
1. Introduction
Enhancements of NO2 serve as a stark reminder of our society's global reliance on fossil-fuel combustion. 
NO2—which comprises ∼70% of NOX (NOX = NO + NO2) in urban airsheds (Valin et al., 2013)—primarily 
originates as a byproduct of fossil-fuel combustion, although there are some biogenic sources of NO2 such 
as lightning and microbes in soil (Jacob, 2000). NO2 is a toxic air pollutant, which can cause and exacerbate 
asthma in vulnerable populations (Achakulwisut et al., 2019; Anenberg et al., 2018) and lead to prema-
ture mortality (Burnett et al., 2004). NO2 can also react in the atmosphere to create tropospheric ozone 
(O3), which is noted for its damaging effects including premature aging of lungs (Broeckaert et al., 1999; 
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McConnell et al., 2002) and premature mortality (Bell, 2004; Bell et al., 2006). HNO3 often represents the 
final chemical state of NO2 in the atmosphere and when deposited, agitates the equilibrium of our ecosys-
tems due to its acidic properties (Burns et al., 2016). NO2 can also participate in a series of reactions to create 
particulate nitrate (NO3

−), a component of fine particulate matter less than 2.5 microns in diameter (PM2.5), 
which is the leading cause of mortality due to air pollution (Cohen et al., 2017).

There is a rich legacy of monitoring NO2 by remote sensing instruments (Burrows et al., 1999). NO2 can be 
observed from space because it has unique high-frequency spectral features within the 400–500 nm wave-
length region (Vandaele et al., 1998). The newest remote sensing spectrometer, Tropospheric Monitoring 
Instrument (TROPOMI) (VanGeffen et  al.,  2019; Veefkind et  al.,  2012), has been gathering data on the 
global heterogeneities of NO2 air pollution since October 2017. This instrument builds on the legacy of prior 
Ultraviolet – Visible (UV-Vis) spectrometers including the Global Ozone Monitoring Experiment (GOME) 
(Burrows et al., 1999; Martin et al., 2002; Richter & Burrows, 2002), the Scanning Imaging Spectrometer for 
Atmospheric Chartography (SCIAMACHY) (Bovensmann et al., 1999; Heue et al., 2005), the Global Ozone 
Monitoring Experiment - 2 (GOME-2) instrument (Munro et al., 2016; Richter et al., 2011), and the Ozone 
Monitoring Instrument (OMI) (Boersma, Eskes, Richter, et al., 2018; Krotkov, Lamsal, et al., 2017; Levelt, 
Oord, et al., 2006, Levelt, Joiner, et al., 2018).

Satellite-based remote sensing instruments can be particularly useful in quantifying the trends of NOX pol-
lution in high-emission areas (Castellanos & Boersma, 2012; Duncan et al., 2016; Georgoulias et al., 2019; 
Krotkov, McLinden, et al., 2016; McLinden et al., 2016; Stavrakou, Müller, Boersma, et al., 2008; Van Der 
A et al., 2008), the seasonal cycles of air pollution (Ialongo, Herman et al, 2016; Shah et al., 2020), and 
the weekly cycle of NOX emissions (Beirle, Platt, et  al.,  2003; de Foy, Lu, & Streets,  2016; Ialongo, Her-
man et al, 2016; Ma et al., 2013; Russell, Valin, et al., 2010; Stavrakou, Müller, Bauwens, et al., 2020; Valin 
et al., 2014). In an additional step, NOX emissions can be computed by combining the satellite data with 
meteorological information (Beirle, Borger, et al., 2019, Beirle, Boersma, et al., 2011; de Foy, Lu, Streets, 
Lamsal, & Duncan, 2015; Goldberg, Lu, Streets, et al., 2019; Goldberg, Saide, et al., 2019; Lorente, Boersma, 
et al., 2019; Lu et al., 2015; Valin et al., 2013) or by combining the satellite data with chemical transport 
models (Canty et al., 2015; Cooper, Martin, Padmanabhan, & Henze, 2017; Elissavet Koukouli et al., 2018; 
Mijling & Van Der A, 2012; Qu et al., 2017; Souri et al., 2016). Due to the consistency and robustness of the 
remotely sensed NO2 data record, scientists are beginning to infer information from the NO2 data about 
other trace gases such as CO2 (Goldberg, Lu, Oda, et al., 2019; Konovalov et al., 2016; Reuter et al., 2019), 
CH4 (de Gouw et al., 2020), and CO (Lama et al., 2020), since remotely sensed measurements of those trace 
gases are generally less reliable. Therefore, remotely sensed NO2 can also be helpful in indirectly estimating 
greenhouse gas emissions.

