
WJG https://www.wjgnet.com 1465 April 14, 2021 Volume 27 Issue 14

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2021 April 14; 27(14): 1465-1482

DOI: 10.3748/wjg.v27.i14.1465 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

ORIGINAL ARTICLE

Retrospective Cohort Study

Impact of preoperative antibiotics and other variables on integrated 
microbiome-host transcriptomic data generated from colorectal 
cancer resections

Sarah A Malik, Chencan Zhu, Jinyu Li, Joseph F LaComb, Paula I Denoya, Igor Kravets, Joshua D Miller, Jie 
Yang, Melissa Kramer, W Richard McCombie, Charles E Robertson, Daniel N Frank, Ellen Li

ORCID number: Sarah A Malik 0000-
0002-8668-7688; Chencan Zhu 0000-
0001-6129-9905; Jinyu Li 0000-0002-
7677-9992; Joseph F Lacomb 0000-
0002-2981-1072; Paula I Denoya 
0000-0001-8437-7793; Igor Kravets 
0000-0002-9724-0611; Joshua D 
Miller 0000-0001-9512-461X; Jie 
Yang 0000-0003-3469-5931; Melissa 
Kramer 0000-0001-9669-3611; W 
Richard McCombie 0000-0003-1899-
068; Charles E Robertson 0000-0002-
4136-4121; Daniel N Frank 0000-
0001-6669-228X; Ellen Li 0000-0002-
1141-0406.

Author contributions: Li E, 
McCombie WR, Denoya PI, Frank 
DN, Kravets I and Miller JD 
contributed study concept and 
design; Malik SA, LaComb JF, Li E, 
Kramer M contributed data 
collection; Zhu C, Yang J, Li J, 
Robertson CE and Frank DN 
contributed statistical analysis; 
Malik SA, Li E and Frank DN 
contributed drafting of manuscript; 
Yang J, LaComb JF, Denoya PI, 
Kravets I, Miller JD, Kramer M, 
McCombie WR and Robertson CE 
contributed critical review for 
important intellectual content; all 
authors approved the final version 
of the manuscript.

Supported by National Cancer 

Sarah A Malik, Joseph F LaComb, Igor Kravets, Joshua D Miller, Ellen Li, Department of 
Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, 
United States

Chencan Zhu, Jie Yang, Department of Applied Mathematics and Statistics, Stony Brook 
University, Stony Brook, NY 11794, United States

Jinyu Li, Jie Yang, Stony Brook Cancer Center Biostatistics and Bioinformatics Shared 
Resource, Stony Brook University, Stony Brook, NY 11794, United States

Jinyu Li, Department of Pathology, Renaissance School of Medicine, Stony Brook University, 
Stony Brook, NY 11794, United States

Paula I Denoya, Department of Surgery, Renaissance School of Medicine, Stony Brook 
University, Stony Brook, NY 11794, United States

Jie Yang, Department of Family, Population and Preventive Medicine, Stony Brook University, 
Stony Brook, NY 11794, United States

Melissa Kramer, W Richard McCombie, Cold Spring Harbor Laboratory Cancer Center 
Sequencing Technologies and Analysis Shared Resource, Cold Spring Harbor, NY 11724, 
United States

Charles E Robertson, Daniel N Frank, Department of Medicine, University of Colorado Anschutz 
Medical Campus, Aurora, CO 80045, United States

Corresponding author: Ellen Li, MD, PhD, Emeritus Professor, Department of Medicine, 
Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 
11794, United States. ellen.li@stonybrookmedicine.edu

Abstract
BACKGROUND 
Integrative multi-omic approaches have been increasingly applied to discovery 
and functional studies of complex human diseases. Short-term preoperative 
antibiotics have been adopted to reduce site infections in colorectal cancer (CRC) 
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resections. We hypothesize that the antibiotics will impact analysis of multi-omic 
datasets generated from resection samples to investigate biological CRC risk 
factors.

AIM 
To assess the impact of preoperative antibiotics and other variables on integrated 
microbiome and human transcriptomic data generated from archived CRC 
resection samples.

METHODS 
Genomic DNA (gDNA) and RNA were extracted from prospectively collected 51 
pairs of frozen sporadic CRC tumor and adjacent non-tumor mucosal samples 
from 50 CRC patients archived at a single medical center from 2010-2020. The 16S 
rRNA gene sequencing (V3V4 region, paired end, 300 bp) and confirmatory 
quantitative polymerase chain reaction (qPCR) assays were conducted on gDNA. 
RNA sequencing (IPE, 125 bp) was performed on parallel tumor and non-tumor 
RNA samples with RNA Integrity Numbers scores ≥ 6.

RESULTS 
PERMANOVA detected significant effects of tumor vs nontumor histology (P = 
0.002) and antibiotics (P = 0.001) on microbial β-diversity, but CRC tumor location 
(left vs right), diabetes mellitus vs not diabetic and Black/African Ancestry (AA) 
vs not Black/AA, did not reach significance. Linear mixed models detected 
significant tumor vs nontumor histology*antibiotics interaction terms for 14 genus 
level taxa. QPCR confirmed increased Fusobacterium abundance in tumor vs 
nontumor groups, and detected significantly reduced bacterial load in the 
(+)antibiotics group. Principal coordinate analysis of the transcriptomic data 
showed a clear separation between tumor and nontumor samples. Differentially 
expressed genes obtained from separate analyses of tumor and nontumor 
samples, are presented for the antibiotics, CRC location, diabetes and Black/AA 
race groups.

CONCLUSION 
Recent adoption of additional preoperative antibiotics as standard of care, has a 
measurable impact on -omics analysis of resected specimens. This study still 
confirmed increased Fusobacterium nucleatum in tumor.

