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Abstract

Mobile sources emit particulate matter as well as precursors to particulate matter (PM, s) and
ground-level ozone, pollutants known to adversely impact human health. This study uses source-
apportionment photochemical air quality modeling to estimate the health burden (expressed as
incidence) of an array of PM5 5- and ozone-related adverse health impacts, including premature
death, attributable to 17 mobile source sectors in the US in 2011 and 2025. Mobile sector-
attributable air pollution contributes a substantial fraction of the overall pollution-related mortality
burden in the U.S., accounting for about 20% of the PM, 5 and ozone-attributable deaths in 2011
(between 21 000 and 55 000 deaths, depending on the study used to derive the effect estimate).
This value falls to about 13% (between 13 000 and 37 000 deaths) by 2025 due to regulatory and
voluntary programs reducing emissions from mobile sources. Similar trends across all morbidity
health impacts can also be observed. Emissions from on-road sources are the largest contributor to
premature deaths; this is true for both 2011 (between 12 000 and 31 000 deaths) and 2025
(between 6700 and 18 000 deaths). Non-road construction engines, C3 marine engines and
emissions from rail also contribute to large portions of premature deaths. Across the 17 mobile
sectors modeled, the PM, s-attributable mortality and morbidity burden falls between 2011 and
2025 for 12 sectors and increases for 5. Ozone-attributable mortality and morbidity burden
increases between 2011 and 2025 for 10 sectors and falls for 7. These results extend the literature
beyond generally aggregated mobile sector health burden toward a representation of highly-
resolved source characterization of both current and future health burden. The quantified future
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mobile source health burden is a novel feature of this analysis and could prove useful for
decisionmakers and affected stakeholders.
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1. Introduction

The risks to human health from exposure to ground-level ozone (O3)and fine particles (sized
2.5 microns or smaller, or PM; 5) is well established in a large and growing body of
literature [1, 2]. Risk assessments, which characterize the number and distribution of air
pollution effects among the population, estimate a substantial number of early deaths,
hospital admissions, emergency department visits, cases of aggravated asthma and other
effects associated with population exposure to these pollutants [3-5]. These assessments
commonly report tens of thousands of early deaths and thousands to hundreds of thousands
of morbidity effects.

A subset of these assessments have applied photochemical source apportionment modeling
techniques to simulate the O3 and PM> 5 concentrations attributableconcentratio to various
sectors and then quantified the risks associated with these concentrations [5, 6]. For
example, studies by Fann et a/and by Caiazzo et al each used photochemical source
apportionment modeling techniques to inform an air pollution risk assessment characterizing
the PM, 5 and Og health impacts attributable to a variety of industrial point, area and mobile
sources in the U.S [5, 7]. Both studies found that mobile sources, including on-road vehicles,
non-road vehicles and ships, were among the largest sources of air pollution health burden.

Building upon this work, we leverage a recently published analysis by Zawacki et a/in
which the authors applied photochemical source apportionment modeling techniques to
simulate current and future (years 2011 and 2025) O3z and PM>, 5 concentrations attributable
to sources within the U.S. transportation sector [8]. Wolfe et a/ pplied these photochemical
model simulations to estimate the dollars in health benefits per ton of reduced O3 and PM; 5
precursor emissions across 16 categories of mobile sources; these included aircraft, marine
vessels, lawn and garden, pleasure craft, heavy duty diesel on-road vehicles, trains and other
sources [9]. Here we extend this work by characterizing the size and distribution of the
mortality and morbidity impacts on human health.

This manuscript aims to answer the following two questions:

a. What is the overall burden to human health associated with the mobile sector in
the U.S., and how does this burden vary across the sources within this sector?

b. How is this burden distributed across locations?
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2. Materials and methods

2.1 Mobile source emissions and photochemical source apportionment modeling
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The estimation of health burden related to mobile sector pollutant emissions described in
this paper relies on the source apportionment photochemical modeling simulations described
in Zawacki et al. Zawacki et al modeled the contributions to ambient concentrations of
PM, 5 and ozone by mobile sector for both 2011 and 2025, the details of which we briefly
review here [8].

