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Abstract

A listener’s interpretation of a given speech sound can vary probabilistically from moment to 

moment. Previous experience (i.e., the contexts in which one has previously encountered an 

ambiguous sound) can further influence the interpretation of speech, a phenomenon known as 

perceptual learning for speech. The present study used multi-voxel pattern analysis to query how 

neural patterns reflect perceptual learning, leveraging archival fMRI data from a lexically guided 

perceptual learning study conducted by Myers and Mesite (2014). In that study, participants first 

heard ambiguous /s/-/∫/ blends in either /s/-biased lexical contexts (epi_ode) or /∫/-biased contexts 

(refre_ing); subsequently, they performed a phonetic categorization task on tokens from 

an /asi/-/a∫i/ continuum. In the current work, a classifier was trained to distinguish between 

phonetic categorization trials in which participants heard unambiguous productions of /s/ and 

those in which they heard unambiguous productions of /∫/. The classifier was able to generalize 

this training to ambiguous tokens from the middle of the continuum on the basis of individual 

subjects’ trial-by-trial perception. We take these findings as evidence that perceptual learning for 

speech involves neural recalibration, such that the pattern of activation approximates the perceived 

category. Exploratory analyses showed that left parietal regions (supramarginal and angular gyri) 

and right temporal regions (superior, middle and transverse temporal gyri) were most informative 

for categorization. Overall, our results inform an understanding of how moment-to-moment 

variability in speech perception is encoded in the brain.

At its core, speech perception is a process of inferring a talker’s intended message from an 

acoustic signal. A challenge for the listener is the lack of a direct correspondence between 
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the acoustic signal and the individual’s phonemic representations (i.e., the lack of invariance 
problem; Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967). Rather, the same 

acoustic information may be interpreted in distinct ways depending on factors such as the 

preceding speech context (Ladefoged & Broadbent, 1957) and the overall rate of the speech 

(Summerfield, 1981). Further complication comes from the fact that different talkers 

produce speech sounds in distinct ways (Kleinschmidt, 2019; Peterson & Barney, 1952). 

Despite these challenges, listeners typically perceive speech with high accuracy and with 

relative ease.

One way that listeners may achieve robust speech perception is by exploiting contextual cues 

(Kleinschmidt & Jaeger, 2015). A listener’s interpretation of the speech signal is strongly 

informed by factors such as lexical knowledge (Ganong, 1980), lip movements (McGurk & 

MacDonald, 1976), and written text (Frost, Repp, & Katz, 1988). Critically, context does not 

just guide the interpretation of speech in the moment; context also influences the 

interpretation of subsequent speech from the same talker, even when later speech is 

encountered in the absence of informative context. In other words, initial context can guide a 

listener’s ability to learn how a particular talker produces their speech sounds – knowledge 

that can be applied later when context is no help to disambiguate the signal. Such perceptual 

learning for speech is often referred to as phonetic recalibration or phonetic retuning.

In a seminal study, Norris, McQueen and Cutler (2003) demonstrated how perceptual 

learning can be guided by a listener’s lexical knowledge. In that study, listeners were 

initially exposed to an ambiguous speech sound in contexts where lexical information 

consistently biased their interpretation toward one phoneme category. In a subsequent test 

phase, the ambiguous speech sound was embedded in contexts where lexical information 

could not be used to resolve phoneme identity. Participants generally interpreted the signal 

in a manner consistent with their previous exposure, indicating phonetic recalibration. Since 

then, a substantial body of research has provided evidence that lexical context can guide 

perceptual learning of speech sounds, with such learning shown to be relatively long-lasting 

(Kraljic & Samuel, 2005), talker-specific (at least for fricatives; Eisner & McQueen, 2005; 

Kraljic & Samuel, 2006, 2007), and robust to changes in the task used during exposure 

(Drouin & Theodore, 2018; Eisner & McQueen, 2006) and test (Sjerps & McQueen, 2010). 

Additionally, phonetic recalibration has been elicited using other forms of contextual cues 

during exposure, such as lip movements (Bertelson, Vroomen, & De Gelder, 2003) and 

written text (Keetels, Schakel, Bonte, & Vroomen, 2016).

Nonetheless, while context can bias a listener’s interpretation of a speech sound, it does not 

uniquely determine it, and there is a considerable amount of trial-by-trial variability in how a 

listener interprets the speech signal. In other words, the influence of contextual factors is 

probabilistic rather than deterministic. Hearing a sound that is intermediate between “s”-/s/ 

and “sh”-/∫/ in the context of epi_ode may bias the listener to the lexically congruent 

interpretation, /s/, (i.e., episode), but they may still sometimes interpret the phoneme in in 

the lexically incongruent way, epishode (Kleinschmidt & Jaeger, 2015). The same is true 

with regard to perceptual learning for speech: Having previously encountered an 

ambiguous /s/-/∫/ sound in /s/-biased contexts may make a listener more likely to later 
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interpret similar ambiguous speech sounds as /s/, but a listener will still occasionally 

interpret these ambiguous sounds as /∫/.

