 0.014 0.002 0.173 p valu 0.043 0.019 0.118 0.994 0.413 0.000 p valu 0.034 0.143 0.034 0.143 0.655 0.000
ibrosis APRI/NFS iender (Female) ige MI > 30 kg/m ² 2 log likelihood → block 0: 243.95 icute kidney injury –Biochemical ibrosis APRI/NFS DH RP 2 log likelihood → block 0: 221.86 icute kidney injury - Severity sco ibrosis APRI/NFS OFA iello-Chavolla score aO2/FiO2 ratio UR 2 log likelihood → block 0: 232.85	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169 0.973 0.991 1.021 9, block 1: 152.32; Cox & Snell R	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440 0.865 - 1.095 0.987 - 0.994 0.991 - 1.051	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.021\\ \end{array}$	0.025 0.014 0.002 0.173 p valu 0.043 0.019 0.118 0.994 0.413 0.000 p valu 0.034 0.143 0.034 0.143 0.655 0.000
Tibrosis APRI/NFS Gender (Female) Age MI > 30 kg/m ² 2 log likelihood →block 0: 243.99 Acute kidney injury –Biochemical Tibrosis APRI/NFS DH RP 2 log likelihood →block 0: 221.89 Acute kidney injury - Severity sco Tibrosis APRI/NFS OFA Gello-Chavolla score 202/FiO2 ratio UR 2 log likelihood →block 0: 232.89	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169 0.973 0.991 1.021 9, block 1: 152.32; Cox & Snell R	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440 0.865 - 1.095 0.987 - 0.994 0.991 - 1.051	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.021\\ \end{array}$	0.025 0.014 0.002 0.173 0.173 0.043 0.019 0.118 0.994 0.413 0.000 p valu 0.034 0.143 0.055 0.000 0.168
ibrosis APRI/NFS Gender (Female) Age MI > 30 kg/m ² 2 log likelihood → block 0: 243.99 Acute kidney injury -Biochemical ibrosis APRI/NFS DH 2 log likelihood → block 0: 221.80 Acute kidney injury - Severity sco ibrosis APRI/NFS OFA Sello-Chavolla score PaO2/FiO2 ratio NLR 2 log likelihood → block 0: 232.89 Acute kidney injury - Combined r	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169 0.973 0.991 1.021 9, block 1: 152.32; Cox & Snell R nodel OR	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440 0.865 - 1.095 0.987 - 0.994 0.991 - 1.051 ² : 0.381; Nagelkerke R ² : 0.508; Hosmer an	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ \end{array}$ d Lemeshow: 0.868 $\begin{array}{c} \beta\\ \\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ \end{array}$ nd Lemeshow: 0.176 $\begin{array}{c} \beta\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.025 0.014 0.002 0.173 p val 0.043 0.019 0.118 0.994 0.413 0.000 p val 0.034 0.143 0.655 0.000 0.168 p val
ibrosis APRI/NFS Gender (Female) MI > 30 kg/m ² 2 log likelihood →block 0: 243.99 Acute kidney injury -Biochemical ibrosis APRI/NFS DH RP 2 log likelihood →block 0: 221.80 Acute kidney injury - Severity sco ibrosis APRI/NFS OFA Bello-Chavolla score 202/FiO2 ratio UR 2 log likelihood →block 0: 232.89 Acute kidney injury - Combined re ibrosis APRI/NFS	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169 0.973 0.991 1.021 9, block 1: 152.32; Cox & Snell R nodel OR 2.511	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440 0.865 - 1.095 0.987 - 0.994 0.991 - 1.051 ² : 0.381; Nagelkerke R ² : 0.508; Hosmer an CI 95% 1.000 - 6.304	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \ Lemeshow: \ 0.868\\ \hline \\ \hline \\ \beta \\ \hline \\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.021\\ 0.176\\ \hline \\ \hline \\ \beta \\ \hline \\ 0.971\\ 0.156\\ -0.027\\ -0.009\\ 0.021\\ 0.1285\\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	0.025 0.014 0.002 0.173 p valu 0.043 0.019 0.118 0.994 0.413 0.000 p valu 0.034 0.143 0.655 0.000 0.168 p valu