As Zawacki et al documented, emission inputs for the modeling analysis were based on a
2011 emissions inventory; 2025 emissions were projected from the 2011 inventory. Non-
mobile source emissions were taken from EPA’s 2011 v6.2 emissions modeling platform,
which is based on version 2 of the 2011 National Emissions Inventory (NEI) [10].

Mobile source emissions were categorized into 17 sectors based on fuel use, vehicle and
engine type, and are presented in table 1. Onroad emissions inventories were generated using
the Motor Vehicle Emission Simulator (MOVES2014) [11]. MOVES inputs were based on
state submittals to the NEI or generated by the EPA using national defaults. Locomotive
emissions for 2011 were developed by applying growth factors to 2008 NEI values based on
freight traffic data. Commercial marine vessel inventories for 2011 were developed using a
2002 base year inventory and regional growth factors. Aircraft emissions cover commercial
aircraft landing and take-off emissions up to 3000 feet, and aircraft ground support
emissions at airports. Aircraft emissions at altitudes above 3000 feet are not included.
Emissions for other nonroad engines and equipment, such as lawn and garden equipment,
construction equipment, commercial, and agricultural engines, were generated using the
NONROAD 2008 model [12].

The only exception with respect to generation of the 2011 inventory is California.
California’s onroad emissions were based on the EMFAC2011 model estimates provided by
the state of California [13]. Aircraft, rail, and marine inventories for California were
provided by the state of California. Emissions for other nonroad engines and equipment
were generated using the OFFROAD model for California [14].

Emissions were projected to 2025 using information on growth, activity and fleet turnover;
details on these projections can be found in Zawacki ef a/and are available in the technical
support document for Preparation of Emissions Inventories for the Version 6.2, 2011
Emissions Modeling Platform [8, 15]. Projections account for emission reductions expected
from regulations that were final at the time that the platform was finalized, including the
following mobile source regulations: Final Rule for Control of Air Pollution from Motor
Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards (79 FR 23414, 28 April 2014),
New Marine Compression-Ignition Engines at or Above 30 | per Cylinder Rule (75 FR
22895, 30 April 2010), the Marine Spark-Ignition and Small Spark-Ignition Engine Rule (73
FR 59034, 8 October 2008), the Locomotive and Marine Rule (73 FR 25098, 6 May 2008),
the Clean Air Nonroad Diesel Rule (69 FR 38957, 29 June 2004), the Heavy-Duty Engine
and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements (66 FR 5002,
18 January 2001) and the Tier 2 Motor Vehicle Emissions Standards and Gasoline Sulfur
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Control Requirements (65 FR 6698, 10 February 2000). Projections also include reduced
emissions that result from existing local inspection and maintenance (I/M) and other onroad
mobile programs, such as California LEVIII, the National Low Emissions Vehicle (LEV)
and Ozone Transport Commission (OTC) LEV regulations, local fuel programs, and Stage Il
refueling control programs. The projections also account for stationary source regulations
that were final at the time the platform was finalized; for example, the projected electric
generating unit (EGU) emissions include the Final Mercury and Air Toxics (MATS) rule and
the Cross-State Air Pollution Rule (CSAPR) but not the Clean Power Plan.

Using these emissions as inputs, Zawacki and co-authors ran the Comprehensive Air Quality
Model with extensions (CAMX) v6.2 for their analysis. Zawacki et a/simulated the O3 and
PM5 5 concentrations from 20 sectors in total, 17 of which were mobile source sectors (as
described in table 1). The three non-mobile sectors include: biogenics, fugitive dust and
agricultural ammonia; all other sectors”; and initial/boundary conditions.