The goal of the current study is to understand how variability in the interpretation of 

ambiguous speech sounds is reflected in patterns of brain activation, particularly following 

phonetic recalibration. Some insight into this question comes from two multi-voxel pattern 

analysis (MVPA) studies of perceptual learning for speech. In one such study, Kilian-Hütten, 

Valente, Vroomen, and Formisano (2011) used lip movements to guide phonetic 

recalibration, collecting fMRI data while participants alternated between exposure blocks 

(where disambiguating visual information guided interpretation of a stimulus ambiguous 

between ‘aba’ and ‘ada’) and test blocks (where participants categorized this ambiguous 

stimulus as well as two surrounding ambiguous tokens). Phonetic recalibration was observed 

in that participants categorized ambiguous stimuli as ‘aba’ more often after /b/-biased blocks 

than after /d/-biased blocks. To examine how trial-by-trial perception was reflected in the 

pattern of functional activation, the authors trained a support vector machine (SVM) on trial-

by-trial patterns of activation from the bilateral temporal lobes, labeling trials based on 

perceptual identification data. When tested on activation patterns from held-out trials, the 

classifier was significantly above chance in its ability to correctly identify how the subject 

had perceived the stimulus on that trial. Furthermore, the most discriminative voxels tended 

to be left-lateralized and specifically located near primary auditory cortex. Similar results 

were obtained by Bonte, Correia, Keetels, Vroomen, and Formisano (2017), who used 

written text (aba or ada) to guide phonetic recalibration of ambiguous auditory stimuli (a?a). 
Using a similar SVM approach, Bonte and colleagues found that the subject’s trial-by-trial 

interpretation of an ambiguous stimulus could be identified based on the pattern of activity 

across the bilateral superior temporal cortex. Taken together, the results of these studies 

suggest that a listener’s ultimate percept of an ambiguous sound can be recovered from the 

pattern of activity in temporal cortex.

Because these previous studies were largely interested in whether perceptual information 

was encoded in early sensory regions, their analyses were restricted to bilateral temporal 

cortex. However, there are reasons to suspect that the pattern of neural activity in other 
regions may also provide information about the underlying percept, at least following 

lexically guided perceptual learning. Of particular relevance here is a lexically guided 

perceptual learning study by Myers and Mesite (2014). In that study, participants alternated 

between lexical decision blocks (during which they were exposed to an ambiguous /s/-/∫/ 

sound in lexically disambiguating contexts, such as epi_ode or refre_ing) and test blocks 

(wherein participants performed a phonetic categorization task with a continuum of stimuli 

from /asi/ to /a∫i/). Functional neuroimaging data collected during the phonetic 

categorization task implicated a broad set of neural regions in the process of lexically guided 

perceptual learning. In particular, the response of the right inferior frontal gyrus (IFG) to 

ambiguous tokens depended on whether the exposure blocks had biased subjects to interpret 

the ambiguous speech sound as /s/ or /∫/. The authors also reported several left hemisphere 

clusters – including ones in left parietal cortex (left supramarginal gyrus, or SMG) and in 

left IFG – that showed an emergence of talker-specific effects over the course of the 

experiment. Such findings suggest that a subject’s perceptual experience may be encoded in 

regions beyond temporal cortex, at least when lexical information guides phonetic retuning.
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Notably, Myers and Mesite (2014) employed only univariate statistics to investigate the 

neural basis of subjects’ perceptual experiences. By contrast, MVPA exploits potential 

interactions between voxels (focal and/or distributed) to uncover otherwise hidden cognitive 

states. MVPA also allows researchers to investigate the generalization of multi-voxel 

patterns across different cognitive states, which is crucial for studying invariance to specific 

experimental dimensions (Correia et al., 2014; Correia, Jansma, & Bonte, 2015).

In the current study, we used MVPA to analyze patterns of functional activation during the 

course of lexically guided perceptual learning, considering a broad set of regions implicated 

in language processing. To this end, we re-analyzed data originally collected by Myers and 

Mesite (2014). In the phonetic categorization task used by Myers and Mesite, participants 

were asked to categorize both ambiguous stimuli (i.e., stimuli near the phonetic category 

boundary) as well as unambiguous ones (i.e., stimuli near the endpoints of the phonetic 

continuum). This allowed us to ask whether the information needed to distinguish 

unambiguous stimuli can be generalized to distinguish between ambiguous stimuli on the 

basis of trial-by-trial perception. Hence, we trained SVM classifiers on multi-voxel patterns 

from the unambiguous tokens of the continuum; one unambiguous token had been created 

by averaging the waveforms of a clear /s/ and a clear /∫/ but weighting the mixture toward /

∫/ (20% /s/ and 80% /∫/), and the other was a blend weighted toward /s/ (70% /s/ and 30% /

∫/). Both training tokens were perceived unambiguously, and participants categorized them 

with near-perfect accuracy. We then examined whether the classification scheme that was 

useful for distinguishing unambiguous tokens could be used to distinguish ambiguous tokens 

in the middle of the continuum (a 40% /s/ token and a 50% /s/ token, for which subjects 

exhibited considerable variability in their phonetic categorization). Critically, we labeled test 

stimuli on the basis of how they were ultimately perceived on that individual trial. If 

functional activation patterns reflect variability in perception, then the patterns of activation 

should differ between trials where the same acoustic information (e.g., the 40% /s/ token) 

was interpreted as a /s/ or as a /∫/. In this way, we can glean insight into how a subject’s 

perceptual experience, which may vary from trial to trial even when acoustics are held 

constant, is reflected in the underlying neural patterns of activation. Furthermore, by training 

the classifier on unambiguous stimuli and testing it on ambiguous tokens, we can directly 

test how subjects’ neural encoding of ambiguous speech sounds compares to their encoding 

of unambiguous stimuli.