Tibrosis APRI/NFS Gender (Female) Age MI > 30 kg/m ² 2 log likelihood →block 0: 243.95 Acute kidney injury –Biochemical Tibrosis APRI/NFS DH RP 2 log likelihood →block 0: 221.86 Acute kidney injury - Severity sco Tibrosis APRI/NFS OFA Sello-Chavolla score PaO2/FiO2 ratio VLR 2 log likelihood →block 0: 232.85 Acute kidney injury – Combined re Tibrosis APRI/NFS Gender	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169 0.991 1.021 9, block 1: 152.32; Cox & Snell R model OR 2.511 0.397	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer ar CI 95% 1.077 - 6.470 0.949 - 1.440 0.865 - 1.095 0.987 - 0.994 0.991 - 1.051 ² : 0.381; Nagelkerke R ² : 0.508; Hosmer ar CI 95% 1.000 - 6.304 0.130 - 1.206	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ 0.021\\ 0.176\\ \end{array}$ $\begin{array}{c} \beta\\ 0.971\\ 0.156\\ -0.027\\ -0.009\\ 0.021\\ 0.285\\ \end{array}$ $\begin{array}{c} \beta\\ \beta\\ 0.921\\ -0.925\\ \end{array}$	0.025 0.014 0.002 0.173 0.019 0.118 0.994 0.413 0.000 p valu 0.034 0.143 0.655 0.000 0.168 p valu
ibrosis APRI/NFS iender (Female) ige iMI > 30 kg/m ² 2 log likelihood → block 0: 243.90 ice vertex with the second secon	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 1.002 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169 0.973 0.991 1.021 9, block 1: 152.32; Cox & Snell R nodel OR 2.511 0.397 1.014	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440 0.865 - 1.095 0.987 - 0.994 0.991 - 1.051 ² : 0.381; Nagelkerke R ² : 0.508; Hosmer an CI 95% 1.000 - 6.304 0.130 - 1.206 0.981 - 1.049	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.021\\ 0.156\\ -0.027\\ -0.009\\ 0.021\\ 0.285\\ \hline \end{array}$	0.025 0.014 0.002 0.173 p valu 0.043 0.019 0.118 0.994 0.413 0.094 0.413 0.000 p valu 0.034 0.143 0.655 0.000 0.168 p valu 0.168
ibrosis APRI/NFS Gender (Female) Age MI > 30 kg/m ² 2 log likelihood →block 0: 243.94 Acute kidney injury –Biochemical ibrosis APRI/NFS DH CRP 2 log likelihood →block 0: 221.80 Acute kidney injury - Severity sco ibrosis APRI/NFS OFA Jello-Chavolla score PaO2/FiO2 ratio VLR 2 log likelihood →block 0: 232.89 Acute kidney injury – Combined r ibrosis APRI/NFS Gender Age PaO2/FiO2 ratio	OR 2,522 0,281 0,982 0,622 8, block 1:179.58; Cox & Snell R ² variables OR 2,634 1,004 1,009 1,000 1,002 0,967 0, block 1: 138.47; Cox & Snell R res and markers OR 2,640 1,169 0,973 0,991 1,021 9, block 1: 152.32; Cox & Snell R nodel OR 2,511 0,397 1,014 0,995	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440 0.865 - 1.095 0.987 - 0.994 0.991 - 1.051 ² : 0.381; Nagelkerke R ² : 0.508; Hosmer an CI 95% 1.000 - 6.304 0.130 - 1.206 0.981 - 1.049 0.991 - 0.999	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \text{ Lemeshow: } 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ 0.002\\ 0.021\\ 0.027\\ -0.009\\ 0.021\\ 0.027\\ -0.009\\ 0.021\\ 0.921\\ -0.925\\ 0.014\\ 0.005\\ \end{array}$	0.025 0.014 0.002 0.173 p valu 0.043 0.019 0.118 0.994 0.413 0.000 p valu 0.034 0.143 0.655 0.000 0.168 p valu 0.050 0.103 0.405 0.028