Detailed information regarding the evaluation of the performance of the CAMx model may
be found in Zawacki et a/, as well as maps illustrating the O3 and PM, 5 concentrations for
each mobile source sector [7].

Following EPA-established methods, we use the CAMx modeling simulations in a relative
sense by ‘anchoring’ predicted base-year concentrations (2011) to observed ambient values
collected at monitoring locations and then estimate relative reduction factors (RRFs) using
the future (2025) simulations to project future concentrations [16, 17]. This approach
addresses potential model bias and error in the base year simulations and assumes that
factors causing bias (either under- or over-predictions) in the base case also affect the future
case. Monitor-level concentrations are interpolated to the 12 km by 12 km model grid for the
contiguous 48 states and multiplied by the RRFs to generate a future year air quality surface.
These 2011 and 2025 PM, 5 and ozone concentrations are used as inputs to the assessment
of health burden associated with each mobile source sector.

2.2. Health impact assessment

We follow a well-established technique for quantifying O3 and PM, s-related effects by
using health impact functions [8, 18]. A health impact function calculates the excess number
of air pollution-related premature deaths or illnesses using four terms: (1) a beta coefficient,
derived from a relative risk, odds ratio or Hazard Ratio from a published air pollution
epidemiologic study; (2) an estimated pollutant concentration; (3), a count of individuals
exposed to that pollutant; and (4) the baseline rate of death or disease among that population
matched to the health endpoint of interest. We calculated the health impact function using
the Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE, v1.3) tool
as described below [19, 20].

Below we illustrate the steps to calculating the health impact function using PM, s-related
premature death as an example (equation (1)). Here we estimated the number of PM; 5-
related total deaths ()) in each year i (/= 2011, 2025) among adults aged 30 and above in
each county j (f=1,...,J where Jis the total number of counties) as
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where gis the risk coefficient for all-cause mortality for adults in association with PM5 5
exposure, /mjj, is the baseline all-cause mortality rate for adults aged 2= 30-99 in county j in
year i stratified in 10 year age bins, Cj;is annual mean PM; 5 concentration in county j in
year i, and Py is the number of county adult residents aged 2= 30-99 in county j in year i
stratified into 5 year age bins.

We defined /mjj, as the county-level age-stratified all-cause death rates from the Centers for
Disease Control Wide-ranging Online Data for Epidemiologic Research database [21]. To
account for the improving longevity of the population, we projected these death rates to
future years using a life table reported by the U.S. Census Bureau; more details regarding
procedure can be found in Fann et a/[22, 23]. We defined the baseline incidence rates for the
morbidity endpoints using rates of hospital admissions, emergency department visits and
other outcomes for the year 2014.

We defined Pjj, using age-, sex- and race-stratified population data from the U.S. Census
Bureau. To account for growth in the size of the U.S. population, we used demographic
forecasts from the Woods & Poole company to project the U.S. Census population counts
from the year 2010 to the year 2011 and 2025 [24].

To characterize uncertainty in the estimated counts of avoided deaths and illnesses, we
performed a Monte Carlo simulation, sampling from the standard error reported in the
epidemiological study for each beta coefficient; this produced an error distribution of
estimated PM, 5 and Og-related effects. We estimated total numbers of premature deaths and
illnesses in the continental U.S. for each year by summing the county-specific estimates and
report the sums of the 2.5th and 97.5th percentiles of the Monte Carlo distributions as 95%
confidence intervals.

When calculating equation (1) we assume that the association between the pollutant and
each health outcome is log-linear over the entire range of PM, 5 exposure, with no level
below which PM5 5 would not increase the risk of death [1, 25]. The lowest measured level
included in the long-term exposure study used to quantify PM-related risks is 5.8 zgm=3 and
thus we extrapolated the portion of the curve below this level [26]. The p coefficient for each
O3 and PM,, 5 mortality and morbidity endpoint can be found in the supplemental materials
(supplemental tables S1 and S2 (https://stacks.iop.org/ERL/15/075009/mmedia)). Baseline
incidence rates for the full suite of O3 and PM> 5 endpoints can also be found in the
supplemental materials (supplemental tables S3 and S5).

