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ABSTRACT
Objectives  Evaluate the accuracy of the Breast Cancer 
Risk Assessment Tool (BCRAT), International Breast Cancer 
Intervention Study risk evaluation tool (IBIS), Polygenic Risk 
Scores (PRS) and combined scores (BCRAT+PRS and IBIS 
+PRS) to predict the occurrence of invasive breast cancers 
at 5 years in a French-Canadian population.
Design  Population-based cohort study.
Setting  We used the population-based cohort 
CARTaGENE, composed of 43 037 Quebec residents aged 
between 40 and 69 years and broadly representative of 
the population recorded on the Quebec administrative 
health insurance registries.
Participants  10 200 women recruited in 2009–2010 
were included for validating BCRAT and IBIS and 4555 with 
genetic information for validating the PRS and combined 
scores.
Outcome measures  We computed the absolute risks 
of breast cancer at 5 years using BCRAT, IBIS, four 
published PRS and combined models. We reported the 
overall calibration performance, goodness-of-fit test and 
discriminatory accuracy.
Results  131 (1.28%) women developed a breast cancer 
at 5 years for validating BCRAT and IBIS and 58 (1.27%) 
for validating PRS and combined scores. Median follow-up 
was 5 years. BCRAT and IBIS had an overall expected-to-
observed ratio of 1.01 (0.85–1.19) and 1.02 (0.86–1.21) 
but with significant differences when partitioning by risk 
groups (p<0.05). IBIS’ c-index was significantly higher 
than BCRAT (63.42 (59.35–67.49) vs 58.63 (54.05–63.21), 
p=0.013). PRS scores had a global calibration around 0.82, 
with a CI including one, and non-significant goodness-of-
fit tests. PRS’ c-indexes were non-significantly higher than 
BCRAT and IBIS, the highest being 64.43 (58.23–70.63). 
Combined models did not improve the results.
Conclusions  In this French-Canadian population-based 
cohort, BCRAT and IBIS have good mean calibration 
that could be improved for risk subgroups, and 
modest discriminatory accuracy. Despite this modest 
discriminatory power, these tools can be of interest for 
primary care physicians for delivering a personalised 
message to their high-risk patients, regarding screening 
and lifestyle counselling.

INTRODUCTION
Breast cancer is the most frequently diag-
nosed cancer and the second leading cause 

of death by cancer among the Canadian 
women.1 However, assessing the individual 
risk of breast cancer remains a challenge. 
In this context, risk prediction models have 
been developed and implemented. The two 
most widely used are the Breast Cancer Risk 
Assessment Tool (BCRAT) and the Interna-
tional Breast Cancer Intervention Study risk 
evaluation tool (IBIS).2 3

The National Cancer Institute’s (NCI) 
BCRAT was developed by Gail et al2 using 
5998 American women from a case-control 
study. It provides an estimate of a woman’s 
risk of developing invasive breast cancer 
over a specific period, knowing her personal 
risk factors. After its first release, this model 
has been validated in an American cohort,4 
mainly composed of white women, and 
was later calibrated for African American, 
Hispanic, Asian and Pacific Islander women.5 6 
The most recent version uses six clinical risk 
factors: current age, age at first menstrual 
period, age at first live birth, number of first-
degree relatives with breast cancer, history of 
previous breast biopsy and ethnicity. Several 
studies have assessed or updated the BCRAT 
model to specific populations (eg, Asian, 

Strengths and limitations of this study

►► First study to evaluate risk assessment tools in a 
French-Canadian population for predicting breast 
cancer.

►► Population based-cohort representative of the 
French-Canadian urban population of middle-aged 
and older adults.

►► Linkage with administrative health databases and 
the Quebec Breast Cancer Registry, which improved 
the outcome quality and accuracy, and made possi-
ble to use variables usually difficult to obtain.

►► May not apply to younger women under 40 years 
old.

►► Since the genotyping information was not available 
for all the cohort, the models had to be evaluated on 
two different subcohorts.
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Oceanian).7 It is worth noting that this model, designed 
for use in the general population, is not intended to be 
used for women carrying inherited BRCA1/2 mutations. 
The BCRAT model is used to guide physicians on breast 
cancer prevention strategies. As an example, the US Food 
and Drug Administration recommended to consider 
chemoprevention for women at high risk of breast cancer 
(ie, a 5-year risk equal or higher than 1.66%), while the 
US Preventive Services Task Force recommended chemo-
prevention for a risk equal or higher than 3%.8 The Cana-
dian Task Force, as well as the Canadian Cancer Society, 
used a threshold of 1.66%.9 10 Despite its implementation 
on the NCI’s website (​bcrisktool.​cancer.​gov/), the lack of 
recent Canadian guidelines combined with its US-centred 
use led to an underuse of the BCRAT model by Cana-
dian primary care physicians. Indeed, a recent qualitative 
study showed that two-third of primary care physicians 
from two Canadian provinces (Ontario and Alberta) were 
unaware of the BCRAT tool.11

