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Abstract

Multimodal integrative analysis fuses different types of data collected on the same set of 

experimental subjects. It is becoming a norm in many branches of scientific research, such as 

multi-omics and multimodal neuroimaging analysis. In this article, we address the problem of 

simultaneous covariance inference of associations between multiple modalities, which is of a vital 

interest in multimodal integrative analysis. Recognizing that there are few readily available 

solutions in the literature for this type of problem, we develop a new simultaneous testing 

procedure. It provides an explicit quantification of statistical significance, a much improved 

detection power, as well as a rigid false discovery control. Our proposal makes novel and useful 

contributions from both the scientific perspective and the statistical methodological perspective. 

We demonstrate the efficacy of the new method through both simulations and a multimodal 

positron emission tomography study of associations between two hallmark pathological proteins 

of Alzheimer’s disease.
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1. Introduction

Multimodal integrative analysis is now becoming a norm in many branches of scientific 

research. It uses different physical and physiological sensitivities of machines and 

technologies, and acquires different types of data for a common set of experimental subjects. 
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Integrative analysis fuses such diverse but often complementary information, borrows 

strength across multiple datasets, and renders an integrated data resolution that would 

otherwise not be available with any single data type. One example of multimodal analysis is 

multi-omics study, where gene expressions, DNA copy number alternations, DNA 

methylation changes, and other genetic information are jointly collected and analyzed from 

the same biological samples (Shen, Wang, and Mo 2013; Liu et al. 2014; Li et al. 2014; Cai, 

Cai, and Zhang 2016). Another example is multimodal neuroimaging analysis, where 

distinct brain characteristics, from brain structure and function to numerous chemical 

constituents, as well as genetic information, are simultaneously measured and aggregated 

from the same study subjects (Zhang et al. 2011; Uludag and Roebroeck 2014; Lin et al. 

2014; Nathoo, Kong, and Zhu 2017).

In this article, we address the problem of simultaneous covariance inference of associations 

between multiple modalities, which is of a vital interest in multimodal integrative analysis. 

Our motivation is a multimodal positron emission tomography (PET) study. The goal is to 

understand the associations between two hallmark pathological proteins of Alzheimer’s 

disease (AD), beta-amyloid (Aβ), and tau. Both proteins are believed to be part of the 

driving mechanism of AD, and are common in the brains of not only AD subjects but also 

those in late life in the absence of dementia. The two proteins are thought to be highly 

associated in terms of the precise spatial and temporal patterns of their accumulation (Braak 

and Braak 1991). With the advent of PET radioligands, such as Pittsburgh compound-B 

(PiB) and AV-1451, it is now feasible to detect both Aβ and tau, respectively, in the brains of 

living cognitively normal and demented older adults (Chien et al. 2014). Studies combining 

such tracers suggest that globally increasing Aβ burden is associated with greater neocortical 

accumulation of tau (Brier et al. 2016; Lockhart et al. 2017). However, the specific 

associations of regional Aβ and tau deposition remain unclear, and require further 

investigation to identify brain regions with significant Aβ and tau correlations. In particular, 

a pressing challenge is the examination of nonlocal associations, that is, correlations 

between different regions of the brain across different radioligands.

The data consist of multiple subjects. For each subject, two imaging modalities are 

measured, one for Aβ and the other for tau. Each modality is represented by a vector of 

quantities, and each entry measures the amount of the protein at a location, or voxel, of the 

brain. The brain is further parcellated into a set of regions-of-interest following a 

prespecified brain atlas. Brain parcellation is particularly useful to facilitate the 

interpretation, and has been frequently employed in brain imaging analysis (Fornito, 

Zalesky, and Breakspear 2013; Ahn et al. 2015; Kang et al. 2016, among many others). 