We calculated the fraction of all deaths due to PM, 5 in each county j and year i using the
following function:

AF; = ol

N o P @
2 Zamol-jaXPija
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where yjjis the estimated number of air pollution deaths in county jin year /, mjj, is the
age-stratified baseline death rate, and, P is the age-stratified population, respectively, in
county fin year /.

3. Results

In this analysis, health burden is characterized by counts of premature deaths attributable to
directly emitted PM, 5 and PM5 5 precursor emissions, premature deaths attributable to
ozone precursor emissions, and a full suite of PM5 5 and ozone-related morbidity (non-fatal)
health impacts. In terms of premature mortality (table 2), the mobile sector contributes a
substantial fraction of the overall PM5 5 and ozone air pollution health burden in the U.S.,
accounting for about 20% (21 000 deaths) of total PM, 5 and ozone-attributable deaths in
2011 (110 000 deaths, of which approximately 90 000 are attributed to non-mobile sources).
This value falls to about 13% (13 000 deaths) of the total PM> 5 and ozone-attributable
deaths by 2025 (110 000 deaths, of which approximately 100 000 are attributed to non-
mobile sources) due to regulatory and voluntary programs reducing emissions from mobile
sources. These trends demonstrate that over time, the premature mortality health burden
associated with reductions in mobile source pollution is decreasing while the premature
mortality burden from all non-mobile sources of pollution combined is projected to increase
over that same time period. Similar trends across all morbidity health impacts can also be
observed. Tables 3 and 4 present the full suite of quantified health burden incidence
endpoints (mortality and morbidity) in 2011 and 2025, respectively, aggregated across the
non-road, on-road, and air/rail/marine sectors. Sector-specific results can be found in
supplemental tables S6 and S7.

Among the mobile sources modeled, the total premature mortality burden from on-road
sources (light-duty gas cars and motorcycles; light duty gas trucks; heavy duty gas trucks;
light duty diesel trucks; and, heavy duty diesel trucks) is the greatest (table 2; figure 1); this
is true for both 2011 and 2025. Non-road construction engines, C3 marine engines and
emissions from rail also contribute to large portions of mobile source mortality burden.
Across the 17 mobile sectors modeled, the PM,, s-attributable mortality burden falls between
2011 and 2025 for 12 sectors and increases for 5. The C3 marine, nonroad construction and
nonroad agricultural sectors experience the greatest reduction in PM-related burden over this
time period, while light duty diesel and aircraft (including ground support) experience the
greatest growth.

Compared to PM, s-attributable mortality burden from mobile sources, the burden
associated with deaths from ozone is much smaller—contributing to approximately 16% of
total mobile source-related mortality burden in 2011 and 20% in 2025. Across the 17 mobile
sectors, ozone-attributable mortality burden increases between 2011 and 2025 for 10 sectors
and falls for seven (table 2, figure 1). Total mortality burden (PM, 5 + ozone) falls between
2011 and 2025 for 12 mobile source sectors and increases for 5 (table 2, figure 2).

To illustrate the spatial distribution of mobile sector public health burden, we provide maps
of the fraction of all deaths attributable to mobile source PM> 5 and ozone-related mortality
impacts. The fraction of pollution-related deaths attributable to the on-road mobile, non-road
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mobile and the air, locomotive and marine sectors is as large as about 0.5% (figure 3). The
fraction of deaths attributable to the on-road mobile sector is the most substantial—in terms
of both the magnitude of risk and geographic scope of the impact. For 2011, we find that
large portions of California, the Midwest and Northeast experience among the greatest
fraction of deaths due to on-road related PM, 5 and ozone, as compared both to other parts
of the U.S and to the other mobile sectors (figure 3). These results are consistent with
characteristics associated with the on-road sector; on-road vehicle traffic and roadway
density are most pronounced in areas with the largest population density.