The IBIS model, also known as the Tyrer-Cuzick model, 
is also a widely used breast cancer risk prediction model, 
which takes into account multigenerational family history 
data and BRCA1/2 mutation information. It has been 
developed with data from the International Breast Cancer 
Intervention Study including a cohort of daughters of 
patients diagnosed with the disease and has focused on 
the estimation of breast cancer lifetime risks through the 
analysis of family history, reproductive and hormonal 
factors, and individual characteristics.3 The IBIS model 
takes into account non-genetic risk factors (current age, 
age at menarche, number of live births, age at first live 
birth, age at menopause, height, weight, history of hyper-
plasia, breast density, history and age of ovarian cancer, 
hormone replacement therapy) together with multigen-
erational pedigree information and BRCA1/2 gene muta-
tions. IBIS can be used even for women without a family 
history of breast cancer and without BRCA1/2 gene muta-
tions information. A recent study suggested that IBIS has 
better ability to assess breast cancer risk than BCRAT but 
with close performance in women not known to have 
mutations in BRCA1 or BRCA2 genes.12–14

With the increasing availability and affordability of 
genetic information, there is a growing interest to incor-
porate individual-level genotype data into risk prediction 
models for increasing their discriminatory accuracy. The 
integration of such information into the BCRAT model 
has already been performed with the addition of seven 
single-nucleotide polymorphisms (SNPs) associated with 
breast cancer. Results showed that the performance of the 
predicted breast cancer’s risk was slightly improved, with 
an area under the receiver operating characteristic (ROC) 
curve (AUC) increasing from 0.607 to 0.632.15 This kind 
of clinicogenetic model has also been done with IBIS 
leading to an improvement in the discriminative ability.16 
Alongside these works, many genetic based or ‘Polygenic 
Risk Scores’ (PRS) have been published for breast cancer 
prediction. Most of them rely on linear combinations 
of the risk-conferring variant alleles weighted by their 

effect sizes.17–20 The list of these risk alleles with their 
corresponding weights is usually obtained from large 
case–control genome-wide association studies,21 with 
weights that can be adapted to specific ethnicities.19 The 
predictive accuracy of these PRSs compared with classical 
prediction models, such as the BCRAT and IBIS, should 
now be evaluated in various populations.

In Quebec, the Breast Cancer Screening Programme 
consists of a mammogram every 2 years for women aged 
50–69.22 Although this screening decreased the number 
of deaths from breast cancer,23 it could be stressful with 
non-negligible costs for the public health system. In this 
context, risk assessment tools could be helpful for primary 
care physicians to enhance screening uptake among high 
risk patients who are less likely to participate in organ-
ised screening. Some previous studies have assessed the 
accuracy of the BCRAT risk predictions in Canadian 
women,12 24 but they were limited to specific ethnic popu-
lations or were part of multicountries cohorts. The fact 
that BCRAT and IBIS have not been evaluated in the 
French-Canadian population, which has specific genetic 
patterns, as compared with the general European popula-
tion,25 26 with lifestyle risk factors (eg, nutrition) that are 
at the intersection between North America and Europe, 
prompted us to evaluate their predictive abilities in the 
population-based cohort CARTaGENE from Quebec.

In this study, we report the predictive accuracies of the 
BCRAT model, the IBIS model and PRS to predict the 
occurrence of invasive breast cancers at 5 years in middle-
aged and older French-Canadian women.

MATERIALS AND METHODS
Design and participants selection
The CARTaGENE population-based cohort is composed 
of 43 037 Quebec residents aged between 40 and 69 years, 
recruited during two phases (2009–2010 and 2013–2014). 
With a rich collection of data including phenotyping and 
genotyping data, CARTaGENE is the largest ongoing 
prospective population cohort and biobank in Québec, 
Canada.27 Details on recruitment and sample selection 
have been described previously.27