TROPOMI's smallest pixel size (3.5 × 7.2 km2 at nadir, reduced to 3.5 × 5.6 km2 at nadir on 6 August 2019) 
and enhanced sensitivity are significant improvements when compared to previous satellite instruments 
(Veefkind et al., 2012). NO2 is unique due to its relatively short photochemical lifetime which varies from 2 
to 5 h during the summer daytime (Beirle, Boersma, et al., 2011; de Foy, B., Wilkins, J. L., et al., 2014; Laugh-
ner & Cohen, 2019; Valin et al., 2013) to 12–24 h during winter (Shah et al., 2020). As a result, tropospheric 
NO2 concentrations are strongly correlated with local NOX emissions, which are often anthropogenic in 
origin.

Initial NO2 measurements from TROPOMI show the complex spatial heterogeneities of NO2 pollution 
with more refined resolution than any instrument before it (Griffin et al., 2019; Ialongo, Virta, et al., 2020). 
In particular, the smaller pixel sizes aid researchers in differentiating pollution sources within a single 
metropolitan area such as isolating signals from airports and individual highways (Judd, Al-Saadi, Janz, 
et al., 2019). These small-scale pixel sizes also show better agreement with the spatial features suggested by 
ground-based measurements (Ialongo, Virta, et al., 2020; Judd, Al-Saadi, Janz, et al., 2019). In particular, 
modeling studies have shown that matching the city-wide NO2 column to 10% accuracy requires a spatial 
resolution of at least 4 km (Valin, Russell, Hudman, & Cohen, 2011)—the approximate spatial resolution of 
TROPOMI. Robust high-spatial resolution estimates are also critical inputs to those trying to quantify the 
surface-level NO2 exposures (Geddes, Martin, et al., 2016; Lamsal et al., 2008; Larkin et al., 2017).
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The improved spatial resolution and instrument sensitivity also allow for shorter temporal averaging ranges 
(days to months) to gain the similar spatial structure it would normally take >1 year to gather (Beirle, Borg-
er, et al., 2019; Dix et al., 2020; Goldberg, Lu, Streets, et al., 2019; Lorente, Boersma, et al., 2019). As a result, 
it is easier to gain insight on the short-term variations of NOX pollution when using TROPOMI, which can 
be especially helpful for those trying to quantify intra-annual changes in NOX emissions (F. Liu et al., 2020).

In this paper, we exploit TROPOMI's small pixel sizes and enhanced instrument sensitivity to analyze spa-
tial and temporal features of NOX columns in the continental United States on annual, seasonal, weekly, 
and daily timescales. For example, using only a short temporal range of data, we can now answer such 
questions as:

•  Which location within each U.S. state has the worst NO2 air pollution?
•  How does the NOX emissions cycle vary by day of the week?
•  How does temperature affect column NO2 amounts?
•  How well can we infer surface-level concentrations from satellite data?

While older sensors (e.g., OMI) provided insight into some of these questions, early sensors lacked the same 
sensitivity and required longer oversampling times. Therefore, answers illuminated by TROPOMI provide a 
“clarity” that has not been seen before.

2. Methods
2.1. TROPOMI NO2

TROPOMI was launched by the European Space Agency for the European Union's Copernicus Sentinel 5 
Precursor (S5p) satellite mission on 13 October 2017. The satellite follows a sun-synchronous, low-earth 
(825 km) orbit with an equator overpass time of approximately 13:30 local solar time (Veefkind et al., 2012). 
TROPOMI measures total column amounts of several trace gases in the Ultraviolet-Visible-Near Infra-
red-Shortwave Infrared spectral regions (VanGeffen et al., 2019). This instrument is characterized as a pas-
sive optical satellite sensor due to its reliance on solar UV-Visible radiation to gather measurements. At 
nadir, pixel sizes are 3.5 × 7 km2 (reduced to 3.5 × 5.6 km2 on 6 August 2019) with little variation in pixel 
sizes across the 2,600 km swath. The instrument observes the swath approximately once every second and 
orbits the Earth in about 100 min, resulting in daily global coverage.