Methods

Data collection

Data were obtained from Myers and Mesite (2014), to which the reader is referred for full 

details regarding stimuli construction and data acquisition. We analyzed data from 24 adults 

(age range: 18–40 years, mean: 26), all of whom were right-handed native speakers of 

American English with no history of neurological or hearing impairments. Participants 

completed alternating runs of lexical decision and phonetic categorization, completing five 

runs of each. During lexical decision, participants encountered ambiguous /s/-/∫/ stimuli in 

contexts where lexical information biased their interpretation, with half of the participants 

receiving /s/-biased contexts (e.g., epi_ode) and half receiving /∫/-biased contexts (e.g., 
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refre_ing). During phonetic categorization blocks, participants heard four tokens from 

an /asi/-/a∫i/ continuum – two tokens that were unambiguous (20% /s/ and 70% /s/) as well 

as two that were perceptually ambiguous (40% /s/ and 50% /s/). Participants made 

behavioral responses during the lexical decision and phonetic categorization tasks, and 

buttons were pressed using their right index and middle fingers; response mappings were 

counterbalanced across participants. Across all runs, participants received 160 phonetic 

categorization trials (8 per token during each of the 5 runs). The study implemented a fast 

event-related design with sparse sampling (Edmister, Talavage, Ledden, & Weisskoff, 1999), 

where each 2-second EPI acquisition was followed by 1 second of silence. Auditory stimuli 

were only presented during silent gaps.

Data analysis

Feature estimation.—For the present analyses, functional images were minimally 

preprocessed in AFNI (Cox, 1996) using an afni_proc.py script that simultaneously aligned 

functional images to their anatomy and registered functional volumes to the first image of 

each run. The remaining analyses were conducted using custom scripts in MATLAB (The 

Mathworks Inc., Natick, MA, USA). We next estimated the multi-voxel pattern of activation 

for each trial of the phonetic categorization task; note that lexical decision trials were not 

included in these analyses. Because data were obtained using a rapid event-related design, 

we used a least squares-separate approach to estimate a beta map for each trial (Mumford, 

Turner, Ashby, & Poldrack, 2012). In this approach, a separate general linear model is 

performed for every trial. In each model, the onset of the current trial is convolved with a 

basis function, and this is then used as the regressor of interest. A nuisance regressor is made 

from a vector of all other trial onsets convolved with the same basis function. This approach 

leads to more accurate and less variable estimates of single-trial activations in rapid event-

related designs, thereby leading to more reliable MVPA analyses (Mumford et al., 2012). 

For our analyses, we used a double gamma function as the basis function, following the 

recommendation of Mumford and colleagues. We set the onset of the audio stimulus to be 

the onset of the response function but otherwise used the default parameters in the spm_hrf 
function.

ROI selection.—In contrast to previous studies that have only considered the activity of 

temporal cortex (Bonte et al., 2017; Kilian-Hütten et al., 2011), we considered the pattern of 

activity across a broad set of regions implicated in language processing. Specifically, we 

considered bilateral frontal cortex (inferior and middle frontal gyri), parietal cortex 

(supramarginal and angular gyri), temporal cortex (superior, middle and transverse temporal 

gyri) and insular cortex. Note that precentral and postcentral gyri were excluded from this 

mask because of the concern that classification accuracy in these areas could be driven by 

the motor requirements of making a behavioral response on every trial. Regions were 

defined anatomically using the Talairach and Tournoux (1988) atlas built into AFNI and are 

visualized in Figure 1A. Group-level masks were warped into each subject’s native brain 

space in AFNI using the 3dfractionize program so that classification analyses could be 

performed in each subject’s native brain space.
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Classification and cross-validation approach.—Multi-voxel patterns were analyzed 

using support vector machines (SVMs) that were trained on beta maps from trials in which 

participants heard unambiguous tokens (20% /s/ and 70% /s/). These unambiguous trials 

were labeled as /s/ or /∫/ depending on their acoustics, not subjects’ trial-by-trial perception, 

though subjects had near-ceiling (94%) accuracy in classifying these stimuli. This ensured 

that training sets were balanced (i.e., there were an equal number of /s/ trials and /∫/ trials). 

After training on the unambiguous endpoint stimuli, SVMs were tested in their ability to 

classify ambiguous stimuli from the middle of the continuum (the 40% /s/ and 50% /s/ 

tokens).