To comprehensively identify participants with an inva-
sive breast cancer and the incidence date, we used two 
administrative health databases, the Quebec Health 
Insurance Board (RAMQ) and the Quebec Breast Cancer 
Registry (see oonline supplemental methods 1), and an 
algorithm based on a previous report from the Institut 
National de Santé Publique du Québec28 and the Tonelli 
et al29 algorithm. Using the Breast Cancer Registry, we 
retrieved the incidence date of histologically confirmed 
breast cancers. Then, as some women with a breast 
cancer might not have a histologically confirmed cancers 
in the Breast Cancer Registry, we selected in this registry 
all women having an abnormal mammography (ie, 
lesion suspected of malignancy) without histologically 
confirmed breast cancers and retrieved, when available, 
the incidence date after the abnormal mammography 
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from the RAMQ database for women with at least two 
claims in 2 years or one hospitalisation with the appro-
priate International Classification of Diseases, 9th or 
10th Revision codes (174 and C50). The Quebec breast 
cancer registry’s data were available from 15 May 1998 to 
31 December 2017, while the RAMQ’s data were available 
from 1 January 1998 to 31 March 2016. Adherence to 
mammography was not available.

For this study, we have considered the women without 
a breast cancer before the inclusion date from the CART-
aGENE first phase of recruitment as the family history of 
breast cancer was not available for the participants of the 
phase 2. Recruitment was unrelated to the last mammog-
raphy screening. The validation of the BCRAT and IBIS 
models was done on the subcohort of 10 200 women with 
available information for computing the BCRAT and IBIS 
models (hereinafter referred as clinical-based cohort 
(CC)). The validation of the PRS was done on the subco-
hort of 4555 women with available genotyping informa-
tion (hereinafter referred as clinicogenetic-based cohort 
(CGC)) (figure 1). We also compared PRS to the BCRAT 
and IBIS models on the CGC cohort.

Genetic data
Only a fraction of the CARTaGENE population cohort 
has been genotyped. These participants were selected to 
be genotyped through various scientific projects unre-
lated to breast cancer.30–32 SNP positions were based on 
build GRCh37/hg19. The detailed pipeline about quality 
control and imputation can be found at www.​cartagene.​
qc.​ca/​info-​genetic-​data and in online supplemental 
methods 1.

Outcome
The outcome of interest was the time of occurrence of the 
breast cancer from the enrollment in the cohort. Patients 
without breast cancer occurrence were censored at the 
end of the 5 years study period (administrative censoring) 
or at death.

Predictive scores
Absolute risk using the BCRAT and the IBIS models
The absolute risk of breast cancer estimated by BCRAT 
and IBIS is calculated using baseline hazard functions 
calculated from the marginal hazard functions (USA and 
UK incidence rates, respectively), and the attributable 
risk obtained from the United States population data 
(BCRAT) and the UK/Swedish population data (IBIS). 
In this article, the BCRAT and IBIS absolute risks of 
breast cancer at 5 years were calculated for each woman at 
the inclusion date using the National Institutes of Health 
R package ‘BCRA’, V.2.133 and the latest version of the 
‘IBIS Breast Cancer Risk Evaluation Tool’ (http://www.​
ems-​trials.​org/​riskevaluator/—V.8.0b, September 2017), 
respectively. Death as a competing risk was taken into 
account for both models.

All variables of the BCRAT model could be retrieved, 
while some variables of the IBIS model were not available 
and were considered missing: breast density, Ashkenazi 
Jewish heritage, HRT type, length of time woman intends 
to use HRT in the future, BRCA1/2 genetic testing 
(participant and relatives), mother bilateral mastec-
tomy, relatives’ age of breast and ovary cancers, vari-
ables related to each sister, brother, grandmother, aunt, 
uncle and daughter. See online supplemental methods 

Figure 1  Flow chart. BCRAT, Breast Cancer Risk Assessment Tool; IBIS, International Breast Cancer Intervention Study.

www.cartagene.qc.ca/info-genetic-data
www.cartagene.qc.ca/info-genetic-data
https://dx.doi.org/10.1136/bmjopen-2020-045078
https://dx.doi.org/10.1136/bmjopen-2020-045078
http://www.ems-trials.org/riskevaluator/
http://www.ems-trials.org/riskevaluator/
https://dx.doi.org/10.1136/bmjopen-2020-045078
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1 for information about variables extraction and coding. 
Missing data can be handled in both BCRAT and IBIS 
models.

Absolute risk using PRS
For estimating the absolute risk of breast cancer using 
PRS, we have considered the procedure implemented 
in the iCARE package.34 It requires the marginal 
(composite) rates for breast cancer and death, obtained 
here from Canada Health,35 36 and the relative risk distri-
bution, obtained from the sampling at random of 10% 
of the individuals from the CGC with small probability 
weights for the breast cancer cases. We reported the 
results obtained using the 90% remaining (hereinafter 
referred as ‘validation CGC’).