Key Words: Colorectal cancer; Antibiotics; African Continental Ancestry Group; Diabetes 
mellitus; 16S rRNA gene; RNA-sequencing
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Core Tip: This pilot study explored the effect of five variables [tumor histology, 
preoperative antibiotics, laterality of colorectal cancer (CRC) location, diabetes 
mellitus, Black/African Ancestry (AA) race] on analysis of microbiome and host 
transcriptome among archived frozen CRC resection samples. The introduction of 
short-term preoperative antibiotics as standard of care has a measurable effect on the 
analysis. Despite the small sample size and variable exposure to preoperative 
antibiotics, it was still possible to use the data for discovery studies. Fusobacterium 
abundance was increased in tumor vs nontumor regions. Expression of VBP1 was 
decreased in expression in both Black/AA tumor and nontumor samples.
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INTRODUCTION
Imbalances in mucosal associated microbiota (dysbiosis) have been reported in human 
colorectal cancer (CRC)[1]. The increased risk of CRC in patients with inflammatory 
bowel diseases and in animal models of intestinal inflammation support the concept 
that bacteria promoting colonic inflammation may be proto-oncogenic[2]. According to 
the driver and passenger hypothesis, there are key pathogens that can drive 
tumorigenesis and support other bacteria as passengers to proliferate and exacerbate 
disease in sporadic CRC[3]. Similarly, the keystone hypothesis states that certain low 
abundance pathogens can promote inflammation by altering a normal microbiota into 
a dysbiotic one[4]. There are certain pathogens that are associated with CRC including 
increased abundances of Peptostreptococcus, Bacteroides fragilis, Fusobacterium nucleatum 
(F. nucleatum), and Escherichia coli and decreased abundances of Clostridium, 
Bifidobacterium, Faecalibacterium and Roseburia[1-6]. The potential mechanisms at which 
these particular bacteria may affect the adenoma-carcinoma sequence, include gene 
expression alternations, promotion of chronic inflammation and release of 
carcinogenic metabolites[1-6]. The approach of collecting and integrating multi-omic 
host and microbiome data has been increasingly applied to discovery and functional 
studies of human gastrointestinal diseases[7,8]. In an ongoing multi-omic analysis of 
archived frozen mucosal samples of tumor and adjacent nontumor regions of CRC 
surgical resection specimens (2010-2020), we discovered that a major change was made 
in the preoperative antibiotic protocol as of January 2017. Prior to that time, the 
standard of care was to administer only intravenous antibiotics within 30 min of 
incision, and only a few CRC resection patients were placed on short-term oral 
antibiotics within a month of the surgery, for various clinical indications. However, 
after this time, the standard operating protocol for preoperative antibiotics was to 
prescribe outpatient oral neomycin and metronidazole 24 h in advance of the 
procedure, in order to reduce surgical site infections[9-11]. The use of antibiotics can shift 
the microbiome depending on the dosage and duration of the antibiotic exposure. 
Several studies have shown that tumorigenesis and tumor growth can be attenuated 
with different antibiotic cocktails and timing of antibiotic exposure with duration of 
inflammation. On the other hand, early exposure to antibiotics increased risk of CRC 
and interfered with chemotherapy efficacies due to microbial dysbiosis[5]. With these 
conflicting findings and this change in protocol at our institution, it allowed us to 
examine how differential use of antibiotics, along with other clinical/demographic 
factors influences integrative, multi-omic analyses of CRC.

The five following variables were included in the analysis of the microbiome and 
host transcriptome datasets generated in this pilot study: (1) Tumor histology (tumor 
vs nontumor); (2) Preoperative antibiotics (yes/no); (3) Laterality of CRC location (left 
vs right); (4) Diabetes mellitus (yes/no); and (5) Black/African Ancestry (AA) race 
(yes/no). The rationale for comparing tumor vs nontumor histology is based on 
multiple previous reports of differences between tumor and nontumor regions of CRC 
resection specimens[1,12,13]. Since antibiotics clearly have an effect on the human 
microbiome[14], it was crucial to assess the impact of the change in antibiotic protocol 
on the metagenomic and transcriptomic data, before making the commitment to 
expand the pilot study by analyzing more CRC resection samples. Because molecular 
differences have been previously reported right sided and left sided CRCs[15], laterality 
of CRC location was included in the analysis.

The original targets of this pilot discovery and functional study were two biological 
CRC risk factors: (1) Diabetes mellitus; and (2) Black/AA race. Diabetes mellitus has 
been associated with increased CRC risk and poorer survival[16,17], and has been 
implicated in CRC pathogenesis[18]. Several studies have described alterations in the 
fecal microbiome of patients with diabetes mellitus compared to those without 
diabetes mellitus in the absence of a CRC diagnosis[19-21]. Transcriptomic profiling of 
CRC resection tumor and adjacent nontumor samples suggested evidence of diabetic 
“field cancerization” of the nontumor region[22].

CRC incidence and mortality has been persistently higher in Black/AA compared to 
all other races in the United States[23,24]. Paredes et al[25] recently reported that 
transcriptomic profiling of Black/AA compared to White/European Ancestry (EA) 
revealed reduced immune related gene expression in tumor samples and plasma 
cytokine levels collected from Black/AA CRC patients. We report here the results of 
this pilot study to investigate the effects of the tumor histology, preoperative 
antibiotics, laterality of CRC location, diabetes mellitus status and Black/AA race on 
microbiome and human transcriptomic data of CRC patients.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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MATERIALS AND METHODS
Patient samples
Sequencing analysis of 51 pairs of tumor and nontumor frozen mucosal samples 
collected from 50 treatment-naïve sporadic CRC subjects (excluding samples collected 
after neoadjuvant therapy), archived in the Stony Brook Cancer Center Tissue 
Analytics Shared Resource, was approved by the Stony Brook Institutional Review 
Board (IRB, IRB2019-00682) and by the Cold Spring Harbor Laboratory IRB (IRB 
1467912).  All the archived samples were collected prospectively from CRC patients 
scheduled between 2010-2020 for surgical resection for clinical care, who had given 
their informed consent for banking of surgical remnant for possible genomic 
sequencing, collection of longitudinal clinical metadata and access to clinical formalin-
fixed paraffin embedded (FFPE) tissues for possible genomic sequencing under a 
protocol approved by the Stony Brook University IRB (No. 163184). CRC samples 
collected from individuals diagnosed with hereditary CRC syndromes or 
inflammatory bowel diseases and individuals who received neoadjuvant treatment, 
were excluded from this analysis. The clinical metadata included age at the time of 
tissue collection, self-identified race and ethnicity, family history of a first degree 
relative with CRC, tumor location (right, cecum-transverse colon; left, splenic flexure-
rectum), pathologic cancer stage, smoking status (current, past, never), body mass 
index, diabetes mellitus status, preoperative antibiotics within a month of surgery 
(yes/no), cancer stage (0, 1, 2, 3, 4). Participants who enrolled in the study after 2017 
were automatically assumed to be exposed to preoperative antibiotics as the new 
protocol prescribes oral neomycin (1 g × 3 doses) and metronidazole (500 mg × 3 
doses) to the patient 24 h prior to surgery. DNA and RNA were extracted from the 
archived frozen tissues using the Qiagen Allprep DNA/RNA/miRNA kits (Qiagen, 
Hilden, Germany) according to the manufacturer’s protocol. DNA and RNA were 
extracted from 5 µm sections of FFPE tumor and non-tumor samples using the Qiagen 
Allprep DNA/RNA FFPE (Qiagen, Hilden, Germany) kits according to the 
manufacturer’ protocol except that xylene was used to de-paraffinize the FFPE 
samples.