Using a differential optical absorption spectroscopy technique on the radiance measurements in the 405–
465  nm spectral window, the top-of-atmosphere spectral radiances can be converted into slant column 
amounts of NO2 between the sensor and the Earth's surface (van Geffen et al., 2020). In two additional steps, 
the slant column quantity can be converted into a tropospheric vertical column content. In the first step, the 
stratospheric portion of the column (the amount above approximately 12 km in altitude) is subtracted using 
a global model estimate that is refined using data assimilation (Boersma, Eskes, & Brinksma, 2004). In a 
second step, the slant tropospheric column is converted to a vertical column using a quantity known as the 
air mass factor (AMF). The AMF is the most uncertain quantity in the retrieval algorithm (Lorente, Folkert 
Boersma, et al., 2017) and is a function of the surface reflectance, the NO2 vertical profile, and scattering in 
the atmosphere among other factors. Using accurate and high-resolution data (spatially and temporally) as 
inputs in calculating the AMF can significantly reduce the overall errors of the AMF (S. Choi et al., 2019; 
Goldberg et al., 2017; Lamsal, 2020; Laughner, Zare, & Cohen, 2016, Laughner, Zhu, & Cohen, 2019; Lin 
et al., 2015; M. Liu et al., 2019; Russell, Perring, et al., 2011; Zhao et al., 2020) and thus the tropospheric 
vertical column content.

Operationally, the TM5-MP model (1 × 1° resolution) is used to provide the NO2 vertical shape profile, 
and the climatological Lambertian Equivalent Reflectivity (0.5 × 0.5° resolution) (Kleipool et al., 2008) is 
used to provide the surface reflectivities. The operational AMF calculation does not explicitly account for 
aerosol absorption or scattering effects, which are partially accounted for in the effective cloud radiance 
fraction (Chimot et al., 2016). There is already some evidence that the current TROPOMI operational NO2 
product may have a low bias of 20%–40% in urban areas; much of this bias may be attributed to the AMF 
(Judd, Al-Saadi, Szykman, et al. 2020; Verhoelst et al., 2020). While the operational product does have larger 
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uncertainties in the tropospheric column contents than a product with higher spatial resolution inputs, we 
limit our analysis to relative trends, which dramatically reduces this uncertainty.

2.2. Re-gridding

For our analysis we re-grid the operational TROPOMI tropospheric vertical column NO2, with native pixels 
of approximately 3.5 × 7 km2, to a newly defined 0.01° × 0.01° grid (approximately 1 × 1 km2) centered over 
the continental United States (CONUS; corner points: SW: 24.5°N, 124.75°W; NE: 49.5°N, 66.75°W). Before 
re-gridding, the data are filtered so as to use only the highest quality measurements (quality assurance flag 
(QA_flag) > 0.75). By restricting to this QA value, we are removing mostly cloudy scenes (cloud radiance 
fraction > 0.5) and observations over snow-ice. Once the re-gridding has been completed, the data are aver-
aged over varying timeframes as discussed in the results section.

2.3. Other Data sets

Additionally, we use three complementary products in some sections of our analysis. We compare tropo-
spheric vertical column information from TROPOMI to the same quantity from the NASA OMI NO2 version 
4 product in a qualitative sense. Only OMI pixels with cloud fractions < 0.3, surface albedo < 0.3, and not 
affected by the “row anomaly” are included. When filtering TROPOMI data based on temperature, we use 
the maximum daily hourly 2-m temperature from the ERA5 re-analysis. To downscale the ERA5 re-analy-
sis, which is provided at 0.25° × 0.25°, we spatially interpolate maximum daily hourly 2-m temperature to 
0.01° × 0.01° using bilinear interpolation. For that reason, the heat-urban island effect and any microscale 
meteorology features (e.g., sea breezes) will not be accounted for, but these effects should be minor for our 
particular analysis, which groups temperatures in ∼5°C intervals.

3. Results
3.1. TROPOMI NO2 in CONUS

Figure 1 depicts the 2019 CONUS annual average of TROPOMI and OMI tropospheric vertical column NO2 
compared to averages over monthly, weekly, and daily timeframes.