In this study, woman’s genotyping information were 
used for computing four different published PRS: 
Wacholder et al17 (10 SNPs), Mavaddat et al18 (77 SNPs), 
Shieh et al19 (86 SNPs) and Evans et al20 (18 SNPs). In the 
following, each PRS is referred to the name of the first 
author of the study. The SNPs and associated OR can be 
found as online supplemental table 1.

Absolute risk using a combination of BCRAT and PRS
For estimating the absolute risk of breast cancer with a 
combination of BCRAT and PRS (hereinafter referred 
as ‘combined scores’), we summed the PRS and BCRAT 
scores (relative hazard regression scores), and used the 
same procedure as described in the section ‘Absolute risk 
using PRS’.

Absolute risk using a combination of IBIS and PRS
As the clinical risk score obtained from the IBIS model 
is not an output of the software, we cannot estimate the 
absolute risk associated with a combination of the IBIS 
clinical risk score and PRS using the iCARE package in 
the same way we did for BCRAT (see above). In prac-
tice, the V.8.0b of the IBIS risk evaluation tool allows 
to compute the absolute risk by incorporating the PRS 
scores, but these absolute risks are different from the ones 
that would be obtained with the iCARE package. Keeping 
in mind this issue, we have used the IBIS breast cancer 
risk evaluation tool and incorporate the PRS scores. More 
precisely, and for taking into account the distribution of 
the PRS, we incorporated a shifted PRS that corresponds 
to the PRS minus the logarithm of the expected value of 
the relative risk associated to the PRS in our population. 
This latter transformation is due to the fact that the base-
line hazard rate can be approximated by the composite 
hazard divided by the expected value of the relative risk 
score in the underlying population.34

Statistical analysis
For comparing means between groups, we used a one-
way analysis of variance test. Relationships between 
categorical variables were tested using the χ2 test. Statis-
tical significance was considered as p<0.05. We plotted 
predictiveness curves (ie, the risk quantile against the 

corresponding cumulative proportion of the population 
with risks below this quantile) with rug plots.

To assess the performance of the BCRAT, IBIS and PRS 
procedures for predicting invasive breast cancer risk, we 
reported calibration performance and discriminatory 
accuracy (see hereafter). We also reported the results 
obtained with the BCRAT and IBIS procedures in the 
validation CGC.

Calibration
We computed the expected-to-observed ratio (E/O), with 
the 95% CI, from the sum of the estimated risk divided by 
the number of observed cases. An E/O of 1 corresponds 
to perfect global calibration. We reported the intercept 
and slope estimates from logistic regression models 
(observed outcomes with the logit of the predicted prob-
abilities as the independent variable).

We also compared the predicted and observed propor-
tion of breast cancers in four absolute risk groups: 
<1% (low risk), ≥1% and <1.66% (intermediate risk), 
≥1.66% and <3% (average risk), ≥3% (high risk). The 
observed proportion at 5 years in each risk group was 
calculated using a Kaplan-Meier estimator. To test the null 
hypothesis of a global agreement between the observed 
and expected values across these groups, we computed 
a global test statistic (‍G =

∑(
Oi− Ei

)2 /Ei‍) where Oi and 
Ei are respectively the observed and expected number of 
events in group i, and compared this latter to the critical 
value from the χ2 distribution with four df.

Discrimination
The global discrimination was assessed by the c-sta-
tistic with an inverse probability of censoring weighting 
(IPCW) estimation of cumulative time-dependent ROC 
curve with their 95% CI.37–39 ROC curves were plotted.

In the validation CGC, the c-indexes calculated with 
the BCRAT and IBIS scores were compared with those 
calculated with each PRS scores by using the independent 
and identically distributed-representation of the c-index 
estimators.39

Sensitivity and specificity
Since the Canadian recommendation for chemoprophy-
laxis is a BCRAT absolute risk of breast cancer of 1.66% or 
higher at 5 years, we calculated sensitivity and specificity 
using this threshold.