If functional activation patterns reflect a subject’s perceptual experience (which results in 

part from the biasing effects of lexical context), then the pattern of activation should depend 

on how a subject ultimately perceived a trial; thus, patterns corresponding to a single 

stimulus (e.g., 40% /s/) may differ depending on how the acoustics were ultimately 

interpreted on that trial. Notably, for ambiguous tokens, the lexically-biasing context shifted 

the phonetic category boundary and significantly increased the probability that individuals 

who heard /s/-biased lexical contexts would assign the /s/ label to ambiguous tokens (and the 

opposite for the /∫/-biased group). As such, for one SVM, the ambiguous stimuli used for 

testing were labeled based on each subject’s trial-by-trial behavioral classification and thus 

reflected not only the stochasticity of perception of ambiguous tokens but also the effects of 

biasing context on those tokens. Alternatively, functional activation patterns may instead 

reflect only acoustic information. In this case, patterns for the 40% /s/ token may more 

closely resemble patterns from 20% /s/ trials than patterns from 70% /s/ trials. Therefore, for 

a second SVM, ambiguous stimuli were labeled based on which unambiguous token they 

more closely resembled acoustically (i.e., the 40% /s/ token labeled as /∫/ and the 50% /s/ 

token as /s/).

To ensure that no individual run biased results, the training set was divided into five folds 

using a leave-one-run-out approach for further cross-validation. That is, in each fold, the 

SVM was trained on the unambiguous patterns from only four of the five runs; it was then 

tested in its ability to classify the ambiguous boundary patterns from all five runs. By-

subject classification accuracies were computed by averaging across folds. Note that because 

our classification procedure involved training on patterns from unambiguous trials and 

testing on patterns from ambiguous trials, the training and test sets were entirely non-

overlapping.

In the absence of an effective cross-validation scheme, the use of a large ROI can lead to 

overfitting (i.e., finding a multivariate solution in the training data that does not generalize to 

the test data). As such, for each fold, feature selection and classification were performed 

using Recursive Feature Elimination (RFE). RFE entails iteratively identifying and 

eliminating the voxels that are least informative to classification, therefore reducing the 

dimensionality of the data and preventing against overfitting. RFE in particular has been 

identified as an optimal method for recovering cognitive and perceptual states from auditory 

fMRI data (De Martino et al., 2008). To this end, 90% of the training trials were randomly 

selected on each iteration of the RFE procedure; this “split” of the training data was used to 

train the classifier and to identify the most discriminative voxels. This procedure was 
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repeated, and after four splits, the classification outcomes were averaged. The voxels that 

ranked in the 30% least discriminative voxels (averaged across the four splits) were 

eliminated, and only the voxels that survived this feature selection step were considered in 

the next iteration. 10 iterations were performed per fold, meaning that feature selection 

occurred 10 times per fold (and that there was a total of 40 splits for each fold).

Because the RFE procedure entails discarding the least informative voxels, chance-level 

accuracy may be greater than 50% when RFE is used. Therefore, to evaluate the 

performance of the classifier against chance, we repeated the above procedure with 

randomly shuffled training labels; 100 permutations were conducted for each subject. 

Permuted accuracy values were averaged across folds and permutations in order to generate 

by-subject estimates of chance. To assess whether the classifier performed significantly 

above chance, we conducted a one-tailed paired samples t-test that compared each observed 

classification accuracy to the accuracy value that would have been expected by chance. Note 

that because our goal was to leverage decoding techniques to provide insight into brain 

function (rather than to predict behavioral performance on future trials), we do not require 

high classification accuracy; instead, the goal is only to assess whether classification 

accuracy is significantly above chance in order to assess whether particular brain regions can 

discriminate between two categories of interest (Hebart & Baker, 2018).

Results

As reported by Myers and Mesite (2014), participants’ performance on the phonetic 

categorization task was influenced by the contexts in which they had previously encountered 

the ambiguous sounds (Figure 1B). Notably, however, the influence of previous context is 

not deterministic; that is, it is not the case that participants always classified ambiguous /s/-/

∫/ sounds as /s/ after hearing ambiguous tokens in /s/-biased lexical frames. Rather, context 

had a probabilistic influence on phonetic categorization responses, and critically, there was 

considerable trial-to-trial variability in behavioral responses, particularly in subjects’ 

classification of ambiguous tokens. In this study, we examined the trial-to-trial variability in 

the multi-voxel patterns of functional activation when participants heard ambiguous tokens.

Our approach was to train a support vector machine to classify unambiguous trials as /s/ 

trials or /∫/ trials. We then assessed whether the learned classification scheme yielded 

above-chance accuracy when the SVM was tested on held-out trials in which participants 

heard ambiguous tokens near the phonetic category boundary. As shown in Figure 1C, 

classification of ambiguous tokens was significantly above chance when the ambiguous 

tokens were labeled based on subjects’ trial-by-trial behavioral percepts, as evidenced by a 

one-tailed t-test against the permuted chance values, t(23) = 2.43, p = 0.012. However, 

classification was not above chance when ambiguous tokens were labeled based on which 

unambiguous token they were acoustically closer to (i.e., the 40% /s/ token was labeled as /