16S rRNA gene sequencing
The 16S rRNA libraries were constructed by generating broad-range polymerase chain 
reaction (PCR) amplicons using barcoded primers that target the V3V4 variable region 
of the 16S rRNA gene: Primers 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R 
(5’-GGACTACHVGGGTWTCTAAT-3’), as previously described from 51 paired tumor 
and nontumor DNA samples[22]. Illumina paired-end sequencing was performed on 
the Miseq platform with versions v2.4 of the Miseq Control Software and of MiSeq 
Reporter, using a 600-cycle version 3 reagent kit. Illumina Miseq paired-end reads 
were aligned to human reference genome hg19 with bowtie2 and matching sequences 
were discarded as previously described[25]. All de-multiplexed, paired-end 16S rRNA 
gene sequence files along with associated metadata were deposited into the Gene 
Expression Omnibus under project accession number GSE165255. The paired end 
reads were assembled, aligned and classified using the SINA/SILVA classifier as 
previously described[26-28]. Operational taxonomic units (OTUs) were produced by 
binning sequences with identical taxonomic assignments.

Taqman quantitative PCR analysis of mucosal genomic DNA
Real time Taqman PCR analyses were conducted using established specific primers 
and probe for the F. nucleatum nusG gene[29,30] and broad range primers and probe 
bacterial 16S rRNA gene[31] shown in Table 1. The Taqman primers and probe for the 
human solute carrier family 21 or SLCO2A1 also termed prostaglandin cotransporter 
or PGT gene[29], a single copy autosomal gene located on human chromosome 3, were 
from Taqman assay ID Hs00194554_m1 (Thermo Fisher Scientific, Waltham, MA, 
United States). The probes and primers were custom ordered as two separate Taqman 
assay kits (Thermo Fisher Scientific, Waltham, MA, United States). The first kit 
combined the F. nucleatum NUS gene assay (FAM probe) with the total bacterial 16S 
rRNA gene assay (VIC probe). The second kit combined the F. nucleatum nus gene 
(FAM probe) with the human SLCO2A1 gene assay (VIC probe). The PCR assays were 
carried out in triplicate with 80 hg of sample DNA in 20 µL in each well. The thermal 
conditions were 10 min at 95 °C and 45 cycles of 15 s at 95 °C and 1 min at 60 °C. F. 
nucleatum subsp. nucleatum Knorr ATCC 25586 genomic DNA (gDNA) purchased from 
ATCC (Manassas, VA, United States) and a gene block was synthesized using the 
predicted PCR amplicon from the F. nucleatum subsp. animalis 4_8 genome reference 
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Table 1 Specific Taqman polymerase chain reaction primer and probe sequences for the Fusobacterium nucleatum nusG gene and 
broad range Taqman primer and probe sequences for the bacterial 16S rRNA gene

Target gene Sequence

F. nucleatum nusG gene forward primer[29] 5’-CAACCATTACTTTAACTCTACCATGTTCA-3’

F. nucleatum nusG gene reverse primer[29] 5’-GTTGACTTTACAGAAGGAGATTATGTAAAAATC-3’

F. nucleatum nusG gene probe[30] 5’-TCAGCAACTTGTCCTTCTTGATCTTTAAATGAACC-3’

Broad range 16S rRNA gene forward primer[31] 5’-TCCTACGGGAGGCAGCAGT-3’

Broad range 16S rRNA gene reverse primer[31] 5’- GGACTACCAGGGTATCTAATCCTGTT-3’

Broad range 16S rRNA gene probe[31] 5’-CGTATTACCGCGGCTGCTGGCAC-3’

F. nucleatum: Fusobacterium nucleatum.

sequence for the Human Microbiome Project (Assembly: GCA_000400875, Integrated 
DNA Technologies, Coralville, IA, United States) were used as positive controls. The 
80 hg of DNA template was used in each 20 µL reaction and with either F. nucleatum 
(FAM probe)/SLCO2A1 (VIC probe) or the F. nucleatum (FAM probe) broad-range 16S 
rRNA gene (VIC probe) in triplicate.

RNA sequence analysis
RNA-sequencing was conducted on a subset of tumor and nontumor RNA samples 
with RIN scores ≥ 6 at the CSHL Cancer Center Sequencing Technologies and Analysis 
Shared Resource and unpaired tumor RNA samples at the New York Genome Center. 
At both sequencing centers, the RNA sequence libraries were prepared with the Kapa 
RNA kit with RiboErase (Roche Sequencing and Life Science Kapa Biosystems, 
Wilmington, MA, United States) according to the manufacturer’s protocol and 
Illumina 125 bp PE sequencing was conducted on HiSeq2500 instruments with a 
targeted depth of 20 million. The sequences were aligned using Salmon in Patro 
et al[32]. The sequences were deposited in NCBI's Gene Expression Omnibus database 
with accession number GSE165255.

Statistical analysis
Statistical analysis was performed utilizing the Biostatistics and Bioinformatics Shared 
Resource at the Stony Brook University Cancer Center. Patient demographics were 
compared between the subset of samples analyzed and the total set of samples 
archived in the Stony Brook Cancer Center Tissue Analytics Shared Resource (2010-
2020) using either Wilcoxon rank sum test for continuous variables, and chi-square test 
using GraphPad Prism. Alpha diversity indices [e.g., Sobs, Shannon complexity (H), 
Shannon Evenness (H/Hmax)] were calculated on samples yielding a total OTU count 
inferred through 1000 replicate resamplings using Explicet[33]. Linear mixed models 
were used to compare alpha-diversity (Sobs, ShannonH, ShannonE) between different 
groups of histology, antibiotics, location, diabetes and Black/AA race. Log-
transformation was applied if the normality assumption was not satisfied. Compound 
symmetry (CS) covariance structure was utilized to model the correlation among 
measurements from the same patient. β-diversity was assessed by calculating distance 
matrices based on the Morisita-Horn dissimilarity index and visualized by principal 
coordinate analysis (PCoA). A PERMANOVA analysis[34] was performed to assess the 
statistical significance of differences in β-diversity with the following five variables: (1) 
Tumor histology (tumor/nontumor); (2) Pre-operative antibiotics (yes/no); (3) 
Anatomic location (left/right); (4) Diabetes mellitus (yes/no); and (5) Black/AA race 
(yes/no). These analyses were conducted using the vegan 2.56 package of R 3.6.1, and 
the default setting for number of permutations (n = 999). To compare relative 
abundance of each OTU between tumor vs nontumor, generalized linear mixed model 
(GLMM) or generalized estimating equation (GEE) models were used by using the 
actual counts of each OTU as the outcomes, which were assumed to follow a negative 
binomial distribution[26]. CS covariance structure was utilized to model the correlation 
among measurements from the same patient. The log overall count for each individual 
in each group was considered as an offset in order to normalize for differences in 
sequencing depth of coverage. When models had a fitting issue because of excessive 0 
counts, all sample’s counts+1 were used as the outcome and log (overall count+1) was 
used as the offset. The two-way interaction term between tumor histology 
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(tumor/nontumor) and preoperative antibiotics (yes/no) was first added in each 
model to estimate the difference between tumor vs normal within patients with or 
without pre-operative antibiotics. For OTUs that had model fitting difficulty and 
OTUs with non-significant interaction, the two-way interaction term was removed and 
the aforementioned models were fit again. Univariate linear mixed models were used 
to estimate the coefficient of correlation and the P values for the log transformed 
relative abundances of selected OTUs. The P values were based on the t-test for 
GLMM and the Z-test for GEE. The Bonferroni adjusted P values < 0.05 were 
considered as statistically significant. These analyses were performed using SAS 9.4 
(SAS Institute Inc., Cary, NC, United States).