This example illustrates how shorter timeframes compare to the annual average in both magnitude and 
clarity. In the single daily snapshot (20 September 2019), there are wide sections that are missing due to 
cloud coverage. Missing data in the OMI NO2 snapshot is much more widespread than TROPOMI due to 
the “row anomaly.” which obstructs a portion of OMI's field of view. In the areas that do have coverage, 
values can be a factor of five different than the annual average, but the spatial heterogeneities are gener-
ally captured. When oversampling over a one-week period (16–22 September 2019), the TROPOMI image 
quickly starts to resemble the annual average with some differences in magnitude due to meteorological 
factors, such as temperature (which will be discussed later), but the OMI image is still very noisy. A monthly 
oversampled image essentially captures the same spatial heterogeneities as the annual average, but with 
magnitude differences due to meteorology. In most scenarios, a one-month average should be considered 
the minimum amount of oversampling time needed for TROPOMI to properly capture spatial heteroge-
neities, while for OMI ∼12 months of data is needed in order to properly capture spatial heterogeneities. It 
should be noted that September was specifically chosen for this analysis due to its propensity to have both 
less cloud coverage and snow cover than other months. If oversampling during winter months (i.e., Decem-
ber–March), which tend to have fewer ideal conditions for satellite retrievals of trace gases, oversampling 
times will need to be longer to achieve similar clarity. In a qualitative sense, OMI yields larger values than 
TROPOMI in most areas (rural and urban alike). This is consistent with other literature, which shows OMI 
yielding larger values than TROPOMI (Wang et al., 2020) and a low bias in TROPOMI in U.S. urban areas 
(Judd, Al-Saadi, Szykman, et al., 2020).

When visually inspecting the CONUS TROPOMI NO2 average during the initial 20 months of the TRO-
POMI record (1 May 2018–31 Dec 2019) (Figure 2), we now start to see clear spatial heterogeneities across 
the domain. The largest U.S. cities can be seen, and their magnitudes can be compared to each other (results 
further discussed later).
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Equally important, smaller sources of NO2 pollution can now be observed, and they are not spatially 
smeared into the background NO2 concentration. For example, when magnifying the western United States 
(Figure 3), the roadway network and related activity in the Idaho Snake River valley can be clearly observed. 
Other examples are the copper mining operations in Arizona associated with the Morenci Mine and Bagdad 
Mine, the coal mining operations in the Powder River Basin and Green River Basin in Wyoming, and to a 
lesser extent the gold mining operations associated with the Goldstrike, Cortez, and Round Mountain mines 
in Nevada. In addition, NO2 concentrations are clearly correlated with oil & gas operations in the Permian 
(Texas) and Bakken (North Dakota) basins (also discussed in Dix et al., 2020) and are > 5 times larger than 
the NO2 in the rural areas upwind. Individual spikes in NO2 associated with NOX emissions from large 
power plants (e.g., Navajo, Cholla, Springerville/Coronado (S/C) in Arizona, Craig in Colorado, Colstrip in 
Montana, N Valmy in Nevada, Four Corners/San Juan (4C/SJ) in New Mexico, Intermountain, Bonanza, 
Hunter/Huntington (H/H) in Utah, Jim Bridger in Wyoming) can also be observed during this 2018–2019 
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Figure 1. (Left) TROPOMI NO2 and (right) OMI NO2 oversampled to 0.01° × 0.01° spatial resolution for four different 
temporal resolutions: (top row) annual, (second row) monthly, (third row) weekly, and (bottom row) daily.
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period even though there have been large reductions (∼85%) in the NOX 
emissions from most of these power plants since the introduction of the 
federally mandated NOX SIP call in 2003.

TROPOMI data are especially powerful in analyzing local variations in 
NO2 pollution as compared to predecessor instruments. In Figure 4, we 
zoom into five different U.S. states, and in Table 1 we provide the largest 
NO2 values in each state; note that in Figure 4 we use a colorbar that is 
not linear in order to better differentiate urban versus rural values.