Numerous brain atlases are available, and we adopt the most commonly used automated 

anatomical labeling atlas (Tzourio-Mazoyer et al. 2002). Furthermore, multiple brain regions 

are often grouped into functional modules. Each module possesses a relatively autonomous 

functionality, and complex brain tasks are believed to perform through coordinated 

collaborations among the modules (Smith et al. 2009; Yeo et al. 2011). In our multimodal 

study, we focus on the region level analysis, that is, we seek significantly correlated region 

pairs by examining correlations between voxels from two regions. We also carry out a 

module level analysis, that is, we seek significantly correlated functional module pairs by 

examining correlations between regions from two modules.
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The search of brain regions or modules where multiple imaging modalities are significantly 

correlated with each other can be formulated as a simultaneous covariance inference 

problem. Specifically, for subject k = 1,…, n, let Xk denote a p-dimensional vector 

representing one imaging modality, for example, Aβ, and Yk denote another p-dimensional 

vector for the second modality, for example, tau. For notational simplicity, we assume the 

same dimensionality p for Xk and Yk, but our test method does not require this assumption. 

For the region level analysis, the entry of Xk and Yk represents the protein measure at each 

voxel, whereas for the module level analysis, the entry represents a summary protein 

measure at each brain region. Let {S1, S2, …, SL} denote the partition of the brain into L 

regions or modules. The corresponding sizes of the partitions are p1, p2,…,pL, respectively, 

and ∑l = 1
L pl = p. Stack the two vectors together, Zk = (Xk

⊺, Y k
⊺)⊺ ∈ ℝ2p × 2p, and denote its 

mean by μ ∈ ℝ2p, and the covariance Σ = (σi,j)2p×2p. Our goal is to identify the pairs of brain 

regions or functional modules where (Xk, Yk) are significantly correlated. That is, we aim at 

simultaneous testing of hypotheses,

H0, l, g:ΣSl
X, SgY = 0, versus H1, l, g:ΣSl

X, SgY ≠ 0,
for all 1 ≤ l, g ≤ L, (1)

where ΣSl
X, SgY  represents the covariance matrix between the subvector of the modality Xk 

corresponding to the region Sl and the subvector of Yk corresponding to Sg. We propose a 

simultaneous testing procedure for the simultaneous inference problem (1), with a proper 

false discovery control. Recognizing that there is no readily available solution in the 

literature when the region sizes {p1, p2,…,pL} are much larger than the sample size n and 

can diverge along with n, we first construct a test statistic based on the maximum of 

individual pairs of entries of two regions. We next derive the limiting distribution of the test 

statistic, and show that, for the test of a single pair of regions based on this limiting 

distribution, the asymptotic power is minimax rate optimal. We further introduce a novel 

correction method so to overcome the slow convergence rate of the limiting distribution, as 

well as a normal quantile transformation so to unify the cut-off values for different pairs of 

regions. Both enhance the test, and are crucial for the subsequent multiple testing. Finally, 

we develop a new simultaneous testing procedure for multiple pairs of regions under 

dependence, and show that it can control false discovery asymptotically.

Our proposal makes novel and useful contributions from both the scientific perspective and 

the statistical methodological perspective. Scientifically, the multimodal association analysis 

such as in our motivating example is biologically very useful. For instance, for our 

multimodal PET study, a rigorous quantification of associations between Aβ and tau would 

offer solid confirmation and support to prior biological hypotheses about how pathological 

proteins of AD interact in the aging or demented human brain. In turn, it could enable more 

accurate prediction of individual subjects demonstrating in vivo neuropathology, and allow 

better design and subject recruitment of clinical trials to potentially block the spread of AD. 

More generally, such an association analysis is of a broad scientific interest for a wide range 

of multimodal integrative analysis, for example, joint analysis of functional magnetic 

resonance imaging and diffusion tensor imaging (Zhu et al. 2014), joint analysis of 
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functional magnetic resonance imaging and electroencephalography (Singh, Kim, and Kim 

2003), as well as multi-omics association analysis (Richardson, Tseng, and Sun 2016). On 

the other hand, there is almost no existing solution in the literature that can produce a 

rigorous and explicit significance quantification for this important type of inference 

problem. Our proposal, thus, offers a timely response, and would clearly benefit such 

analyses, by providing a much improved detection power as well as a rigid false discovery 

control. In addition, by obtaining the asymptotic properties of the test procedure, instead of 

resorting to a more expensive permutation type test, our proposal offers a computationally 

sensible solution for the extremely high-dimensional neuroimaging and biomedical data.