Differentially expressed genes (DEGs) (log2 fold change ≥ 1, adjusted P value < 0.05 
were identified using DESeq2[35] for the five groups: (1) Tumor histology (tumor vs 
nontumor); (2) Preoperative antibiotics within a month of the surgery (yes/no); (3) 
Anatomic location of the CRC and adjacent nontumor region (left vs right); (4) 
Diabetes mellitus status (yes/no); and (5) Black/AA self-declared race (yes/no). For 
the latter four variables, the tumor and nontumor samples were analyzed separately. 
The DEG lists were also deposited in NCBI's Gene Expression Omnibus database with 
accession number GSE165255.

RESULTS
Patient characteristics of samples analyzed
The characteristics of the patients for the subset of samples analyzed compared to that 
of the total collection of archived sporadic CRC samples (2010-2020) are shown in 
Table 2. Since the samples in the subset were originally selected to provide Black/AA 
samples and “matched” White/EA samples for another transcriptomic profiling 
performed at a separate sequencing facility[25], there was significantly higher 
representation of Black/AA samples in this pilot study. Left-sided CRCs were also 
more highly represented in the subset compared to the overall collection. Because 
most of the subset samples were collected prior to January 2017, (when the protocol 
adding preoperative oral antibiotic prophylaxis was first introduced), there was a 
lower representation of samples collected from patients who had preoperative 
antibiotic treatment compared to the total sample collection. Of the 18 diabetic 
patients, only one had type 1 diabetes mellitus and the remaining 17 patients were 
diagnosed with type 2 diabetes mellitus.

Colonic mucosal microbiome analysis
We generated 5706758 16S rRNA gene sequences from 51 pairs of CRC tumor and 
nontumor samples. After excluding sequence libraries with total counts < 1000, the 
remaining 89 sequence libraries (41 tumor, 48 nontumor, 26 preoperative antibiotics, 
63 no preoperative antibiotics, 55 left, 34 right, 32 diabetic, 57 not diabetic, 21 
Black/AA, 68 not Black/AA) had an average sequencing depth of 64752 (minimum 
1032; maximum 248838). As shown in Table 3, no significant differences were detected 
in any of the three alpha diversity indices between the following five groups: (1) 
Preoperative antibiotics (yes/no); (2) Tumor vs nontumor histology; (3) Anatomic 
location of sample (left vs right); (4) Diabetes mellitus status (yes/no), and (5) 
Black/AA race vs not Black/AA race. Exploratory PERMANOVA using the Morasita 
Horn index for β-diversity was performed with the same five groups (see Table 4). 
Tumor histology and preoperative antibiotics demonstrated significant F statistics, but 
anatomic location, diabetes and Black/AA race did not reach significance. The PCoA 
comparisons using these indices for these five groups are displayed in Figure 1.

Because PERMANOVA identified tumor histology and preoperative antibiotics as 
significant, fitted linear mixed models were used to measure the effect of preoperative 
antibiotics and tumor histology along with first order preoperative antibiotics*tumor 
histology interactions on the relative abundances of individual genus-level taxa. For 
this analysis, we included those OTUs with average relative abundances greater than 
0.001% and that were observed in at least 25% of the samples. Because of model 
convergence issues, 4 OTUs (Firmicutes/Eubacterium, Firmicutes/Acidaminococcus, 
Proteobacteria/Neisseriaceae, Proteobacteria/Desulfovibrio) were also excluded because of 
failure of their models to converge. Of the 106 OTUs included in the relative 
abundance regression analysis, 14 exhibited significant first order tumor 
histology*preoperative antibiotics interaction terms (see Table 5). The estimated 
differences in tumor vs nontumor samples were analyzed separately for those 14 OTUs 
depending on whether the patients were prescribed additional preoperative 
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Table 2 Comparison of patient characteristics between the subset of sporadic colorectal cancer samples analyzed with that of the total 
collection of archived samples in the Stony Brook Cancer Center Tissue Analytics Shared Resource (2010-2020)

Subset analyzed, n = 51 Total collection, n = 190 P value

Age (yr) ± IQR 62 ± 20 65 ± 20 0.4329

Male sex (%) 30 (58.8) 115 (60.5) 0.8254

Race (%) 0.0295

White 38 (74.5) 163 (85.8)

Black 11 (21.6) 14 (7.4)

Asian 1 (2.0) 6 (3.2)

Other 1 (1.9) 7 (3.7)

Hispanic ethnicity (%) 6 (11.8) 22 (11.6) 0.9707

Family history 1st degree relative (%) 7 (13.7) 34 (17.9) 0.4817

BMI (kg/m2) 27.8 ± 8 28.2 ± 8 0.5683

Diabetes mellitus (%) 18 (35.3) 55 (28.9) 0.4853

Smoking (%) 0.1103

Current 7 (13.7) 10 (5.3)

Past 21 (41.2) 88 (46.3)

Never 23 (45.1) 92 (48.4)

Anatomic location (%) 0.0210

Left 31 (60.8) 81 (42.6)

Right 20 (39.2) 109 (57.4)

Cancer stage (%) 0.4578

Stage 0 1 (2.0) 6 (3.2)

Stage 1 9 (17.6) 27 (14.2)

Stage 2 14 (27.4) 63 (33.2)

Stage 3 25 (49.0) 75 (39.5)

Stage 4 2 (3.9) 19 (15.8)

Preoperative antibiotics (%) 16 (31.4) 91 (47.9) 0.0350

IQR: Inter-quartile range; BMI: Body mass index.

antibiotics. One of 14 OTUs, Fusobacteria/Leptotrichia, was associated with increased 
relative abundance in tumor vs nontumor, regardless of preoperative antibiotic 
exposure (adjusted P < 0.0001 after Bonferroni correction = unadjusted P value*28 with 
antibiotics, and adjusted P = 0.01 after Bonferroni correction with no antibiotics). Of 
the 92 OTUs without significant first order preoperative antibiotic*tumor histology 
interaction terms, 19 OTUs, including Fusobacterium spp. demonstrated significant 
differences in tumor vs nontumor samples with adjusted P < 0.05 after Bonferroni 
correction (see Table 6).