In Figure 5, we zoom into six different U.S. cities. In each instance, the 
oversampled TROPOMI NO2 images exhibit features that match known 
NOX emissions patterns. The larger NO2 values correlate very well to the 
interstate network, population density, and industrial activity hubs (such 
as manufacturing facilities, airports, and shipping ports). For example, 
in the image of Maryland, the largest value is observed at the Baltimore 
Harbor, which is a confluence of several major highways, a large shipping 
port, the city incinerator, and many industrial facilities. Similarly, the 
largest values in Chicago exist along the I-55 corridor which has a high 
traffic volume and a high-density of industrial facilities, with secondary 
maxima at the O'Hare International airport and the U.S. Steel Corp oper-

ations in East Chicago, Indiana. In Los Angeles, the spatial pattern matches the basin outline very well, with 
the largest values between downtown Los Angeles and the Long Beach Shipping Port. In Houston, Texas 
the largest values are nearest to the petrochemical refining facilities east of town. For all cases, TROPOMI 
can accurately quantify the relative relationship between the largest sources of NOX emissions and NO2 
concentrations.

3.2. Day-of-the-Week Relationships

A common use of oversampled satellite data is in investigating the week-
ly cycle of NOX emissions. In Figure 6, we show the weekly pattern of 
NO2 across CONUS for three different days of the week as well as the full 
weekly cycle in seven U.S. cities; we selected U.S. metropolitan areas that 
were both large and representative of geographic diversity. In all cities, 
the NO2 appears to be approximately equivalent amongst all weekdays 
with some minor exceptions. NO2 pollution is 2.5% larger on Tuesday 
than a typical weekday, while Mondays and Fridays have 1.4% and 1.3% 
lower NO2 pollution than a typical weekday. On Saturdays, NO2 is 16% 
lower than the weekday averages, and on Sundays 24% lower. Standard 
errors of the mean for each city are shown in Table S1, and are approxi-
mately 10% for any given city, and approximately 4% when all cities are 
aggregated together. This means that NO2 changes on weekends—in-
cluding the differences between Saturdays and Sundays—are statistically 
significant, but the difference between weekdays are not yet statistically 
significant. As more TROPOMI NO2 data are acquired over time, these 
standard errors of the mean will decrease, and we might be able to de-
duce statistically significant changes between individual weekdays. The 
weekend changes calculated here (16% drop on Saturdays, 24% drop on 
Sundays) are less dramatic than previously reported weekend changes 
(30%–60% drops) in the 2005–2013 timeframe (de Foy, Lu, & Streets, 2016; 
Russell, Valin, et al., 2010; Valin et al., 2014). There are two explanations 
for the flattening of the weekday-weekend cycle: 1.) as overall emissions 
are decreasing, the NO2 lifetime in many cities is increasing (Stavrakou, 
Müller, Bauwens, et al., 2020) and 2.) passenger vehicles, which have a 
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Figure 2. TROPOMI NO2 oversampled to 0.01° × 0.01° spatial resolution 
during 1 May 2018–31 December 2019. Only pixels exceeding a quality 
assurance flag of 0.75 are included.

Figure 3. Same data shown in Figure 2, but now zoomed into the 
western United States. Power plants are outlined in dark magenta, mining 
operations in yellow, and oil & gas in bright red.
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pronounced weekday-weekend emissions pattern, are continually representing a smaller fraction of NOX 
emissions over time (Dallmann & Harley, 2010; McDonald et al., 2012).

When analyzing the weekday/weekend differences, there should be some consideration for the difference in 
traffic patterns and general activity between weekends and weekdays. On weekends, traffic counts generally 
peak in the early afternoon, while on weekdays traffic counts peak in the evening, with a secondary peak in 
the early morning (de Foy, 2018). Since the satellite observation is acquired in the early afternoon, we sug-
gest that the 24-h averaged NOX emissions difference between weekdays and weekends may be even greater 
than implied by the satellite data. The soon-to-be-launched TEMPO instrument, a geostationary satellite, 
will hopefully be able to better quantify the morning and evening differences of NOX emissions (Chance 
et al., 2019; Penn & Holloway, 2020; Zoogman et al., 2017).