All statistical analyses were performed using R software, 
V.3.6.40

Patient and public involvement
Patients or the public were not involved in the design, 
conduct, reporting or dissemination plans of this study. 
However, the CARTaGENE cohort received an ethical 
approval from thirteen ethics committees before its devel-
opment and implementation. Each ethics committee 
includes participants and public representatives, 
which had the opportunity to ask questions and make 
recommendations.

https://dx.doi.org/10.1136/bmjopen-2020-045078
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RESULTS
Overall, 10 200 women were included for validating the 
BCRAT and IBIS scores and 4555 women with available 
genotype data were selected for the validation of the 
PRS scores and combined scores (figure 1). The median 
age was 53.1 years (quartile: 47.8–60.4) and 53.1 years 
(quartile 48–60.1) for the participants of CC and CGC, 
respectively. The median follow-up time was of 5 years in 
both cohorts. We observed 131 (1.28%) and 58 (1.27%) 
women developing a breast cancer for the CC and 
CGC, respectively. In total, there was 42 (0.41%) and 11 
(0.24%) deaths during the 5 years follow-up, for the CC 
and CGC, respectively. The clinical characteristics of the 
two cohorts can be found in online supplemental table 
2.

Breast cancer risk prediction models (BCRAT and IBIS) 
evaluated in the CC
Using the BCRAT model, 19.8% of women were classified 
into the group with an absolute risk equal or higher than 
1.66% (figure 2A). There was a global agreement between 
the predicted and observed number of breast cancer inci-
dent cases, with an E/O of 1.01 (0.85–1.20). However, 
the goodness-of-fit test for the four risk groups showed 
a significant difference between observed and expected 
values (p=0.0439). Among the four risk groups, the 
E/O was significantly different from one for the average 
risk group (E/O: 1.51% (1.01–2.28)). There was also a 
slight overestimation in the high-risk group (figure 2B). 
This finding was in agreement with the estimate values 
obtained from the calibration plot with an intercept 
lower than zero (intercept: −1.9 (-3.4– -0.4)) and a slope 
smaller than 1 (slope: 0.6 (0.2–0.9)). The BCRAT model 
had a modest discriminatory accuracy, with a c-index of 
58.63 (54.05–63.21) (figure 2C). The sensitivity and spec-
ificity for the 1.66% threshold were 23.7% (16.7–31.9) 
and 80.3% (79.5–81), respectively.

Using the IBIS model, 18.0% of women were classified 
into the group with an absolute risk higher or equal to 
1.66% (figure  2A). There was also a global agreement 
between the predicted and observed number of breast 
cancer incident cases, with an E/O of 1.02 (0.86–1.21). 
However, the goodness-of-fit test for the four risk groups 
showed a significant difference between observed and 
expected values (p=0.0056). The IBIS risk prediction 
score overestimated the number of cases in the low risk 
group (E/O: 2.38 (1.35–4.19)) and underestimated the 
number of cases in the intermediate risk group (E/O: 
0.78 (0.63–0.97)), while the E/O were non-significant in 
the two higher risk groups (figure 2B). The intercept and 
slope were not significantly different from zero and one, 
respectively (0.4 (-1.3–2) and 1.1 (0.7–1.5), respectively). 
The IBIS model produced a slightly better discriminatory 
accuracy than BCRAT, with a c-index of 63.42 (59.35–
67.49) (p=0.013) (figure  2C). The sensitivity and speci-
ficity for the 1.66% threshold were 26.7% (19.4–35.2) 
and 82.1% (81.3–82.8), respectively.

Breast cancer risk prediction models (BCRAT, IBIS, PRS and 
combined scores) evaluated in the clinicogenetic-based 
validation cohort
Results obtained in the validation CGC cohort that 
included participants with all the genetic and clinical 
information are reported in tables 1 and 2.

In this subcohort, BCRAT and IBIS models classified 
21% and 18.5% of women into the two higher risk groups, 
respectively. There was a global agreement between the 
predicted and observed number of breast cancer cases, 
with an E/O of 0.94 (0.73–1.22) and 0.94 (0.73–1.22), 
respectively. The discriminatory accuracy of the BCRAT 
and IBIS models were of 59.13 (52.96–65.29) and 59.63 
(53.26–66), respectively.

Using the Mavaddat, Shieh, Evans and Wacholder PRS 
scores, 18%, 19%, 15% and 13.5% of women were classi-
fied into the group with an absolute risk equal or higher 
than 1.66%, respectively (online supplemental figure 1). 
All the PRS scores had an E/O around 0.82, with a 95% CI 
including one (table 1). None of the goodness-of-fit test 
showed a significant departure from the null hypothesis 
(figure 3). The intercepts and slopes for the calibration 
plot were not significantly different from 0 and 1, respec-
tively (table 1).

The PRS’ c-indexes were all slightly higher than those 
obtained from the BCRAT and IBIS scores, Wacholder 
score leading to the highest c-index (64.27 (58.09–
70.44)). However, none of the c-indexes was statistically 
different from the ones computed with the BCRAT and 
IBIS models (table 1). The discrimination for women at 
higher risk was better for the Shieh, Evans and Mavaddat 
PRS scores compared with BCRAT and IBIS scores (down-
left corner of the ROC curves, online supplemental figure 
2). Using a 1.66% threshold, all PRS scores increased 
both the sensitivity and the specificity as compared with 
the BCRAT and IBIS risk prediction score (table 1).