∫/ and the 50% /s/ token labeled as /s/), t(23) = −3.14, p = 0.998. In other words, the features 

that could be used to classify multi-voxel patterns for unambiguous trials as /s/ or /∫/ could 

be used to classify ambiguous trials based on how they were ultimately perceived, but not 

based on their acoustic similarity to those unambiguous tokens.
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These results indicate that a subject’s ultimate perception of an ambiguous stimulus can be 

recovered from the multi-voxel pattern across a broad set of regions involved in language 

processing. Notably, however, there was a considerable degree of variability in how 

accurately the classifier was able to recover subjects’ perceptual interpretation of the 

ambiguous stimuli. To probe the nature of this variability, we considered whether 

classification accuracy was related to subjects’ behavioral performance on the phonetic 

categorization task. In particular, we measured the extent to which subjects labeled 

ambiguous tokens in line with their biasing condition (e.g., how often subjects labeled 

ambiguous tokens as ‘s’ if they had previously heard ambiguous tokens in /s/-biased lexical 

frames). As shown in Figure 1D, there was a marginal relationship between classification 

accuracy and the proportion of bias-consistent responses made by each subject, r = 0.386, 

t(22) = 1.961, p = 0.062. Taken together, the present results indicate that as phonetic 

recalibration occurs, there is also some degree of neural retuning such that functional 

activation patterns reflect the subject’s ultimate percept. Further, the extent of neural 

returning may be related to the degree of phonetic recalibration observed behaviorally.

Because we considered a broad set of language regions in our primary analyses, we are 

limited in our ability to make strong claims about which regions are involved in this neural 

retuning process. To pursue this question of which regions contain more discriminative 

patterns, we also conducted a series of exploratory region-of-interest (ROI) analyses, 

examining the classifier’s performance when it was only given information about voxels in 

certain anatomically-defined regions. In particular, we parcellated our initial set of voxels 

into the eight regions shown in Figure 1A: left frontal, left insula, left temporal, left parietal, 

and the corresponding regions on the right.

Figure 2A shows the performance of the classifier when considering only the voxels in a 

particular region; results from one-tailed paired samples t tests are provided in Table 1. 

Because our primary analyses only found above-chance accuracy when the SVM classified 

ambiguous tokens with respect to subjects’ trial-by-trial percepts, these exploratory ROI 

analyses also labeled test trials based on trial-level behavioral responses.1 Results indicated 

that subjects’ behavioral responses could be successfully recovered when the classifier only 

considered the voxels in left parietal cortex, t(23) = 2.002, p = 0.029 (uncorrected). Above-

chance accuracy was also achieved in right temporal cortex, t(23) = 1.734, p = 0.048 

(uncorrected). No other regions yielded classification accuracy levels that were significantly 

above chance, all p > 0.05.

As before, we also examined whether classification accuracy was related to subjects’ 

behavioral performance on the phonetic categorization task. We found that the proportion of 

bias-consistent responses subjects made on ambiguous trials was a significant predictor of 

classification accuracy when the classifier only considered voxels from left parietal cortex, r 

1As described above, we did not achieve above-chance classification when our SVM considered whether ambiguous tokens could be 
distinguished based on which unambiguous token they more closely resembled acoustically. This is particularly striking because the 
RFE algorithm iteratively eliminates voxels that are least informative for the classification, allowing the more informative voxels to 
exert a relatively large influence over the ultimate multivariate solution. Thus, if an “acoustic similarity” classification could have been 
made from any of the voxels considered in the primary analyses, these voxels should, in principle, have been identified. We therefore 
refrain from conducting exploratory ROI analyses where ambiguous trials are labeled with respect to the underlying acoustics, 
especially since the risk of a Type I error increases with additional comparisons.
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= 0.506, t(22) = 2.751, p = 0.012, but not when the classifier only considered voxels from 

right temporal cortex, r = 0.200, t(22) = 0.960, p = 0.348 (Figure 2B).

General Discussion

Speech perception is a nondeterministic process, wherein the same acoustic signal can be 

interpreted differently from instance to instance. Such moment-to-moment variability is 

particularly pronounced near phonetic category boundaries, where phoneme identity is 

decidedly ambiguous (Liberman, Harris, Hoffman, & Griffith, 1957).2 Additional variability 

in the interpretation of the speech signal is driven by listeners’ perceptual histories, as in the 

case of lexically guided perceptual learning (Norris et al., 2003). More generally, the 

challenge of speech perception may be characterized as one of inference under uncertainty, 

in which different perceptual outcomes are associated with varying degrees of probability, 

and the probability of any single outcome need not be 100% (Kleinschmidt & Jaeger, 2015). 

In the current investigation, we examined archival data from a lexically guided perceptual 

learning study by Myers and Mesite (2014) in which participants completed alternating 

blocks of lexical decision and phonetic categorization. We considered how trial-level 

variability in phonetic categorization of ambiguous speech (specifically, speech ambiguous 

between /s/ and /∫/) was reflected in patterns of functional activation across the brain.

We observed that the pattern of functional activation across the brain reflects a subject’s 

ultimate interpretation of an ambiguous speech sound, even as this interpretation may vary 

from trial to trial. In particular, multi-voxel pattern analyses indicated that the information 

that was useful for classifying unambiguous stimuli (i.e., those near the endpoints of the 

phonetic continuum) could also be used to classify ambiguous stimuli (i.e., those near the 

phonetic category boundary) on the basis of subjects’ trial-level perceptual interpretations. 