ibrosis APRI/NFS Gender (Female) Age MI > 30 kg/m ² 2 log likelihood →block 0: 243.94 Acute kidney injury -Biochemical ibrosis APRI/NFS DH 2 log likelihood →block 0: 221.86 Acute kidney injury - Severity sco ibrosis APRI/NFS GOFA Sello-Chavolla score aQ2/FiO2 ratio ALR 2 log likelihood →block 0: 232.89 Acute kidney injury - Combined r ibrosis APRI/NFS GOFA Seconder Age aQ2/FiO2 ratio DH	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 1.002 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169 0.973 0.991 1.021 9, block 1: 152.32; Cox & Snell R nodel OR 2.511 0.397 1.014 0.995 1.004	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440 0.865 - 1.095 0.987 - 0.994 0.991 - 1.051 ² : 0.381; Nagelkerke R ² : 0.508; Hosmer an CI 95% 1.000 - 6.304 0.130 - 1.206 0.981 - 1.049 0.991 - 0.999 1.001 - 1.007	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \ Lemeshow: \ 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ nd \ Lemeshow: \ 0.176\\ \end{array}$ $\begin{array}{c} \beta\\ 0.971\\ 0.156\\ -0.027\\ -0.009\\ 0.021\\ nd \ Lemeshow: \ 0.285\\ \end{array}$ $\begin{array}{c} \beta\\ \beta\\ \hline\\ 0.921\\ -0.925\\ 0.014\\ 0.005\\ 0.004\\ \end{array}$	0.025 0.014 0.002 0.173 p val 0.043 0.019 0.118 0.994 0.413 0.000 p val 0.034 0.143 0.655 0.000 0.168 p val 0.050 0.103 0.050 0.103 0.405 0.028 0.007
Tibrosis APRI/NFS Gender (Female) Age MI > 30 kg/m ² 2 log likelihood → block 0: 243.99 Acute kidney injury –Biochemical Tibrosis APRI/NFS DH RP 2 log likelihood → block 0: 221.80 Acute kidney injury - Severity sco Tibrosis APRI/NFS OFA Bello-Chavolla score 202/FiO2 ratio UR 2 log likelihood → block 0: 232.89 Acute kidney injury – Combined r Tibrosis APRI/NFS Gender April 100 - 500	OR 2.522 0.281 0.982 0.622 8, block 1:179.58; Cox & Snell R ² variables OR 2.634 1.004 1.039 1.000 0.967 0, block 1: 138.47; Cox & Snell R res and markers OR 2.640 1.169 0.973 0.991 1.021 9, block 1: 152.32; Cox & Snell R nodel OR 2.511 0.397 1.014 0.995 1.004 0.979	1.123 - 5.665 0.102 - 0.773 0.971 - 0.994 0.314 - 1.231 : 0.307; Nagelkerke R ² : 0.409; Hosmer an CI 95% 1.031 - 6.732 1.001 - 1.007 0.990 - 1.091 0.999 - 1.001 0.997 - 1.007 0.955 - 0.980 ² : 0.406; Nagelkerke R ² : 0.541; Hosmer an CI 95% 1.077 - 6.470 0.949 - 1.440 0.865 - 1.095 0.987 - 0.994 0.991 - 1.051 ² : 0.381; Nagelkerke R ² : 0.508; Hosmer an CI 95% 1.000 - 6.304 0.130 - 1.206 0.981 - 1.049 0.991 - 0.999	$\begin{array}{c} 0.925\\ -1.268\\ -0.018\\ -0.476\\ d \ Lemeshow: \ 0.868\\ \end{array}$ $\begin{array}{c} \beta\\ 0.968\\ 0.004\\ 0.093\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ -0.033\\ 0.000\\ 0.002\\ 0.021\\ 0.176\\ \end{array}$ $\begin{array}{c} \beta\\ 0.971\\ 0.156\\ -0.027\\ -0.009\\ 0.021\\ 0.156\\ -0.027\\ -0.009\\ 0.021\\ 0.921\\ -0.925\\ 0.014\\ 0.005\\ 0.004\\ 0.021\\ \end{array}$	0.025 0.014 0.002 0.173 p vali 0.043 0.019 0.118 0.994 0.413 0.000 p vali 0.034 0.143 0.655 0.000 0.168 p vali 0.168 p vali