The distribution of the combined models’ absolute 
risks can be found in online supplemental figure 1. All 
the BCRAT +PRS combined models had an E/O around 
0.84, with all 95% CI including one (table  2). The 
goodness-of-fit test using the four risk groups showed a 
significant departure from the null hypothesis for the 
Wacholder and Evans combined models (p=0.0475 and 
p=0.0470, respectively) (figure  4). While the Mavaddat 
and Shieh combined models underestimated the number 
of cases in the low risk group (E/O: 0.62 (0.41–0.93) and 
0.63 (0.42–0.96), respectively), the Evans and Wacholder 
combined models underestimated the number of cases in 
the intermediate risk group (E/O: 0.58 (0.39–0.85) and 
0.64 (0.43–0.95), respectively). Other groups’ E/O were 
not different from one. The Shieh combined model had 
an intercept and slope significantly different from 0 and 
1, respectively (table 2).

The BCRAT+PRS combined models’ c-indexes were 
all slightly higher than the BCRAT and IBIS scores, but 
none of them were statistically different from the ones 
computed with the BCRAT and IBIS models (table  2). 
The discrimination for women at higher risk was better 

https://dx.doi.org/10.1136/bmjopen-2020-045078
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for the Shieh and Mavaddat combined scores (down-left 
corner of the ROC curves, (online supplemental figure 
2). Using a 1.66% threshold, only the Evans combined 
model increased both the sensitivity and the specificity as 
compared with the BCRAT and IBIS risk prediction score 
(table 2).

Regarding the IBIS+PRS combined models, the E/O 
were the same as the BCRAT and IBIS models (0.94 

(0.73–1.22)) with non-significant goodness-of-fit tests 
(table  2). All the combined models had an E/O that 
included one in each four risk groups (figure 4). Inter-
cepts and slopes were not different from 0 and 1, respec-
tively (table 2). The c-indexes were all slightly higher than 
those obtained from the BCRAT and IBIS scores, but 
none of them were statistically different. The discrimina-
tion for women at higher risk was also better for the Shieh 

Figure 2  Absolute risk distribution and performance of the BCRAT and IBIS models in the clinical-based cohort. (A) 
Distribution of models’ predictions as a function of cumulative percentage of women. Rug plot on the y-axis. (B) Calibration 
according to the models’ predictions groups. P values were computed using a goodness-of-fit test statistic compared with the 
critical value from the χ2 distribution. (C) Discrimination power of the models according to sensitivity and specificity. C-index 
was calculated using the inverse probability of censoring weighting estimation of cumulative time-dependent ROC curve. 
BCRAT, Breast Cancer Risk Assessment Tool; E/O, expected-to-observed cases; IBIS, International Breast Cancer Intervention 
Study; ROC, receiver operating characteristic.
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and Mavaddat combined scores (down-left corner of the 
ROC curves, online supplemental figure 2). Compared 
with the BCRAT and IBIS models, sensitivities values were 
higher while specificities values were lower (table 2).

DISCUSSION
In this work, we reported the predictive performance of 
BCRAT, IBIS and four PRS for predicting breast cancer 
occurrence within 5 years in a French-Canadian popu-
lation. Results show that the BCRAT and IBIS models 
are globally well calibrated, with an E/O close to one. 
However, when focusing on predicted risk subgroups, the 
BCRAT model overestimates the number of cases in the 
average risk group (1.66%–3% risk) while the IBIS model 
was miscalibrated in the low-risk and intermediate-risk 
groups (below 1.66% risk). In our study, IBIS produced 
slightly better discrimination than BCRAT. As compared 
with the clinical-based models, the genetic prediction 
models (PRS) did not provide a significant improvement 
of the discriminative capacity. Adding PRS to the BCRAT 
or IBIS scores did not significantly increase the predictive 
power of both models.