Taqman quantitative PCR confirmation of increased F. nucleatum relative 
abundance in tumor vs non-tumor samples
F. nucleatum (both subspecies nucleatum and subspecies animalis) were enumerated in 
tissues specimens by quantitative PCR (qPCR) of the nusG gene, while total bacterial 
load was assayed by broad-range 16S rRNA gene qPCR. The human SLCOA2 gene 
was assayed in parallel in order to normalize results. QPCR assays were performed on 
37 paired tumor/nontumor mucosal gDNA samples, (10 pairs, +preoperative 
antibiotics; 27 pairs, -preoperative antibiotics). DNA samples were depleted in 7 tumor 
samples and 1 nontumor samples of the 51 paired tumor/nontumor samples and were 
therefore excluded from the analysis. F. nucleatum nusG was undetectable 
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Table 3 Estimated differences in alpha diversity indices between the following groups

Sobs ShannonH ShannonE
Variable

Estimate (95%CI) P value Estimate (95%CI) P value Estimate (95%CI) P value

Tumor vs nontumor -1.34 (-4.04, 1.35) 0.32 -0.05 (-0.25, 0.15) 0.61 -0.004 (-0.04, 0.03) 0.77

Pre-op antibiotics vs none 2.93 (-3.51, 9.37) 0.36 0.27 (-0.12, 0.66) 0.17 0.04 (-0.02, 0.09) 0.20

Left vs right 2.83 (-2.44, 8.10) 0.29 -0.10 (-0.43, 0.23) 0.53 -0.03 (-0.08, 0.02) 0.26

Diabetic vs nondiabetic 3.73 (-2.30, 9.75) 0.22 0.26 (-0.11, 0.62) 0.16 0.03 (-0.02, 0.09) 0.22

Black/AA race vs not Black/AA race 2.70 (-4.43, 9.83) 0.45 0.09 (-0.34, 0.52) 0.69 0.01 (-0.06, 0.07) 0.80

Linear mixed models were used to estimate differences. The P values are based on t-tests from the linear mixed models. CI: Confidence interval; AA: 
African Ancestry.

Table 4 PERMANOVA results for the following groups

Variable P value

Tumor vs nontumor 0.002

Pre-operative antibiotics vs no preoperative antibiotics 0.001

Left vs right anatomic location 0.367

Diabetes mellitus vs not diabetic 0.061

Black/AA race vs not Black/AA race 0.258

AA: African Ancestry.

Table 5 Operational taxonomic units (genus level) with significant tumor histology*pre-operative antibiotics interaction terms

OTU (genus level)
Actinobacteria/Gardnerella

Actinobacteria/Eggerthella

Firmicutes/Bacilli/unspecified

Firmicutes/Staphylococcus

Firmicutes/Parvimonas

Firmicutes/Anaerostipes

Firmicutes/Howardella

Firmicutes/Solobacterium

Fusobacteria/Fusobacteriales/unspecified

Fusobacteria/Leptotrichia

Proteobacteria/Sutterella

Proteobacteria/Ralstonia

Proteobacteria/Enterobacter

Proteobacteria/Haemophilus

OTU: Operational taxonomic unit.

(undetermined) in the qPCR assays for at least one of the remaining 7 paired tumor 
and normal samples, and were also excluded from analysis. Both the F. nucleatum 
subspecies nucleatum and subspecies animalis were detected under these assay 
conditions. The mean threshold cycles (Ct) for the F. nucleatum nusG, broad-range 16S 
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Table 6 The operational taxonomic units (genus level) without significant tumor histology*preoperative antibiotics interaction terms, 
with significant (P < 0.05 after Bonferroni correction) estimated tumor/nontumor ratios of relative abundance and 95% confidence 
intervals

OTU Ratio (95%CI) P value

Increased in tumor

Firmicutes/Carnobacteriaceae/unspecified 22.21 (7.57, 65.21) < 0.0001

Firmicutes/ Peptoniphilus 2.13 (1.45, 3.13) 0.0042

Firmicutes/Catenibacterium 3.89 (1.79, 8.46) 0.0206

Firmicutes/Dialister 2.05 (1.48, 2.83) 0.0005

Fusobacteria/Fusobacterium 5.30 (2.82, 9.97) < 0.0001

Proteobacteria/Campylobacter 7.40 (3.30, 16.62) < 0.0001

Proteobacteria/Citrobacter 3.51 (2.12, 5.81) < 0.0001

Decreased in tumor

Actinobacteria/Coriobacteriaceae/unspecified 0.45 (0.32, 0.64) 0.0003

Bacteroidetes/unspecified 0.49 (0.32, 0.74) 0.0240

Bacteroidetes/S24-7 0.50 (0.36, 0.70) 0.0016

Cyanobacteria/Chloroplast 0.44 (0.31, 0.64) 0.0021

Firmicutes/Lachnospiraceae/unspecified 0.76 (0.68, 0.84) < 0.0001

Firmicutes/Marvinbryantia 0.39 (0.24, 0.65) 0.0113

Firmicutes/vadinBB60 0.50 (0.36, 0.70) 0.0052

Firmicutes/Turicibacter 0.44 (0.30, 0.66) 0.0074

Firmicutes/Allobaculum 0.43 (0.29, 0.62) 0.0002

Proteobacteria/Rickettsiales/mitochondria 0.32 (0.19, 0.53) 0.0003

Tenericutes/Anaeroplasma 0.42 (0.28, 0.62) 0.0004

Verrucomicrobia/Akkermansia 0.58 (0.42, 0.80) 0.0350

OTU: Operational taxonomic unit; CI: Confidence interval.

