Skip to main content
. 2021 Apr 15;13:29. doi: 10.1186/s13321-021-00508-0

Table 8.

Overall performance of the final non-linear models for case study 4

Classification b RF (without HPOc/QSAR-Co)d RF (with HPO/QSAR-Co-X) GB (with HPO/QSAR-Co-X)
Str(tenfold CV)e Tsf Vdg Str(tenfold CV)e Tsf Vd g Str (tenfold CV)e Tsf Vdg
TP 994 431 341 969 433 343 996 443 346
TN 953 405 317 936 405 316 949 406 318
FP 46 17 10 63 17 11 50 16 9
FN 44 20 14 69 18 12 42 8 9
Sn (%) 95.76 95.57 96.06 93.35 95.97 96.64 95.95 96.21 97.46
Sp (%) 95.4 95.97 96.94 93.69 96.01 96.62 94.99 98.22 97.25
Acc (%) 95.58 91.52 96.48 93.52 95.99 96.63 95.48 97.25 97.36
MCCh 0.912 0.915 0.93 0.884 0.920 0.932 0.91 0.945 0.947

aThe most significant results are highlighted in bold. QSAR-Co-X were generated using random state 1 in Module 2 of the toolkit

bTP: True positive, TN: True negative, FP: False positive, FN: False negative, Sn: Sensitivity, Sp: Specificity, Acc: Accuracy

cHPO: Hyperparameter optimisation

dModel previously reported in [15]

eSub-training set

fTest set

gValidation set

hMatthews correlation coefficient