Despite an overall good mean calibration of the BCRAT 
model, the calibration across risk subgroups could be 

improved. The analysis of the four groups of risk shows 
a significant difference between expected and observed 
cases with an overprediction in women with a risk equal 
or higher than 1.66%. This finding is in accordance with 
previous studies.41–43 Opposite results have also been 
reported in a recent large study with pooled data from 
two cohorts of women where the BCRAT model under-
estimated the risk for values between 1.7% and 3.4%.12 
However, in this latter study, eligible women were aged 
between 20 and 70 years at the enrollment and recruited 
since 1991, while our population was aged between 40 
and 70 years and enrolled since 2009. The overestimation 
of the BCRAT risk prediction model for women with a risk 
higher than 1.66% cannot be explained by differences in 
age-standardised incidence rates since, based on informa-
tion retrieved from national cancer databases,35 44 45 the 
incidence rates are comparable between the USA and 
Canada (250.4 (95% CI 209.0 to 298.3) cases per 100 000 
per year for Canada and 236.8 (95% CI 235.5 to 238.1) 
for US). The IBIS model, the PRS models and the clini-
cogenetic model (BCRAT+PRS) had also an overall good 
mean calibration. However, when analysing calibration 
across risk subgroups, the IBIS model had a significant 
goodness-of-fit test, with an over and underestimated risk 

Table 1  Comparison of BCRAT, IBIS and PRS scores using the clinicogenetic-based validation cohort

BCRAT model/IBIS 
model Mavaddat Shieh Evans Wacholder

E/O 0.94 (0.73 to 1.22) 0.83 (0.65 to 1.08) 0.81 (0.63 to 1.05) 0.82 (0.63 to 1.06) 0.81 (0.62 to 1.04)

0.94 (0.73 to 1.22)

Goodness of fit P=0.0415 P=0.0984 P=0.1009 P=0.1992 P=0.2770

P=0.268

Intercept −2 (−4.4 to 0.2) −0.3 (−2.4 to 1.8) −1 (−2.5 to 0.5) 1 (−1.6 to 3.6) 0.9 (−1.8 to 3.5)

−0.8 (−3.4 to 1.8)

Slope 0.5 (0 to 1) 0.9 (0.4 to 1.4) 0.7 (0.4 to 1.1) 1.2 (0.6 to 1.8) 1.1 (0.5 to 1.7)

0.8 (0.2 to 1.4)

C-index 59.13 (52.96 to 
65.29)

60.77 (53 to 68.53) 62.56 (54.54 to 
70.59)

63.4 (56.65 to 70.16) 64.27 (58.09 to 
70.44)

59.63 (53.26 to 66)

C-indexes comparison with

 � BCRAT model – P=0.72 P=0.46 P=0.23 P=0.18

 � IBIS model – P=0.81 P=0.57 P=0.34 P=0.26

 � Sensitivity* 20.7% (11.2 to 33.4) 31% (19.5 to 44.5) 39.7% (27 to 53.4) 34.5% (22.5 to 48.1) 25.9% (15.3 to 39)

24.1% (13.9 to 37.2)

 � Specificity* 79% (77.7 to 80.3) 82.2% (81 to 83.4) 81.3% (80.1 to 82.5) 85.4% (84.2 to 86.4) 86.7% (85.6 to 87.7)

81.6% (80.4 to 82.8)

Clinicogenetic-based validation cohort: validation of the PRS models and comparison with the BCRAT and IBIS models, genotyped women 
with all SNPs available. Ten per cent of the cohort was used to obtain the relative risk distribution while the remained 90% was used for 
computing the results.
95% CIs in parenthesis
*1.66% threshold.
BCRAT, breast cancer risk assessment tool; E/O, expected-to-observed ratio; IBIS, International Breast Cancer Intervention Study; PRS, 
Polygenic Risk Scores; SNP, single-nucleotide polymorphism.
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in the low and intermediate groups, respectively, prob-
ably explained by the UK incidence rates used by the 
IBIS model. This is not the case for the PRS models but 
this result should be cautiously interpreted in light of the 
reduced number of breast cancers in the genetic cohort.

The discriminatory accuracy of the BCRAT risk predic-
tion model is modest in our population (58.6%) but is 
in accordance to the meta-analysis of Wang et al7 that 
reported a pooled AUC close to our c-index (0.60 (0.58–
0.62)). The IBIS model produced a better discrimination 
estimate (63.4%) than BCRAT. Since we did not collect 
multi-generational pedigree or BRCA1/2 gene mutations 
data in our cohort, the gain in discrimination for the IBIS 
model as compared with BCRAT model may be linked 
to the non-genetic risk factors. HRT use and the meno-
pausal status, that are risk factors for the IBIS model, are 
significantly associated in our series with the outcome 

(p<0.05, results not shown) and may explain the gain in 
discriminative accuracy. It emphasises that the inclusion 
of new modifiable risk factors can increase discriminatory 
accuracy of predictive models.