Methodologically, this subcovariance inference problem we study is itself of independent 

interest, but has so far received little attention in the statistics literature. A related family of 

solutions is sparse canonical correlation analysis (CCA) (Witten, Tibshirani, and Hastie 

2009; Chen et al. 2013). Though it is useful to help identify highly correlated regions from 

multiple modalities, sparse CCA focuses on the estimation, rather than the inference, aspect 

of the problem. As such, it does not provide an explicit significance quantification of the 

correlation between a pair of regions, and does not explicitly control the false discovery. In 

Section 4, we numerically compare our testing method with sparse CCA. For the inference 

based solutions, although the multiple testing problem under a dependence structure has 

been extensively studied (Benjamini and Yekutieli 2001; Efron 2007; Sun and Cai 2009; Sun 

et al. 2015), the existing methods were either too conservative, or required some stringent 

dependency assumptions, and thus are not suitable to test the covariance structure. There are 

only a handful of related solutions about covariance inference. The most relevant method to 

our proposal is Xie and Kang (2017), who also studied simultaneous inference of sub-

covariance matrices. However, their procedure only guaranteed the family wise error rate 

control, instead of false discovery control, and was less powerful than our solution, as we 

show numerically in Section 4. Another related solution is Xia, Cai, and Cai (2018), who 

proposed a test for the submatrices inside a precision matrix. However, a sum-of-square type 

test statistic was employed and the dimensions of the submatrices had to remain fixed. By 

contrast, we aim at submatrices of the covariance matrix, use a maximum type test statistic, 

and allow the submatrix dimensions to diverge. It is noteworthy that there are also a category 

of testing procedures that are relevant but not addressing exactly the same type of inference 

problem as ours. One family in this category targeted covariance or correlation matrices. 

Specifically, Cai, Liu, and Xia (2013) tested the equality of two covariance matrices 

globally, while Cai and Liu (2016) tested the equality of individual entries of the two 

correlation matrices with false discovery control. Xia (2017) further extended to more than 

two populations. We recognize that the test statistic we develop in Section 2 and its limiting 

distribution in Theorem 1 are closely related to those of Cai, Liu, and Xia (2013). This 

limiting distribution, however, has a slow convergence rate, and would induce an 

approximation error. This error is negligible in Cai, Liu, and Xia (2013), since their focus is 

testing two covariance matrices. Our target, on the other hand, is the covariances of the pairs 

of regions between the two modalities, and there are many, and sometimes diverging number 

of pairs to test simultaneously. As a result, the approximation errors would accumulate, 

which in turn would severely affect the subsequent multiple testing error rate control. To 

address this issue, we propose a novel correction method that leads to a more accurate 
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approximation of the limiting distribution. Our proposal is thus notably different from Cai, 

Liu, and Xia (2013), and the theoretical investigation involved is far from a trivial extension. 

Similarly, another family in this category targeted precision or partial correlations matrices 

(Liu 2013; Xia, Cai, and Cai 2015; Xia and Li 2017), but again they can not address our 

testing problem. Our proposal makes a useful addition to the general toolbox of covariance 

inference.

The rest of the article is organized as follows. Section 2 develops the test for a given pair of 

regions, and Section 3 develops the simultaneous testing procedure for all pairs. For each, 

we begin with the proposed testing procedure, then study the corresponding theoretical 

properties. Section 4 reports the simulation results, and Section 5 revisits the motivating 

multimodal PET study. Section 6 concludes with a discussion. The supplementary appendix 

collects additional simulation results and the proofs.

2. Test for a Pair of Regions

We first develop a test for the hypotheses, H0, l, g:ΣSl
X, SgY = 0, versus H1, l, g:ΣSl

X, SgY ≠ 0, 

for a given pair of regions 1 ≤ l, g ≤ L. We next study its theoretical properties in terms of 

the limiting null distribution and the asymptotic power of the test. We also propose an 

intermediate correction and normal quantile transformation, both of which are novel and 

important for the subsequent simultaneous covariance inference.