That is, when a listener interpreted an ambiguous stimulus as /s/, the pattern of activation 

better resembled a canonical (unambiguous) /s/ pattern than a canonical /∫/ pattern. Note 

that our analyses did not include precentral and postcentral gyri; as such, it is unlikely that 

our results reflect the motor requirements of making a behavioral response on every trial. 

Strikingly, the more that subjects’ behavioral responses to ambiguous stimuli were 

influenced by the lexical contexts they had previously encountered, the greater the 

classifier’s ability to classify ambiguous stimuli, although this correlation did not reach 

significance. Taken together, these results suggest that the phonetic retuning observed in 

lexically guided perceptual learning studies may be accompanied by a comparable degree of 

neural retuning.

We also attempted to classify ambiguous stimuli based on which unambiguous stimulus they 

better resembled acoustically. However, we found that even across a broad set of regions 

involved in language processing, the classification boundary that separated unambiguous 

stimuli into /s/ and /∫/ categories could not be used to classify ambiguous tokens based on 

acoustic proximity (i.e., to label a 40% /s/ token as a /∫/ and a 50% /s/ token as a /s/). One 

2Such variability may emerge at a number of stages in processing, potentially being influenced by perceptual warping near the 
category boundary, the particular acoustic features that listeners happen to be attending at a given moment (Riecke, Esposito, Bonte, & 
Formisano, 2009), and/or decision-level inconsistency in labeling (Best & Goldstone, 2019; Hanley & Roberson, 2011). However, the 
current data cannot adjudicate between these different explanations, as participants made explicit behavioral responses on every trial.
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possibility is that the fine-grained acoustic detail needed to make such a distinction is not 

preserved in cortical representations, or at least in the BOLD signal measured in functional 

MRI studies. Data from a categorical perception study by Bidelman, Moreno and Alain 

(2013) are consistent with this view. In that study, the authors found that the functional 

activity of the brainstem varied continuously with changes in the spectral content of the 

speech signal, but the activity of cortex mostly reflected subjects’ ultimate interpretation of 

the signal, with only very early cortical waves (i.e., those before 175 ms) showing fine-

grained sensitivity to the speech sound. We suggest that additional studies focusing on the 

functional responses of earlier auditory regions might inform our understanding of how the 

fine-grained auditory details of ambiguous speech are mapped onto perceptual 

interpretations in the wake of perceptual learning.

The present investigation follows other MVPA studies (Bonte et al., 2017; Kilian-Hütten et 

al., 2011) that have considered how context can guide perceptual learning for speech. In 

these studies, trial-by-trial interpretations of ambiguous speech sounds were recoverable 

from the activation of bilateral temporal regions. Critically, the present study differed from 

previous ones in three notable ways. First, our analyses examined whether the distinctions 

that matter for classifying unambiguous tokens can be generalized to also classify 

ambiguous tokens; by contrast, the classification approach used in these previous studies 

was to consider only whether ambiguous tokens could be distinguished from each other 

according to the reported percept. As such, the present study shows that sounds that are 

perceptually grouped in the same phonetic category are also more similar to one another in 

terms of the evoked neural response, as the classification boundary between unambiguous 

tokens can be used to distinguish ambiguous tokens based on perception. Second, the 

present study considered phonetic recalibration that was driven by lexical information 

specifically, whereas previous studies considered aftereffects of written text and of lip 

movements. Some researchers have noted that while lipread and lexical information seem to 

influence phonetic recalibration similarly, there may be important differences between them 

– and potentially differences in the underlying mechanism (van Linden & Vroomen, 2007). 

Lip movements influence the perception of speech even at early stages of development and 

themselves constitute a source of bottom-up information; lexical information, by contrast, 

exerts its influence only at developmentally later stages and potentially guides recalibration 

in a top-down fashion. As such, the mechanisms underlying different forms of phonetic 

recalibration may vary, at least when context is provided by lexical information versus by lip 

movements. For instance, if we consider visual information from the face during speech to 

be a bottom-up signal, it may have a more central effect on phonetic recalibration, and thus 

be found earlier in the processing stream in the temporal lobe. By contrast, lexical 

information can only be brought to bear after the word is accessed, and as such recalibration 

may be more apparent in parietal regions more distal from first-stage acoustic-phonetic 

processing. Finally, the present study considered a large set of regions that have been 

implicated in language processing, not only the STG.

Exploratory analyses of the current data set further examined classification ability within 

anatomically-defined regions of interest when the support vector machine was trained on 

unambiguous tokens and tested on its ability to classify ambiguous tokens based on trial-

level perception. These follow-up analyses indicated that above-chance classification of 
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ambiguous stimuli could also be achieved when considering only voxels in left parietal 

cortex (supramarginal and angular gyri) or, alternatively, when only considering right 

temporal cortex (superior, middle and transverse temporal gyri).