Although the calibration and discriminative power of 
the PRS and the clinicogenetic models were satisfactory, 
they did not provide a significantly better discrimination. 
This is not surprising since when combining SNPs the 
gains in prediction are usually small.15 Moreover, these 
non-significant results should also be interpreted in light 
of the modest size of our cohort having genetic informa-
tion and the different baseline populations used for calcu-
lating the BCRAT, IBIS and PRSs models’ relative risks. 
It should be noted that the combined IBIS+PRS models 
had a better calibration regarding the four risk groups 
compared with the BCRAT+PRS models. However, the 
absolute risk of IBIS combined models were not obtained 

Figure 3  Calibration according to BCRAT, IBIS and PRS scores’ predictions groups. Results from the clinicogenetic-based 
cohort. P values were computed using a goodness-of-fit test statistic compared with the critical value from the χ2 distribution. 
Each PRS models name referred to the first author of the study from which the PRS were derived. BCRAT, Breast Cancer Risk 
Assessment Tool; E/O, expected-to-observed cases; IBIS, International Breast Cancer Intervention Study; PRS, Polygenic Risk 
Scores.
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Figure 4  Calibration according to BCRAT, IBIS and combined models’ predictions groups. Results from the clinicogenetic-
based cohort. P values were computed using a goodness-of-fit test statistic compared with the critical value from the χ2 
distribution. Each PRS models name referred to the first author of the study from which the PRS were derived. BCRAT, Breast 
Cancer Risk Assessment Tool; E/O, expected-to-observed cases; IBIS, International Breast Cancer Intervention Study; PRS, 
Polygenic Risk Scores.
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with the same procedures as for BCRAT, which makes 
the results not straightforward to compare. Moreover, it 
is worth noting that combining both clinical and genetic 
information in an oversimplified additive way has never-
theless some limitations from an explanatory point of 
view.

Some strengths of the present study should be 
highlighted. First, this validation study relies on the 
CARTaGENE cohort, which is representative of the 
French-Canadian urban population of middle-aged and 
older adults. Moreover, the linkage with administrative 
health databases and the Quebec Breast Cancer Registry 
improved the outcome quality and accuracy, and made 
possible to use variables usually difficult to obtain such 
as the history of breast biopsy or atypical hyperplasia. 
Second and to the best of our knowledge, this study is the 
first to evaluate the BCRAT in a French-Canadian popula-
tion for predicting breast cancer at 5 years.

This study has nevertheless some limitations. First, 
our findings may not apply to younger women under 
forty years old. Second, we have limited our study to 
BCRAT and IBIS risk prediction models. The main 
reason was that both models were well documented and 
implemented. The BCRAT model is used for preven-
tion purpose with chemoprophylaxis in the USA46 47 
and is composed of clinical variables, easy to obtain 
in real clinical practice. The IBIS model is also imple-
mented and can be used even with missing data such 
as multi-generational pedigree and BRCA1/2 gene 
mutations data. Third, since the genotyping informa-
tion was not available for all the cohort, the number 
of incident cases for validating the combined scores 
was lower than for validating BCRAT and IBIS. More-
over, the PRS, BCRAT and IBIS models had to be eval-
uated on different sub-cohorts. The larger decrease of 
IBIS’s c-index compared with BCRAT between the two 
cohorts might be linked to the smaller size of the CGC 
as compared with the clinic-based cohort. The ethnicity 
differences between the two subcohorts could be 
explained by the divergent ancestry step of the quality 
control of genotype data. The highest breast cancer 
risk among genotyped women (higher age at first live 
birth and more relatives with breast cancer) could not 
be explained by the women preferentially genotyped, 
as they were selected for studies unrelated with breast 
cancers.30–32 Even though these two subcohorts were 
similar, it would be useful to collect all genotype infor-
mation for the entire cohort to validate the PRS results. 
Finally, regarding family history included in the IBIS 
model, we only had maternal and paternal history of 
breast cancer and maternal history of ovary cancer. 
However, the IBIS model can handle missing data and 
the performance of the model remained good without 
this information. Therefore, the IBIS model should be 
more accurate with more family history variables.

CONCLUSION
BCRAT and IBIS produced overall good calibration in 
our French-Canadian cohort but with moderate perfor-
mance in terms of discriminative ability. These results 
are in accordance to previous validation studies. IBIS 
had the better discriminatory accuracy. PRS models did 
not significantly improve the discrimination. Despite 
the modest discriminatory power of BCRAT and IBIS, 
these tools can be of interest for primary care physicians 
for delivering a personalised message to their high risk 
patients, regarding screening and lifestyle counselling.
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