2.1. Testing Procedure

For two sets of p-dimensional random samples {(Xk, Yk)}k = 1
n , define the sample covariance 

matrix as Σ = (σi, j)p × p = n−1∑k = 1
n (Xk − X̄)(Yk − Ȳ)⊺, where X̄ = n−1∑k = 1

n Xk, and 

Ȳ = n−1∑k = 1
n Yk. To account for heteroscedasticity of the estimates {σi, j}i, j = 1

p , define θi,j 

= var{(Xk,i – μ1,i)(Yk,j – μ2,j)}. The variance of σi, j can be estimated by

θi, j = 1
n ∑

k = 1

n
(Xk, i − X̄i)(Yk, i − Ȳ i) − σi, j

2, 1 ≤ i, j ≤ p,

where X̄i = n−1∑k = 1
n Xk, i, Ȳ i = n−1∑k = 1

n Y k, i. Correspondingly, we consider the 

standardized statistic,

Ti, j =
σi, j

(θi, j ∕ n)1 ∕ 2 , 1 ≤ i, j ≤ p .

To test the null hypothesis H0, l, g :ΣSl
X, SgY = 0, it is equivalent to testing whether the entries 

in the submatrix ΣSl
X, SgY  are all equal to 0, which, in turn, is equivalent to testing whether 

maxi ∈ Sl
X, j ∈ SgY σi, j2 = 0. We then construct the following test statistic,
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Ml, g = max
i ∈ Sl

X, j ∈ SgY
Ti, j2 .

We show in the next section that, under the null hypothesis, Ml,g – 2 log(plpg) + log log(plpg) 

converges weakly to a Gumbel random variable with the distribution function exp{−π−1/2e
−t/2}. Accordingly, we define the α-level test by,

Ψα
(l, g) = I{Ml, g ≥ qα + 2 log(plpg) − log log(plpg)},

where qα is the 1 – α quantile of the Gumbel distribution. We reject the null hypothesis 

H0,l,g if Ψα
(l, g) = 1.

2.2. Theory

We next study the limiting null distribution of the test statistic Ml,g, and the asymptotic 

power of the test Ψα
(l, g). We first introduce some notations and technical assumptions.

Denote by Xk, Sl the subset of Xk for the region Sl, and Yk, Sg the subset of Yk for Sg. Let 

Zk
(l, g) = (Xk, Sl

⊺ , Yk, Sg
⊺ )⊺. Denote by μ(l,g) and Σ(l, g) = ΣSl, g, Sl, g ∈ ℝpl, g × pl, g the mean and 

covariance matrix of Zk
(l, g), where Sl, g = Sl ∪ Sg and pl,g = pl + pg. Define the cardinality of 

the set of indices that are highly correlated with i ∈ Sl, g by 

si
(l, g)(α0) = card{i′ ∈ Sl, g : ∣ ρi, i′ ∣ ≥ (log pl, g)−1 − α0} for some α0 > 0. Denote the cardinality 

of a set A by ∣A∣. We introduce the following assumptions.

(A1) Weak Dependence Condition: There exists a subset D0 of Sl, g, 1 ≤ l, g ≤ L, with 

∣D0∣ = o(min{pl,pg}) and a constant α0 > 0, such that, for all γ > 0, 

maxi ∈ Sl, g ∖ D0 si
(l, g) = o(pl, g

γ ). Furthermore, assume that ∣ρi,i′∣ ≤ r < 1 for some r 

> 0 and i, i′ ∈ {Sl, g, 1 ≤ l, g ≤ L}.