The suggestion that left parietal regions are important for encoding trial-by-trial perceptual 

interpretations of speech sounds is particularly striking. Left parietal regions have been 

implicated in the interface between phonological and lexical information (e.g., Prabhakaran, 

Blumstein, Myers, Hutchison, & Britton, 2006), and neuroimaging studies have suggested 

that top-down lexical effects on phonetic processing may manifest through top-down 

influences of left parietal cortex on posterior temporal regions (Gow, Segawa, Ahlfors, & 

Lin, 2008; Myers & Blumstein, 2008). Consistent with this view, we observed a significant 

relationship between the degree to which lexical context influenced behavior (measured in 

terms of the proportion of bias-consistent behavioral responses) and the degree of neural 

retuning (as reflected by classification accuracy). However, because previous MVPA studies 

of phonetic recalibration (Bonte et al., 2017; Kilian-Hütten et al., 2011) have restricted their 

analyses to the temporal lobes, it is an open question whether the involvement of left parietal 

regions is specific to phonetic recalibration guided by lexical context. It may be the case that 

perceptual learning of speech always entails neural retuning observable in left parietal 

cortex; indeed, the supramarginal and angular gyri have been implicated in discriminating 

between phonemes across a range of behavioral tasks (Turkeltaub & Branch Coslett, 2010) 

and in sensitivity to phonetic category structure (Joanisse, Zevin, & McCandliss, 2007; 

Raizada & Poldrack, 2007). We therefore suggest that future work carefully consider the 

involvement of parietal cortex in encoding details about subjects’ trial-by-trial perception of 

speech, particularly when perception is guided by lexical information.

In addition to the findings in left parietal cortex, we found that the perception of ambiguous 

speech sounds could be recovered from temporal cortex, though notably, we observed 

above-chance classification in right temporal cortex, not left. Prominent neurobiological 

models of speech perception posit that the early analysis of speech sounds is accomplished 

by bilateral temporal regions, though the specific role of right temporal regions in speech 

perception is not as well understood as compared to left temporal regions (Binder et al., 

1997; Hickok & Poeppel, 2000, 2004, 2007; Yi, Leonard, & Chang, 2019). Notably, right 

posterior temporal cortex has been implicated in discriminating between different talkers’ 

voices (Belin, Zatorre, Lafaille, Ahad, & Pike, 2000; Formisano, De Martino, Bonte, & 

Goebel, 2008; von Kriegstein & Giraud, 2004) and in recognizing talker differences in how 

acoustic detail maps onto phonetic categories (Myers & Theodore, 2017), while right 

anterior temporal regions are thought to be involved in voice identification based on talker-

specific acoustic details (Belin, Fecteau, & Bédard, 2004; Schall, Kiebel, Maess, & von 

Kriegstein, 2014). Given that lexically guided perceptual learning has been characterized as 

a process in which listeners make inferences about how a particular talker produces their 

speech (Kraljic, Brennan, & Samuel, 2008; Kraljic & Samuel, 2011; Kraljic, Samuel, & 

Brennan, 2008; Liu & Jaeger, 2018), the importance of right temporal regions in the present 

results may reflect the talker specificity of perceptual learning for speech. Alternatively, the 

engagement of the right hemisphere may reflect its purported role in analyzing spectral or 

longer-duration cues (e.g., Poeppel, 2003), as the current study used fricative stimuli (/s/ 

and /∫/) that are differentiated by such cues.
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Notably, we observed a significant relationship between the size of the lexical effect on 

behavior (i.e., how often subjects labeled an ambiguous token as ‘s’ after previously hearing 

ambiguous tokens in /s/-biased lexical contexts) and classification accuracy when our 

analysis was limited to left parietal cortex, but we did not observe such a relationship when 

our analysis was limited to right temporal cortex. Such a pattern of results might be 

understood through a framework in which left parietal cortex is involved in lexical-phonetic 

interactions and the right temporal cortex is involved in conditioning phonetic identity on 

talker identity. Under such a framework, we might expect the degree of neural retuning in 

left parietal cortex to reflect the influence of lexical context on phonetic processing, whereas 

we might expect the degree of neural retuning in right temporal cortex to reflect the talker 

specificity of phonetic recalibration. Because the current study did not manipulate talker 

identity (i.e., listeners only heard one voice throughout the experiment), we defer a serious 

treatment of this hypothesis to future work.

The view that trial-by-trial perceptual experiences are reflected in the activation of temporal 

cortex is also supported by several electrophysiological studies. In an electrocorticography 

study conducted by Leonard, Baud, Sjerps, and Chang (2016), for instance, participants 

listened to clear productions of minimally contrastive words, such as /fæstr/ (faster) and /

fæktr/ (factor), as well as a stimulus in which in the critical segment (here, either /s/ or /k/) 

was replaced by noise (e.g., /fæ#tr/). Meanwhile, neural activity was recorded through 

electrodes placed directly on the surface of the left or right hemisphere. As in previous 

phoneme restoration studies (Warren, 1970), participants subconsciously “filled in” the 

missing sound, and here, their perception was bi-stable, with participants sometimes 

interpreting the ambiguous stimulus as faster and sometimes as factor. Critically, when 

participants encountered an ambiguous stimulus, the activity of bilateral STG reflected their 

ultimate perception: When they interpreted the ambiguous stimulus as faster, STG activity 

approximated the STG response to a clear production of faster, and when they interpreted 

the ambiguous stimulus as factor, STG activity resembled the response to a clear production 

of factor. Similar results come from an electroencephalography study by Bidelman et al. 