rRNA and human SLCOA2 assays are shown in Figure 2A-C . Pairwise comparisons of 
the mean tumor F. nucleatum nusG gene Ct ± SD with nontumor samples (32.2 ± 4.8 vs 
34.0 ± 4.2, P = 0.0125), confirmed that there was a higher abundance of F. nucleatum in 
tumor samples compared with their paired adjacent nontumor samples. The mean 16S 
rRNA gene Ct was significantly higher in the (+)antibiotics group compared with the 
(-)antibiotics group (24.8 ± 3.7 vs 22.3 ± 3.4, P = 0.0085, missing 1 tumor (+)antibiotics 
and 1 tumor (-)antibiotics Ct value). This suggests that the preoperative antibiotics 
significantly reduced mucosal associated bacteria load.  The difference in the mean F. 
nucleatum Ct between the (+)antibiotics group and the (-)antibiotics group (34.1 ± 3.7 vs 
32.7 ± 4.8, P = 0.24) did not reach significance. The difference in the mean human 
SLCOA2 Ct between the (+)antibiotics group and the (-)antibiotics group also did not 
reach significance (34.5 ± 0.8 vs 34.4 ± 2.3, P = 0.74, missing 2 nontumor (-)antibiotics Ct 
values).

In this current study the detection rates for the detection of F. nucleatum nusG gene 
were 84% and 93% respectively for the frozen tumor and nontumor samples. Of note, 
the Taqman probe used in the current study differed from the probe used in the 
previous FFPE studies, in that the probe in the current study did not overlap the 
reverse primer. The mean Ct values for each of the three qPCR assays performed on 
paired FFPE tumor/nontumor samples were compared with the Ct values obtained on 
the parallel pairs of frozen tumor/nontumor samples collected from the same two 
CRC patients (see Table 7). The broad range 16S rRNA gene Ct values were 
significantly higher in the FFPE samples compared to the paired frozen mucosal 
samples (30.6 ± 1.6 vs 22.7 ± 1.7, P = 0.0034, n = 4), despite using 80 hg of gDNA in all 
assays. The differences in the mean F. nucleatum nusG Ct values did not reach 
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Table 7 Comparison of the mean quantitative polymerase chain reaction mean threshold cycles ± SD between genomic DNA extracted 
from paired frozen and formalin-fixed paraffin embedded samples

F. nucleatum nusG 16S rRNA Human SLCO2A1

Frozen FFPE Frozen FFPE Frozen FFPE

Tumor A 25.9 ± 1.2 35.4 ± 0.1 21.8 ± 0.1 31.4 ± 0.1 32.6 ± 2.5 39.3 ± 0.6

Nontumor A 37.2 ± 0.6 39.9/ND 22.2 ± 0.1 31.7 ± 0.3 34.8 ± 0.5 ND

Tumor B 26.0 ± 1.0 27.5 ± 1.0 21.6 ± 0.2 28.3 ± 0.1 33.2 ± 1.0 32.5 ± 1.3

Nontumor B 31.5 ± 1.4 35.1 ± 0.7 25.2 ± 0.1 31.2 ± 0.6 34.6 ± 0.9 38.2 ± 0.1

F. nucleatum: Fusobacterium nucleatum; FFPE: Formalin-fixed paraffin embedded; ND: Not detected.

significance, but one of the FFPE samples bordered on being not detectable (ND). The 
differences in the mean human SLCOA2 Ct values did not reach significance although 
one of the FFPE samples was ND.

Effect of tumor histology and preoperative antibiotics on human RNA-sequencing 
data
Since significant effects of tumor histology and preoperative antibiotics were noted in 
the microbiome analysis, we were particularly interested in the potential effect of pre-
operative antibiotics on the human transcriptomic profiles generated in parallel. RNA-
seq data was obtained from CSHL for 33 paired tumor/nontumor RNA samples and 4 
unpaired tumor RNA samples at CSHL. RNA-sequencing was completed on an 
additional 11 unpaired tumor RNA samples at the NYGC sequencing center. PCoA 
demonstrated a clear separation between the tumor and nontumor transcriptomic 
profiles (see Figure 3). Out of a total of 31052 genes, 1235 DEGs were decreased in 
tumor (n = 48) vs nontumor (n = 33, Log2 fold change ≤ -1, adjusted P value < 0.05) and 
1229 DEGs were increased.

No clear separation was observed on PCoA for the remaining four variables: Pre-
operative antibiotics (see Figure 3), left vs right CRC location (not displayed), diabetic 
vs not diabetic (not displayed), or Black/AA race vs not Black/AA race (not 
displayed). DESeq2 analyses were conducted on the tumor samples separately from 
the nontumor samples for these four variables. For the (+)antibiotics (n = 15) vs the (-
)antibiotics (n = 33) group of tumor samples, 30 DEGs were decreased and 188 DEGs 
were increased. For the (+)antibiotics (n = 13) vs (-)antibiotics (n = 20) nontumor 
samples, no DEGs were decreased and 32 DEGs were increased. Six upregulated DEGs 
were common with the same polarities in both tumor and nontumor (+)antibiotics/(-
)antibiotics DEG lists (see Table 8).

For the left (n = 30) vs right (n = 18) CRC location groups of tumor samples, 12 DEGs 
were decreased and 7 DEGs were increased, and for the left (n = 18) vs right (n = 15) 
CRC location groups of nontumor samples, 72 DEGs were decreased and 36 DEGs 
were increased. However, no DEGs were common to both tumor and nontumor left vs 
right DEG lists. For the diabetic (n = 18) vs nondiabetic (n = 30) groups of tumor 
samples, 52 DEGs and 9 DEGs were increased, and for the diabetic (n = 12) vs 
nondiabetic (n = 21) groups of nontumor samples, 2 DEGs were decreased and 6 DEGs 
were increased. No DEGs were common to both tumor and nontumor diabetic/ 
nondiabetic DEG lists.

In the analysis of the Black/AA (n = 11) vs not Black/AA (n = 37) groups of tumor 
samples, 5 DEGs were decreased and 11 DEGs were increased in Black/AA samples. 
For the Black/AA (n = 10) vs not Black/AA (n = 33) groups of nontumor samples, 42 
DEGs were decreased and 5 DEGs were increased in Black/AA samples. Three DEGs 
were common to both tumor and nontumor Black/AA vs not Black/AA groups (see 
Table 9).