Neutrophil/Lymphocyte ratio, SBP, systolic blood pressure.

Fig. 1. Kaplan–Meier curves for survival in patients with MAFLD (A) and in patients with high-risk of severe fibrosis by NFS/APRI (B). Mean survival time: 21.07 ± 0.9 days (non-MAFLD) and 21.95 ± 1.11 days (MAFLD; and 23.5 ± 1.1 days (no fibrosis) and 16.7 ± 1.5 days (fibrosis). MAFLD, metabolic associated fatty liver disease.

Cox regression analysis for survival in patients with and without fibrosis.


SURVIVAL – demographic variable	es			
	HR	CI 95%	β	p value
Fibrosis APRI/NFS	2.332	1.077 - 5.049	0.847	0.032
Gender (Female)	0.424	0.154 - 1.171	-0.858	0.098
Age	1.035	1.002 - 1.070	0.035	0.040
BMI	1.087	1.029 - 1.147	0.083	0.003
-2 log likelihood \rightarrow block 0: 245	.43, block 1: 228.41, Chi-square:18.	.999, df:4, sig.: 0.001		
Survival – severity scores and ma	arkers			
-	HR	CI 95%	β	p value
Fibrosis APRI/NFS	2.901	1.141 - 7.370	1.065	0.025
NLR	1.014	0.977 - 1.053	0.014	0.457
LDH	1.002	1.000 - 1.004	0.002	0.053
PSI-PORT	1.024	1.007 - 1.041	0.023	0.005
CRP	1.062	1.015- 1.111	0.060	0.010
qSOFA	0.693	0.254 - 1.890	-0.367	0.474
PaO2/FiO2 ratio	1.001	0.998 - 1.004	0.001	0.468
-2 log likelihood \rightarrow block 218.91	:, block 1:187.18, Chi-square:35.72	, df:7, sig.:0.000		
Survival – combined model				
	HR	CT 050	0	
	TIK	CI 95%	β	p value
Fibrosis APRI/NFS	2.543	1.147 - 5.637	β 0.933	p value 0.022
Fibrosis APRI/NFS PSI-PORT				*
1	2.543	1.147 - 5.637	0.933	0.022
PSI-PORT	2.543 1.017	1.147 - 5.637 1.000 - 1.034	0.933 0.017	0.022 0.050
PSI-PORT CRP	2.543 1.017 1.070	1.147 - 5.637 1.000 - 1.034 1.025 - 1.118	0.933 0.017 0.068	0.022 0.050 0.002
PSI-PORT CRP Age BMI	2.543 1.017 1.070 1.018	1.147 - 5.637 1.000 - 1.034 1.025 - 1.118 0.982 - 1.055 1.025 - 1.150	0.933 0.017 0.068 0.018	0.022 0.050 0.002 0.336
PSI-PORT CRP Age BMI	2.543 1.017 1.070 1.018 1.086	1.147 - 5.637 1.000 - 1.034 1.025 - 1.118 0.982 - 1.055 1.025 - 1.150	0.933 0.017 0.068 0.018	0.022 0.050 0.002 0.336
PSI-PORT CRP Age BMI -2 log likelihood →block 0:235.	2.543 1.017 1.070 1.018 1.086	1.147 - 5.637 1.000 - 1.034 1.025 - 1.118 0.982 - 1.055 1.025 - 1.150	0.933 0.017 0.068 0.018	0.022 0.050 0.002 0.336
PSI-PORT CRP Age BMI -2 log likelihood →block 0:235.	2.543 1.017 1.070 1.018 1.086 13, block 1: 203.17, Chi-square:35.0	1.147 - 5.637 1.000 - 1.034 1.025 - 1.118 0.982 - 1.055 1.025-1.150 26, df:5, sig.: 0.000	0.933 0.017 0.068 0.018 0.082	0.022 0.050 0.002 0.336 0.005
PSI-PORT CRP Age BMI -2 log likelihood → block 0:235. Survival – other outcomes	2.543 1.017 1.070 1.018 1.086 13, block 1: 203.17, Chi-square:35.0 HR	1.147 - 5.637 1.000 - 1.034 1.025 - 1.118 0.982 - 1.055 1.025-1.150 06, df:5, sig.: 0.000 CI 95%	0.933 0.017 0.068 0.018 0.082 β	0.022 0.050 0.002 0.336 0.005
PSI-PORT CRP Age BMI -2 log likelihood → block 0:235. Survival – other outcomes Fibrosis APRI/NFS	2.543 1.017 1.070 1.018 1.086 13, block 1: 203.17, Chi-square:35.0 HR 1.655	1.147 - 5.637 1.000 - 1.034 1.025 - 1.118 0.982 - 1.055 1.025-1.150 06, df:5, sig.: 0.000 CI 95% 0.749 - 3.661	0.933 0.017 0.068 0.018 0.082 β 0.504	0.022 0.050 0.002 0.336 0.005 p value 0.213

APRI, AST to platelet ratio index; NAFLD fibrosis score; BMI, body mass index; T2DM, type 2 diabetes mellitus; LDH, lactate dehydrogenase; AKI, acute kidney injury; CRP, C-reactive protein; NLR, neutrophil/lymphocyte ratio.

a higher proportion of T2DM. In a previous report by K.I. Zheng et al., the risk of severe disease in MAFLD patients with co-existing obesity was six times greater after adjustment for confounders, suggesting a synergistic effect between MAFLD and obesity when assessing the risk of severe COVID-19 [27].