3.3. Hot Versus Warm Days

In Figure 7, we show the variation in column NO2 as a function of the daily maximum 2-m temperature. 
Due to varying climates across the United States, most cities do not have values for all temperature bins. 
In general, as temperatures increase, NO2 decreases; this is primarily driven by j(NO2) which increases 
with stronger sunlight. When temperatures are >32°C, we observe a leveling with increasing temperature. 
This may be related to increasing anthropogenic NOX emissions (Abel et al., 2017; He et al., 2013) at high 
temperatures despite a shorter NO2 lifetime. This may also be driven by biogenic or natural causes, such as 
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Figure 4. Same data shown in Figure 2, but now zoomed into five different U.S. states. Color bar has been adjusted to better differentiate spatial 
heterogeneities on a local scale.
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U.S. state Latitude (°N) Longitude (°E) NO2 (molec/cm2) Detailed location

CA 34.03 −118.18 1.41E+16 E Los Angeles, CA

NY 40.72 −73.97 1.13E+16 East River, Brooklyn, NY

NJ 40.69 −74.14 9.75E+15 Port Newark, NJ

IL 41.82 −87.77 7.31E+15 Cicero, Chicago, IL (near MDW)

WA 47.46 −122.26 6.90E+15 Tukwila, WA (SE Seatle)

IN 41.66 −87.47 6.28E+15 E Chicago, IN (Steel Mill)

UT 40.71 −111.9 6.18E+15 S Salt Lake City, UT

CO 39.76 −105.02 5.98E+15 Highland, Denver, CO

PA 39.95 −75.16 5.95E+15 Downtown Philadelphia, PA

AZ 33.47 −112.15 5.87E+15 Cuatro Palmas, Phoenix, AZ

MI 42.31 −83.11 5.74E+15 Detroit, MI

TX 29.74 −95.14 5.58E+15 Deer Park, Houston, TX

CT 41 −73.67 5.46E+15 Greenwich, CT

NV 36.1 −115.18 4.97E+15 Las Vegas Strip, Las Vegas, NV

MD 39.28 −76.6 4.94E+15 Port of Baltimore, Baltimore, MD

DC 38.89 −77.01 4.65E+15 Capitol Hill, Washington, DC

GA 33.64 −84.42 4.65E+15 Hartsfield Airport, Atlanta, GA

VA 38.88 −77.05 4.59E+15 Pentagon, Arlington, VA

DE 39.8 −75.37 4.34E+15 Claymont, Wilmington, DE

OR 45.52 −122.65 4.25E+15 Buckman, Portland, OR

KY 38.18 −85.73 4.21E+15 Louisville, KY (Airport)

OH 39.12 −84.54 4.20E+15 Cincinnati, OH

MA 42.37 −71.06 4.14E+15 Charlestown, Boston, MA (near BOS)

LA 29.93 −90.14 3.98E+15 Mississippi River, New Orleans, LA

NC 35.24 −80.85 3.76E+15 Catawba, NC (near Marshall Steam PP)

WV 38.94 −82.11 3.68E+15 Lakin, WV (near Gavin PP)

MO 38.68 −90.19 3.67E+15 Mississippi River, St Louis, MO

KS 39.12 −94.6 3.61E+15 Missouri River, Kansas City, KS

TN 36.16 −86.77 3.52E+15 Nashville, TN

FL 25.85 −80.34 3.40E+15 Medley, Miami, FL

WI 42.86 −87.82 3.40E+15 Oak Creek, WI (near Oak Creek PP)

MN 44.97 −93.24 3.28E+15 Mississippi River, Minneapolis, MN

AL 33.52 −86.82 3.21E+15 Fountain Heights, Birmingham, AL

RI 41.8 −71.41 2.88E+15 S Providence, RI

IA 41.25 −95.88 2.79E+15 Council Bluffs, IA

NE 41.25 −95.88 2.79E+15 Missouri River, Omaha, NE

OK 36.16 −96 2.64E+15 Tulsa, OK

WY 43.69 −105.32 2.52E+15 Thunder Basin Coal, WY

SC 32.88 −79.99 2.52E+15 N Charleston, SC

NM 35.11 −106.62 2.51E+15 Albuquerque, NM

AR 35.12 −90.1 2.46E+15 W Memphis, AR

ID 43.58 −116.23 2.30E+15 Boise, ID (Airport)

ND 47.35 −101.81 2.24E+15 Beulah, ND (near Dakota Gasification Co)