DISCUSSION
The results of this pilot study illustrate the need for thorough curation of the clinical 
metadata linked to archived gastrointestinal resection specimens for discovery and 
functional studies on CRC pathophysiology. Even after prospectively interviewing 
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Table 8 Differentially expressed genes, (+)antibiotics vs (-)antibiotics, common to both tumor and nontumor samples

Gene (increased) Symbol Tumor log2 fold change Tumor adjusted P value Nontumor log2 fold change Nontumor adjusted P value

ENSG00000023902 PLEKHO1 1.127 0.0461 1.694 0.0130

ENSG00000253304 TMEM200B 1.326 0.0445 1.719 0.0481

ENSG00000187608 ISG15 1.534 0.0301 2.202 0.0102

ENSG00000185745 IFIT1 1.708 0.0243 2.245 0.0176

ENSG00000109705 NKX3-2 2.082 0.0476 2.859 0.0264

ENSG00000145936 KCNMB1 2.011 0.0480 2.874 0.0176

Table 9 Differentially expressed genes, Black/African Ancestry vs not Black/African Ancestry, common to both tumor and nontumor 
samples

Gene Symbol Tumor log2 fold 
change

Tumor adjusted P 
value

Nontumor log2 fold 
change

Nontumor adjusted P 
value

Decreased

ENSG00000155959 VBP1 -8.217 5.26 × 10-10 -8.318 5.26 × 10-10

ENSG00000102109 PCSK1N -5.965 0.0050 -7.175 0.0004

Increased

ENSG00000225972 MTND1P23 4.0913 5.67 × 10-7 3.801 0.0001

research subjects for antibiotic exposure prior to surgical resection and carefully 
reviewing the electronic medical record for prescribed medications, it was difficult to 
assess this potentially important confounding variable. Further discussion with the 
colorectal surgery service revealed that a major change in pre-operative antibiotics was 
established as standard of care as of January 2017 to reduce site infections. This change 
in protocol was made, because there was accumulating evidence that the addition of 
short term perioperative oral antibiotics reduced intra-abdominal surgical site 
infections[9-11]. The reduced mucosal associated bacterial abundance based on our 16S 
rRNA broad range PCR assays, may contribute to the reduced incidence of 
postoperative intra-abdominal infections. Our results indicate that there is a 
measurable effect not only on the host mucosal-associated microbial communities but 
also on the host colonic mucosal transcriptomic profiles. Reviewing the literature, 
while some studies clearly excluded CRC subjects who had received additional 
preoperative antibiotics[13], it is not clear in a number of published reports, whether 
exposure to preoperative antibiotics was taken into consideration in the analysis. 
Though the effect of the antibiotics is transient, and the baseline microbiome is shown 
to recover within 1.5 mo with the most potent antibiotics[36], the impact of preoperative 
antibiotics has a measurable effect on the mucosal transcriptomic profiles generated 
from the resection specimens.

A major limitation of this pilot study is the small number of subjects who were 
analyzed and potential selection bias with respect to the five variables included in the 
analyses. We detected significant differences in microbial β-diversity between tumor 
vs nontumor histology groups and (+)antibiotics vs (-)antibiotics. However, failure to 
detect differences with respect to CRC location, diabetes or Black/AA race could be 
because this study was underpowered to detect a significant effect of these three 
variables. Despite heterogeneity in pre-operative antibiotic protocols, qPCR analysis 
confirmed previous reports showing that F. nucleatum abundance was increased in 
tumor compared to paired nontumor samples[29,37-41]. Lower detection rates of F. 
nucleatum nusG gene by PCR were previously reported on archived FFPE CRC tissues, 
ranging from 13%-45%[37,38] while our study reports 84% and 93% detection rates for 
tumor and non-tumor fresh frozen regions respectively. Furthermore, F. nucleatum has 
been detected in advanced adenomas but not in early adenomas, which are precursor 
stages along the adenoma-carcinoma sequence[39,41]. F. nucleatum abundance has been 
associated with poor prognosis and resistance to chemotherapy[37,41,42]. In xenograft 
models of human CRC, antibiotic treatment for three weeks reduced Fusobacterium 
load, cancer cell proliferation and overall tumor growth, however treatment for only 



Malik SA et al. Preoperative antibiotics impact CRC resection omics

WJG https://www.wjgnet.com 1476 April 14, 2021 Volume 27 Issue 14

Figure 1 Principal coordinate analysis plots for Morita Horn dissimilarity indices. A: Preoperative antibiotic treatment (yes/no); B: Tumor vs nontumor 
histology; C: Anatomic location of sample (left vs right); D: Diabetes mellitus status (yes/no); E: Black/African Ancestry race (yes/no). The filled circles and 
surrounding ovals indicate the mean ± SD centroid for each group.

24 h had no significant effect[38]. There has been one report that F. nucleatum abundance 
is higher in colonic effluents collected from Black/AA male veterans compared to 
White/EA male veterans undergoing screening colonoscopy[43].

Despite the small sample size and variable exposure to preoperative antibiotics, it 
was still possible to use the data for discovery studies. Expression of the von Hippel-
Landau binding protein 1 or VBP1 in Black/AA CRC tumors (n = 64) was observed to 
be significantly lower compared to White/EA CRC tumors (n = 284, P = 0.026) in The 
Cancer Genome Atlas (TCGA) database and in a recently published transcriptomic 
profiling study[21]. The polarity observed for differences in proprotein convertase 
subtilisin/kexin type 1 inhibitor or PCSK1N Black/AA vs White/EA CRC tumors in 
the TCGA database however, was opposite to what was observed in this pilot study. 
The MTND1P23 gene was not present in the TCGA database. We are particularly 
intrigued by the results indicating reduced VBP1 expression in Black/AA tumor vs not 
Black/AA tumor and Black/AA nontumor vs not Black/AA nontumor, because of a 
recent report that VBP1 suppresses HIF-1α-induced epithelial�mesenchymal 
transition in vitro and tumor metastasis in vivo[44].

Given that the new preoperative antibiotic protocol adopted at this medical center is 
24 h of oral antibiotics in addition to current IV antibiotics administered within 30 min 
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Figure 2 Scatter plots of threshold cycle values. A: Fusobacterium nucleatum nusG gene; B: Broad range 16S rRNA gene; C: Human SLCOA2 gene 
quantitative polymerase chain reaction assays. F. nucleatum: Fusobacterium nucleatum.

Figure 3  Principal coordinate analysis of human colorectal cancer RNA-seq data with respect to tumor histology (tumor vs nontumor) 
and preoperative antibiotics (yes/no).

of incision for colorectal resections, a relevant question is how to further pursue the 
findings of this initial discovery and functional study. Going forward, probably the 
best solution is to perform targeted PCR assays on archived FFPE CRC and advanced 
adenoma tissues collected prior to the change in preoperative antibiotics protocol in 
order to sufficiently power the analysis of evaluating the effect of laterality, diabetes 
status and race on microbiome and transcriptomic data of CRC patients. In particular, 
utilizing the targeted PCR to detect Fusobacterium, it can possibly be used as a clinical 
prognostic biomarker for diabetic CRC patients. We also plan to shift our prospective 
collection of colonic tissues away from surgical resections to prospective collection of 
colonoscopic biopsy samples.