The attributable fraction for the non-road mobile sector has a similar geographic pattern,
tracking with population density, though the size of the attributable fraction is significantly
smaller than it is for the on-road sector. Finally, the attributable fraction for the air,
locomotive and marine sector tends to affect discrete portions of the U.S., most significantly
near Los Angeles, New Orleans and Miami. Rail and C1C2 marine impacts can also be
discerned, tracking with rail lines and coastal, river and lake locations, especially in 2011.

In any given location, the magnitude of premature deaths will be influenced by the
combination of air quality, population density, and baseline health status. On a per-person
basis, this will vary by mobile source sector depending on engine use characteristics.
Generally, southern California, the industrial Midwest, and the urban Northeast corridor see
the greatest exposures to mobile source pollutants and therefore the largest fraction of
mobile source pollution-related deaths (figure 3). We note that the estimated ozone-related
mortality impacts are an order of magnitude smaller than those estimated for PM> 5, partly
due to the smaller relative risk associated with ozone, and partly due to the fact that ozone is
more geographically dispersed as a completely secondarily-formed pollutant.

4. Discussion

Emissions trends explain the overall sector-specific health burden trends. For example,
phase-in of promulgated regulations and vehicle fleet turnover, particularly in the on-road
sector, lead to net reductions in total future emissions. An exception is the light-duty diesel
sector, which is projected to have slightly higher future emissions due to growth in
population and vehicle miles traveled. Growth in air travel and airport-related activity
without recent regulatory control of emissions explain the increase in burden for these
sectors. Fewer regulatory controls on non-road emissions help explain why this sector
contributes to a larger fraction of total mobile source emissions in the future (e.g. no recent
non-road diesel engine or lawn and garden equipment regulations), as well as urban
population growth and land-use changes.

Spatial trends follow closely with engine use and vehicle type. As described above, the on-
road mobile sector is responsible for the largest percentage of mobile source health burden
and tracks closely with the U.S. highway network. The density of traffic in highly urbanized
areas, as well as interstate travel and the ubiquity of on-road vehicle emissions help explain
the peaks in urban health burden and the large spatial gradient of burden that extends across
much of the continental U.S.
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Past source apportionment work is useful in terms of providing insight into the relative
contribution emissions from different source sectors contribute to health risk. However, the
risk from mobile sources are often aggregated into broad categories encompassing different
types of vehicles and engine technology. For instance, in Fann et a/ “mabile sources’
included all vehicle types, including on-road and non-road vehicles, as well as aircraft, rail
and marine sources [7]. Such a broad category does not provide the information one would
need to examine how different mobile source sectors contribute to health burden and how
this contribution to burden changes over time and space.

Fann et al estimated that in 2016, the total (PM 5 + o0zone) burden of premature death
attributable to the mobile sector ranged between 19 000 and 54 000, which is comparable to
total mobile source mortality burden measured in this paper: between 21 000-55 000 in
2011 and 13 000-37 000 in 2025, depending on the source of the effect estimate derived
from the literature [7]. The comparability of these estimates is not surprising; both analyses
used similar emissions sources, air quality models, source apportionment approach, and
similar health impact assessment methods and inputs, though input data for this analysis was
updated when appropriate and where more recent data was available.

Another study, which used different emissions inventories, meteorology, air quality models,
apportionment approach, and health assessment assumptions, estimated the burden of
premature death (PM, 5 + 0zone) from seven broad source sectors in 2005, including ‘road’
(58 000), ‘marine’ (8800), ‘rail’ (5000) and “aviation’ (1400) [5]. These estimates are higher
than the attributable burden estimated in this paper, though emissions for several mobile
source categories were likely larger in 2005 due to the absence of more recent regulations
and the ongoing phase-in of promulgated mobile source emission regulations.