Table 1 
Largest NO2 Column Value in Each U.S. State During the 1 May 2018–31 Dec 2019 Period
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the faster dissociation of peroxy-acyl nitrates (PANs) or increased soil NOX emissions (Rasool et al., 2019; 
Romer et al., 2018) at hot temperatures. The latter reasons are likely causing rural areas to observe increases 
in NO2 as temperatures warm above 32°C. The temperature-driven stabilization of NO2 at very high temper-
atures appears to hold for all cities except Chicago. Standard errors of the mean for each city are shown in 
Table S2, and are approximately 7% for any given city on warm/hot temperature days (>20°C), and approx-
imately 2%–3% when all cities are aggregated together. This means that the NO2 decreases with increasing 
temperature as well as the NO2 increases on the hottest days are statistically significant in most areas. It 
should be noted that there are cross-correlations with increased temperature such as a lower solar zenith 
angle (which affects photolysis rates of chemical species and the satellite viewing geometry), larger biogenic 
volatile organic compound (BVOC) emissions in forested areas (which affects the NO2 lifetime), and higher 
total water columns (which affects wet deposition and introduces an increased spectral interference). Ap-
portionment of the effects of natural versus anthropogenic sources contributing to NO2 increases in urban 
areas on the hottest days will be the subject of future research using model simulations.

3.4. Relationship With Surface NO2 Concentrations

To understand how well TROPOMI NO2, without any adjustment, captures surface-level concentrations, 
we compare the 2019 annual TROPOMI NO2 average to 24-h annual average EPA AQS monitor data. The 
surface-level concentrations from the EPA AQS network are known to have a high instrument bias (Dick-
erson et al., 2019) and thus referred to as NO2* hereafter. In Figure 8, we show a scatterplot between 2019 
annual averages of oversampled TROPOMI NO2 and AQS surface-level NO2* concentrations. For our anal-
ysis, we restrict our fit to monitoring sites that are not “near-road.” The EPA requests certain states to site 
“near-road” NO2 monitors, which are requested to be within 20 m of a major highway; we do not expect 
TROPOMI observations to capture this very fine spatial gradient, and are therefore not considered in our 
fit. Figure 8 demonstrates that there is a strong correlation (R2 = 0.66) between a linear fit and monitoring 
sites considered to be “not near-road.” which suggests that many (but not all) of the spatial heterogeneities 
observed by TROPOMI over long time intervals (e.g., year) are real and not an artifact of the processing 
algorithms. We are encouraged to see that a simple linear fit is able to capture near-surface NO2 variability 
well. In order to better estimate surface-level concentrations, TROPOMI NO2 data should be merged with 
a model simulation (Cooper, Martin, McLinden, & Brook, 2020) and/or land-use characteristics (Bechle 
et al., 2015; Beloconi & Vounatsou, 2020; Di et al., 2019; Larkin et al., 2017).

4. Conclusions
This study investigates the capabilities of the TROPOMI in observing the spatial and temporal patterns of 
NO2 pollution in the continental United States (CONUS). Here, we demonstrate that TROPOMI can capture 
fine-scale spatial heterogeneities in urban areas, such as emissions related to airport/shipping operations 
and high traffic; this type of spatial precision cannot be matched by predecessor satellite instruments over 
short timescales (<1 year). We find that Saturday and Sunday concentrations are 16% and 24% lower re-
spectively than during weekdays, with the caveat that diurnal emissions patterns vary among weekdays 
and weekends. We also analyze the effects of hot temperatures (>32°C) on NO2 column amounts and find 
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Table 1 
Continued

U.S. state Latitude (°N) Longitude (°E) NO2 (molec/cm2) Detailed location

MT 45.86 −106.57 2.20E+15 Colstrip, MT (near Colstrip PP)

NH 42.94 −70.81 1.93E+15 Hampton, NH

ME 43.66 −70.29 1.90E+15 Portland, ME

MS 32.34 −90.19 1.77E+15 Jackson, MS

SD 43.6 −96.74 1.53E+15 N Sioux Falls, SD

VT 42.91 −73.18 1.49E+15 Wilmington, VT

Note. Ordered by largest to smallest maximum value.
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that column NO2 is generally larger on the hottest days as compared to warm days (26°C–32°C). Finally, 
we compare column NO2 with surface-level NO2 estimates and find relatively good correlation (R2 = 0.66).