(2013), who found that the event-related responses to ambiguous vowel stimuli – 

specifically, the amplitude of the cortical P2 wave – depended on how the signal was 

perceived on a particular trial; consistent with the findings of Leonard et al., the P2 wave is 

thought to originate from temporal cortex. In the present study, we observed a similar pattern 

of results in that (right) temporal lobe responses to ambiguous stimuli differed depending on 

subjects’ perceptual experiences, with the activation pattern on an ambiguous trial 

approximating the pattern for the clear version of the perceived stimulus.

In summary, the present work demonstrates that trial-by-trial variability in the perception of 

ambiguous speech is reflected in the pattern of activation across several brain regions, 

especially in left parietal and right temporal regions. In particular, the brain’s response to an 

ambiguous token depends on how the stimulus is interpreted in that moment, with the 

pattern of activation elicited on an ambiguous trial resembling the pattern elicited by an 

unambiguous production of the perceived category. These results ultimately contribute to an 

understanding of how the brain encodes the perceptual variability listeners experience during 

speech perception.
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Figure 1. 
(A) Analyses considered the pattern of activation across several regions associated with 

language processing: bilateral frontal regions (inferior and middle frontal gyri), insular 

cortex, temporal regions (superior, middle, and transverse temporal gyri), and parietal 

regions (supramarginal and angular gyri). The analyses in this figure considered the 

classification ability of voxels in all these regions, irrespective of specific location.

(B) Behavioral performance on the phonetic categorization task, previously reported by 

Myers and Mesite (2014). Subjects made more /s/ responses as stimuli became more /s/-like, 

and their overall rate of /s/ responses was higher if they had previously encountered 

ambiguous stimuli in contexts where lexical information guided them to interpret the 

ambiguous stimulus as ‘s.’ Critically, there is still a considerable amount of trial-to-trial 
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variability in classification of ambiguous tokens; for instance, subjects in the /s/-biased 

group interpreted the 40% /s/ token as /s/ approximately half the time and as /∫/ half the 

time.

(C) A classifier was trained to classify unambiguous stimuli as /s/ or /∫/ and was able to 

successfully generalize to ambiguous stimuli near the phonetic category boundary, with 

significantly above-chance accuracy in determining how subjects perceived an ambiguous 

stimulus on each particular trial (left panel). However, the classifier did not reach above-

chance accuracy when ambiguous stimuli were labeled with respect to acoustics (right 

panel). Dark points indicate mean accuracy, and error bars indicate standard error. Light 

lines indicate classification accuracy by subject, with light red lines indicating subjects who 

had previously heard ambiguous tokens in /s/-biased contexts and light blue lines indicating 

those who had previously received /∫/-biased contexts.

(D) A follow-up analysis indicated that the classifier’s ability to recover trial-by-trial 

perceptual experiences was numerically related to individual differences in phonetic 

recalibration. In particular, the classifier was most accurate in classifying ambiguous tokens 

for subjects who showed large behavioral effects (measured as the proportion of bias-

consistent responses made on ambiguous trials). Red points indicate subjects who had 

previously heard ambiguous tokens in /s/-biased lexical frames, while blue points indicate 

those who had heard ambiguous tokens in /∫/-biased contexts.
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Figure 2. 
(A) Exploratory analyses considered the classifier’s ability to determine by-trial perceptual 

interpretations, considering each brain region separately. Above-chance accuracy was 

achieved in left parietal cortex and right temporal cortex, uncorrected for multiple 

comparisons. Dark points indicate mean accuracy, and error bars indicate standard error. 

Light lines indicate classification accuracy by subject, with light red lines indicating subjects 

who had previously heard ambiguous tokens in /s/-biased contexts and light blue lines 

indicating those who had previously received /∫/-biased contexts.

(B) Follow-up analyses tested whether classification accuracy in these ROIs was related to 

the behavioral extent of perceptual learning. This relationship was significant when 

considering only the voxels in left parietal cortex (left panel) but not when considering the 
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voxels in right temporal cortex (right panel). Red points indicate subjects who had 

previously heard ambiguous tokens in /s/-biased contexts, while blue points indicate those 

who had heard ambiguous tokens in /∫/-biased contexts.
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Table 1.

Results from exploratory classification analyses testing whether subjects’ trial-by-trial interpretations of 

ambiguous stimuli could be recovered from the pattern of activation in particular sets of brain regions.

Regions Left Right

Frontal t(23) = −0.229, p = 0.590, n.s. t(23) = −0.566, p = 0.711, n.s.

Insula t(23) = 0.732, p = 0.236, n.s. t(23) = 0.115, p = 0.455, n.s.

Temporal t(23) = 0.261, p = 0.398, n.s. t(23) = 1.734, p = 0.048, *

Parietal t(23) = 2.002, p = 0.029, * t(23) = 0.343, p = 0.367, n.s.

*
indicates classification accuracy that was significantly above chance at p < 0.05, uncorrected for multiple comparisons.
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