A recent analysis estimated PM, s-related mortality burden for many disaggregated emission
sources as a metric used to quantify racial-ethnic disparities in the generation of emissions
and resultant exposure to those emissions [31]. Though different air quality modeling tools,
methods and input data were used, Tessum et al’s estimate of mobile source-related
premature deaths in 2015 (approximately 35 000) fall within the range of mobile sector
deaths estimated in this analysis.

In this analysis, we estimate the total burden of premature death associated with all sources
of PM,, s-related emissions to range between 100 000 and 220 000 in 2011 and 99 000 and
220 000 in 2025 (the similarity in incidence is coincidental, related to offsetting emissions
changes over time across source categories). “‘All sources’ is defined as the sum of burden
across the 17 mobile source categories plus the additional ‘All non-mobile” source
categories defined in table 1. This estimated health burden is comparable to recent estimates
in the published literature. For example, Goodkind ef a/ estimated that anthropogenic PM, g
was responsible for 107 000 deaths in 2011 [32]. Tessum et a/ estimated that 102 000
premature deaths were associated with anthropogenic PM5 5 in 2015 [31]. Fann et a/
estimated that in 2005, ambient PM, 5 was associated with approximately 120 000
premature deaths. The Global Burden of Disease study (Burnett et a/2018) estimates that in
2017, ambient PM, 5 pollution is related to approximately 84 000 premature deaths [33].
Dedoussi et alestimated U.S. combustion emission-related premature deaths across seven
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broad sectors, finding 83 300 attributable deaths in 2011 and 66 100 in 2018 [34]. This
general consistency with prior estimates gives us greater confidence in the magnitude of the
effects estimated here and suggests that recent and future levels of ozone and PMj 5 still
pose a public health risk in many regions of the United States.

Uncertainties and limitations exist at each stage of the emissions-to-health burden analysis
(e.g. emissions inventory uncertainty, air quality modeling uncertainty, health impact
assessment uncertainty). The air quality modeling relied on emissions data generated using
MOVES2014, an older version of EPA’s current mobile source emissions tool—
MOVES2014b [11]. MOVES2014b includes non-road sector updates that result in lower
national-level criteria pollutant emissions. We would therefore expect the portion of burden
attributed to nonroad sources to be reduced by a small percent if the analysis was updated to
include nonroad emissions estimated using MOVES2014b. More generally, inventories for
some emission sources, including rail and marine, are less certain than inventories for
onroad sources, resulting in uncertainties in health burden estimates across source sectors.
Detailed air quality model evaluation is performed in [8].

A number of uncertainties associated with the assessment of criteria pollutant-related health
impacts are systematic across sectors and pollutants, including those associated with
assumptions about the causal relationship between PM, 5 exposure and premature mortality
(especially at lower concentrations) and the shape of the chosen concentration response
functions. Other sources of uncertainty may have heterogeneous impacts across pollutant
sources and species, such as the variation in effect estimates reflecting differential toxicity of
particle components and regional differences in pollutant composition, though there
currently is insufficient scientific evidence to differentiate health effect estimates by
emission species [35]. Health impact assessments are an integral part of regulatory impact
assessments and provide a useful reference about the contributors to and magnitude of
uncertainty present in health burden estimates [36, 37].

Despite these uncertainties, the estimates of attributable health burden presented here
provide reasonable estimates of the magnitude of adverse health impacts associated with
recent and future emissions from a broad class of mobile sources. Compared to values
reported elsewhere, these estimates of health impacts extend the literature beyond generally
aggregated mobile sector health burden toward a representation of highly-resolved source
characterization of both current and future health burden conditions. The ability to predict
future mobile source health burden that reflects modeled trends in sector-specific emissions
is a novel feature of this analysis and could prove useful for decisionmakers and affected
stakeholders when considering how to address and prioritize emission controls across the
mobile source sector.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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