For this work, we rely on the operational TROPOMI NO2 algorithm, which underestimates tropospheric 
vertical column NO2 in urban areas. Previous studies suggest that this underestimate is due to the AMF 
and ∼5km pixel size which cannot resolve street-level variations in concentrations (Goldberg, Lu, Streets, 
et al., 2019; Griffin et al., 2019; Judd, Al-Saadi, Szykman, et al., 2020; Judd, Al-Saadi, Janz, et al., 2019; 
Zhao et al., 2020); investigating the effects of the AMF bias on trends as well as investigating the effects 
of the pixels sizes will be the subject of future work. Also, there may be a clear-sky bias (Geddes, Mur-
phy, et al., 2012) associated with any satellite retrieval, but the general spatial heterogeneities of NO2 pol-
lution should be similar amongst all types of weather conditions when averaged over long timeframes. 
Lastly, interpreting results from polar-orbiting satellite instruments, such as TROPOMI, should be made 
with some caution due to the mid-day only data collection time. Work quantifying this bias has shown 
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Figure 5. Same data shown in Figure 2, but now zoomed into six different U.S. cities. Color bar has been adjusted to 
better differentiate spatial heterogeneities on a local scale.



Earth’s Future

GOLDBERG ET AL.

10.1029/2020EF001665

11 of 16

Figure 6. Weekly variations in column NO2. (Top left) TROPOMI NO2 during Mondays. (Bottom left) TROPOMI 
NO2 during Sundays. (Top right) Weekly variation of TROPOMI NO2 in seven U.S. cities normalized to Mondays; city 
averages are across a 1° × 1° box centered on the city. (Bottom right) Ratio between Sundays and Mondays.

Figure 7. Temperature variations in column NO2. (Top left) TROPOMI NO2 when maximum daily 2-m temperature 
is between 26°C–32°C (Warm; 80°F–90°F); only areas where >10 valid pixels are shown. (Bottom left) TROPOMI NO2 
when maximum daily 2-m temperature is greater than 32°C (hot; 90°F); only areas where >10 valid pixels are shown. 
(Top right) Temperature variation of TROPOMI NO2 in seven U.S. cities normalized to 10°C–21°C (50°F–70°F); city 
averages are across a 1° × 1° box centered on the city. (Bottom right) Ratio between days with daily 2-m temperature 
>32°C (Hot) and 26°C–32°C (Warm).
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that NO2 column measurements are lower and incrementally more spa-
tially homogeneous in the afternoon than during the morning (Chong 
et al., 2018; Fishman et al., 2008; Herman et al., 2019; Knepp et al., 2015; 
Penn & Holloway, 2020; Tzortziou et al., 2015); it is likely that data from 
geostationary platforms such as TEMPO (Zoogman et al., 2017), GEMS 
(W. J. Choi, 2018), and Sentinel 4 (Timmermans et al., 2019), will be able 
to provide further insight on this time-of-day bias.

Because TROPOMI can observe and measure NO2 increases attributed 
to relatively small sources, future work should be able to quantify emis-
sions from small sources (e.g., industrial activities, ship plumes, small 
wildfires) that had previously gone undetected from predecessor space-
based instruments. Furthermore, due to the instrument's excellent sta-
bility, precision, and spatial resolution, it is no longer necessary to av-
erage over 6+ months of data to gain a clear depiction of regional NO2 
abundances; instead monthly, weekly or even daily aggregations could 
suffice for many purposes. The examples presented here demonstrate 
how TROPOMI NO2 satellite data can be advantageous for policymakers 
requesting information at high spatial resolution and short timescales, 
in order to assess, devise, and evaluate regulations. Future health impact 
assessment studies can use the high-spatial resolution capabilities of 
TROPOMI NO2 to investigate disparities in traffic-related air pollution 
exposure and associated health effects between neighborhoods and pop-
ulation sub-groups within cities.

Data Availability Statement
TROPOMI NO2 data can be freely downloaded from the European Space Agency Copernicus Open Access 
Hub or the NASA EarthData Portal (http://doi.org/10.5270/S5P-s4ljg54). ERA5 can be freely downloaded 
from the Copernicus Climate Change (C3S) climate data store (CDS) (https://cds.climate.copernicus.eu/#!/
search?text=ERA5&type=dataset).
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