The information in the present study was collected before the release of the results of the RECOVERY trial (ref), therefore no changes in survival are attributed to steroid use.

This study has several limitations, the first is the retrospective nature of the study, and the fact that liver steatosis was diagnosed by CT scan, and fibrosis by non-invasive scores which are not the standard methods for diagnosing these entities. However, given the high risk of SARS-CoV-2 transmission to healthcare workers, this approach is safer than exposing them to perform an additional study, such as transient elastography. Another noteworthy aspect is that COVID-19 patients often have elevated

*Additional to other risk factors such as T2DM, obesity, hypertension, etc.

Fig. 2. Proposed assessment of MAFLD and liver fibrosis in hospitalized patients with COVID-19. This diagnostic approach highlights the importance of liver fibrosis in patients with MAFLD and COVID-19 as an additional risk factor for adverse clinical outcomes. For individuals admitted for inpatient medical care, three points are critical in the proposed assessment: 1) To investigate risk factors related to liver disease different from MAFLD; 2) The assessment of liver steatosis with the already available lung CT scan, to avoid unnecessary exposure to radiation and to expedite the assessment; and 3) To sequentially assess the risk of severe liver fibrosis with the NAFLD fibrosis score (NFS) and then with the AST to platelet ratio index (APRI). This approach for detecting patients with MAFLD and liver fibrosis among those with COVID-19 requiring inpatient care, provides a reliable algorithm using already available resources (CT scan and biochemical tests), and therefore accelerating the diagnostic time, limiting the contact with healthcare staff. MAFLD, metabolic associated fatty liver disease; NFS, NAFLD fibrosis score; APRI, AST to platelet ratio index; HCV, hepatitis C virus; HBV, hepatitis B virus.

transaminases, which could affect the diagnostic precision of the fibrosis predictive scores, since most of them use these values to predict liver fibrosis, increasing the risk of over-diagnosis of advanced fibrosis in our cohort. It is not clear whether COVID-19 is solely responsible for the development of liver injury, or whether liver injury is a consequence of the systemic inflammation caused by the virus or by drug-induced liver injury [28]. The main advantage of this study is that it was conducted in a country with one of the highest prevalence of MAFLD, and with a different genetic background also accounting for higher prevalence of other metabolic diseases including T2D and obesity; therefore are able to evaluate a good proportion of these patients and the statistical approach that was carried out allows for solid results. Finally, based in the findings of the present study, we propose a sequential approach to identify patients with MAFLD and high risk of advanced fibrosis, emphasizing the fact that an adequate diagnosis can be done with the studies performed upon admittance (i.e. chest CT scan, history and biochemical tests). (Fig. 2)

In conclusion, the presence of fibrosis rather than the presence of MAFLD has an impact on the risk of mechanical ventilation requirement, development of acute kidney injury, and higher mortality in patients with COVID-19.

Declaration of Competing Interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Acknowledgments

The authors would like to thank all the staff of the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán for their collaboration in the medical care of these patients in order to be able to carry out this work.

Financial disclosure

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

FJC and YAN are supported by: German Research Foundation (SFB/TRR57/P04, SFB 1382-403224013/A02 and DFG NE 2128/2-1) (to YAN), the MINECO Retos by MINECO Retos (SAF2017-87919R to YAN) and (SAF2016-78711 to FJC), and the EXOHEP-CM S2017/BMD-3727, NanoLiver-CMY2018/NMT-4949, ERAB Ref. EA 18/14, AMMF 2018/117, UCM-25-2019 and COST Action CA17112 (to YAN and FJC). YAN and FJC are Ramón y Cajal Researchers RYC2015-17438 and RyC2014-15242, respectively. FJC is a Gilead Liver Research Scholar.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dld.2021.01.019.

References

- Johns Hopkins Coronavirus Resource Center COVID-19 Map. Johns Hopkins Coronavirus Resour Cent; 2020.
- [2] Tian W, Jiang W, Yao J, Nicholson CJ, Li RH, Sigurslid HH, et al. Predictors of mortality in hospitalized COVID-19 patients: a systematic review and metaanalysis. J Med Virol 2020 jmv.26050. doi:10.1002/jmv.26050.
- [3] Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA - J Am Med Assoc 2020;323:1061-9. doi:10.1001/jama. 2020.1585.