CONCLUSION
The recent addition of preoperative oral antibiotics 24 h to the standard administration 
of IV antibiotics within 30 min of incision has a measurable effect on colonic mucosal 
gene expression in addition to its effect on the amount and composition of mucosal 
associated bacteria in the resected specimen. Despite heterogeneity in the preoperative 
antibiotics in this study cohort, increased abundance of F. nucleatum, was observed in 
tumor vs nontumor regions of the resected specimen. This study identified the VBP1 
gene, which may suppress CRC metastasis, as having decreased RNA expression in 



Malik SA et al. Preoperative antibiotics impact CRC resection omics

WJG https://www.wjgnet.com 1478 April 14, 2021 Volume 27 Issue 14

both tumor and nontumor regions of the resected specimen collected from Black/AA 
subjects.

ARTICLE HIGHLIGHTS
Research background
Imbalances in mucosal associated microbiota (dysbiosis) have been reported in human 
colorectal cancer (CRC). There are certain pathogens that are associated with CRC 
including increased abundances of Peptostreptococcus, Bacteroides fragilis, Fusobacterium 
nucleatum, and Escherichia coli and decreased abundances of Clostridium, 
Bifidobacterium, Faecalibacterium and Roseburia. The approach of collecting and 
integrating multi-omic host and microbiome data has been increasingly applied to 
discovery and functional studies of human gastrointestinal disease.

Research motivation
A major change was made in the preoperative antibiotic protocol at this hospital as of 
January 2017. Prior to that time, the standard of care was to administer only 
intravenous antibiotics within 30 min of incision, and only a few CRC resection 
patients were placed on short-term oral antibiotics within a month of the surgery, for 
various clinical indications. However, after this time, the standard operating protocol 
for preoperative antibiotics was to prescribe outpatient oral neomycin and 
metronidazole 24 h in advance of the procedure, in order to reduce surgical site 
infections. The use of antibiotics can shift the microbiome depending on the dosage 
and duration of the antibiotic exposure. Several studies have shown that 
tumorigenesis and tumor growth can be attenuated with different antibiotic cocktails 
and timing of antibiotic exposure with duration of inflammation. On the other hand, 
early exposure to antibiotics increased risk of CRC and interfered with chemotherapy 
efficacies due to microbial dysbiosis. With these conflicting findings and this change in 
protocol at our institution, it allowed us to examine how differential use of antibiotics, 
along with other clinical/demographic factors influences integrative, multi-omic 
analyses of CRC.

Research objectives
To examine the effect of the five following variables were included in the analysis of 
the microbiome and host transcriptome datasets generated in this pilot study: (1) 
Tumor histology (tumor vs nontumor); (2) Preoperative antibiotics (yes/no); (3) 
Laterality of CRC location (left vs right); (4) Diabetes mellitus (yes/no); and (5) 
Black/African Ancestry (AA) race (yes/no).

Research methods
Genomic DNA (gDNA) and RNA were extracted from prospectively collected 51 pairs 
of frozen sporadic CRC tumor and adjacent non-tumor mucosal samples from 50 CRC 
patients archived at a single medical center from 2010-2020. 16S rRNA gene 
sequencing (V3V4 region, paired end, 300 bp) and confirmatory quantitative 
polymerase chain reaction (PCR) assays were conducted on gDNA. RNA sequencing 
(IPE, 125 bp) was performed on parallel tumor and non-tumor RNA samples with 
RNA Integrity Numbers scores ≥ 6.

Research results
Exploratory PERMANOVA using the Morasita Horn index for β-diversity was 
performed with each of the five groups. Tumor vs nontumor histology (P = 0.002) and 
preoperative antibiotics (P = 0.001) demonstrated significant F statistics, but anatomic 
location, diabetes and Black/AA race did not reach significance. Differences in α-
diversity did not reach significance between the five groups. Fourteen taxa at the 
genus level exhibited significant tumor*preoperative antibiotic interactions. Of the 
taxa without tumor*preoperative antibiotic interactions, 7 taxa were significantly 
increased in tumor vs nontumor, including Fusobacterium, and 11 taxa were 
significantly decreased. The increase in Fusobacterium nucleatum (F. nucleatum) 
abundance was confirmed by Taqman PCR assays. Additional preoperative antibiotics 
significantly reduced mucosa-associated total bacterial abundance, which may 
contribute to reduction of intra-abdominal surgical site infections. Analysis of a subset 
of parallel formalin-fixed paraffin embedded (FFPE) samples retained polarity of the 
observed trends but impaired signal strength. Principal coordinate analysis of the 
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transcriptomic data showed a clear separation from tumor and nontumor samples. 
Consequently, differentially expressed genes were analyzed separately for the other 
four variables separately in tumor and nontumor samples. Differentially expressed 
genes common to the tumor and nontumor groups were identified for additional pre-
operative antibiotics and Black/AA race. The VBP1 gene, which may suppress CRC 
metastasis, exhibits reduced expression in Black/AA subjects compared to not 
Black/AA subjects.

Research conclusions
The recent addition of preoperative oral antibiotics 24 h to the standard administration 
of IV antibiotics within 30 min of incision has a measurable effect on colonic mucosal 
gene expression in addition to its effect on the amount and composition of mucosal 
associated bacteria in the resected specimen. Despite heterogeneity in the preoperative 
antibiotics in this study cohort, increased abundance of F. nucleatum, was observed in 
tumor vs nontumor regions of the resected specimen. This study identified the VBP1 
gene, which may suppress CRC metastasis, as having decreased RNA expression in 
both tumor and nontumor regions of the resected specimen collected from Black/AA 
subjects.

Research perspectives
Given that the addition of preoperative antibiotics to the standard administration of IV 
antibiotics within 30 min of incision has a measurable effect on colonic mucosal gene 
expression, in addition to its effect on the amount and composition of mucosa-
associated bacteria in the resected specimen, is being widely adopted as standard of 
care, we plan to perform targeted PCR assays on archived CRC FFPE tissues to 
confirm our results collected prior to when the change in protocol was adopted 
(January 2017). Because patients undergoing colonoscopy are not routinely prescribed 
antibiotics before the procedure, we also plan to shift prospective collection of colonic 
neoplastic and normal tissues away from surgical resections to prospective collection 
of research colonoscopic biopsy samples.
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