- [4] Gao Y, Chen Y, Liu M, Shi S, Tian J. Impacts of immunosuppression and immunodeficiency on COVID-19: a systematic review and meta-analysis. J Infect 2020;81:e93. doi:10.1016/j.jinf.2020.05.017.
- [5] Certain Medical Conditions and Risk for Severe COVID-19 Illness | CDC n.d.
- [6] Horby P, Lim WS, Emberson J, Mafham M, Bell J, Linsell L, et al. Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report. MedRxiv 2020 2020.06.22.20137273. doi:10.1101/2020.06.22.20137273.
- [7] Eslam M, Sanyal AJ, George J. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020;158:1999–2014 e1. doi:10.1053/j.gastro.2019.11.312.
- [8] The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2020;5:245–66. doi:10.1016/ S2468-1253(19)30349-8.
- [9] Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018;15:11–20. doi:10.1038/nrgastro.2017.109.
- [10] Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64:73–84. doi:10.1002/ hep.28431.
- [11] Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019;25:1822–32. doi:10.1038/s41591-019-0675-0.
- [12] Le MH, Devaki P, Ha NB, Jun DW, Te HS, Cheung RC, et al. Prevalence of nonalcoholic fatty liver disease and risk factors for advanced fibrosis and mortality in the United States. PLoS One 2017;12:e0173499. doi:10.1371/journal.pone. 0173499.
- [13] Mantovani A, Scorletti E, Mosca A, Alisi A, Byrne CD, Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism 2020. doi:10.1016/j.metabol.2020.154170.
- [14] Bajpai V, Gupta E, Mitra LG, Kumar H, Maiwall R, Soni KD, et al. Spectrum of respiratory viral infectionsin liver disease patients with cirrhosis admitted in critical care unit. J Lab Physicians 2019;11:356–60. doi:10.4103/jlp.jlp_6_19.
- [15] Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020;25. doi:10.2807/1560-7917.ES.2020.25.3.2000045.
- [16] Iwasaki M, Takada Y, Hayashi M, Minamiguchi S, Haga H, Maetani Y, et al. Noninvasive evaluation of graft steatosis in living donor liver transplantation. Transplantation 2004;78:1501–5. doi:10.1097/01.TP.0000140499.23683.0D.
- [17] Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007;45:846–54. doi:10.1002/hep.21496.

- [18] Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003;38:518–26. doi:10.1053/jhep.2003.50346.
- [19] Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020;323:2052–9. doi:10.1001/jama.2020.6775.
- [20] Bello-Chavolla OY, Bahena-López JP, Antonio-Villa NE, Vargas-Vázquez A, González-Díaz A, Márquez-Salinas A, et al. Predicting mortality due to SARS-CoV-2: a mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico. J Clin Endocrinol Metab 2020;105. doi:10.1210/clinem/ dgaa346.
- [21] Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004;40:1387–95. doi:10.1002/hep. 20466.
- [22] Hashemi N, Viveiros K, Redd WD, Zhou JC, McCarty TR, Bazarbashi AN, et al. Impact of chronic liver disease on outcomes of hospitalized patients with COVID-19: a multicentre United States experience. Liver Int Off J Int Assoc Study Liver 2020. doi:10.1111/liv.14583.
- [23] Targher G, Mantovani A, Byrne CD, Wang X-B, Yan H-D, Sun Q-F, et al. Risk of severe illness from COVID-19 in patients with metabolic dysfunctionassociated fatty liver disease and increased fibrosis scores. Gut 2020;69:1545– 7. doi:10.1136/gutjnl-2020-321611.
- [24] Ji D, Qin E, Xu J, Zhang D, Cheng G, Wang Y, et al. Non-alcoholic fatty liver diseases in patients with COVID-19: a retrospective study. J Hepatol 2020;73:451– 3. doi:10.1016/j.jhep.2020.03.044.
- [25] Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2015;149:389–97. doi:10.1053/j.gastro.2015.04.043.
- [26] Trebicka J, Amoros A, Pitarch C, Titos E, Alcaraz-Quiles J, Schierwagen R, et al. Addressing profiles of systemic inflammation across the different clinical phenotypes of acutely decompensated cirrhosis. Front Immunol 2019;10. doi:10.3389/fimmu.2019.00476.
- [27] Hussain A, Vasas P, El-Hasani S. Letter to the Editor: obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism 2020;108:154256. doi:10.1016/j.metabol.2020.154256.
- [28] Alqahtani S.A., Orn J., Schattenberg M. Liver injury in COVID-19: The current evidence Key points n.d. doi:10.1177/2050640620924157.