(A2) Moment Condition: Assume one of the following two conditions hold.

a. Sub-Gaussian Tail: Assume that max1≤l,g≤L log(pl,g) = o(n1/5). There 

exist some constants η > 0 and C > 0, such that, E 

exp[η{Zk, i
(l, g) − μi}2 ∕ σi, i] ≤ C, for all 1 ≤ l, g ≤ L and i ∈ Sl, g.

b. Polynomial Tail: Assume that max1≤l,g≤L pl,g ≤ c1nγ0 for some 

constants γ0, c1 > 0. Moreover, assume that 

E ∣ (Zk, i
(l, g) − μi) ∕ (σi, i)1 ∕ 2 ∣4γ0 + 4 + ϵ ≤ C, for some constants ϵ, C > 0, 

for all 1 ≤ l, g ≤ L and i ∈ Sl, g.
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(A3) Elliptically Contoured Condition: Assume that for some κ ≥ 1/3, for any 1 ≤ l, g 
≤ L and i, j, i′, i′, j′ ∈ Sl, g, 

E(Zk, i
(l, g) − μi)(Zk, j

(l, g) − μj)(Zk, i′
(l, g) − μi′)(Zk, j′

(l, g) − μj′) = κ(σi, jσi′, j′ + σi, i′σj, j′
+ σi, j′σj, i′)

.

Assumption (A1) is a mild condition on the number of highly correlated entries in Sl, g, and 

this condition is satisfied if the eigenvalues of Σ(l,g) are bounded from above. Without this 

weak dependency assumption, we can still approximately control the size of our test; see our 

discussion in Section 6. Assumption (A2) is the commonly used moment condition. 

Assumption (A3) holds for the elliptically contoured distributions (Anderson 2003). The 

following theorem shows that, for each 1 ≤ l, g ≤ L, we have Ml,g – 2 log(plpg) + log 

log(plpg) converges weakly to a Gumbel random variable with the distribution function F(t) 
= exp{−π−1/2e−t/2}.

Theorem 1. Assume (A1)–(A3) hold. Then under the null hypothesis H0,l,g, we have, as n, 

pl,g → ∞, for any t ∈ ℝ,

P(Ml, g − 2 log(plpg) + log log(plpg) ≤ t) exp{ − π−1 ∕ 2e−1 ∕ 2} .

Furthermore, the above convergence holds uniformly for all 1 ≤ l, g ≤ L and all Xk, Sl, Yk, Sg
satisfying (A1)–(A3) and ΣSl

X, SgY = 0.

We outline the key steps of the proof of this theorem. Specifically, we truncate the random 

variables and use a normal approximation to translate the problem into deriving the limiting 

null distribution of normal random variables under the same dependence structure. We 

further divide the sets of pairs of random variables {(i, j) : i ∈ Sl
X, j ∈ Sg

Y } into small subsets 

for separate analyses. We show that the behavior of weakly correlated random variables 

dominates the rest, and the corresponding extreme value behavior is asymptotically the same 

as the maximum of independent normal random variables. A detailed proof is given in the 

supplementary appendix.

We next study the asymptotic power and the optimality of the test Ψα
(l, g) based on the above 

theorem. Define the class, U(c) = {Σ : maxi ∈ Sl, j ∈ Sg ∣ σi, j ∣ ∕ θi, j
1 ∕ 2 ≥ c log pl, g ∕ n}, which 

includes all covariance matrices with one of the entries in the submatrix ΣSl, Sg having the 

standardized magnitude exceeding c log pl, g. Denote by P the collection of distributions 

satisfying (A2). Let Tα be the set of α-level tests over P, that is, P(Tα = 1) ≤ α under H0,l,g 

over all distributions in P for any Tα ∈ Tα. Let α, β > 0 and α + β < 1. We show in the next 

theorem that, the null parameter set, in which ΣSl
X, SgY = 0, is asymptotically distinguishable 

from U(4) by the test Ψα
(l, g). Namely, we can reject the null with asymptotic full power if 

Σ ∈ U(4).

Theorem 2. Assume (A2) holds. Then we have,
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inf
Σ ∈ U(4)

P(Ψα = 1) 1, as n, pl, g ∞ .

Furthermore, there exists a constant c0 > 0 such that for all large n and pl,g,

inf
Σ ∈ U(c0)

sup
Tα ∈ Tα

P(Tα = 1) ≤ 1 − β .

This result shows that we only need one entry in the submatrix having the magnitude of the 

order log pl, g ∕ n, to reject the null with full power asymptotically, and this rate log pl, g ∕ n
is minimax optimal.

2.3. Correction and Normal Quantile Transformation

We note that, when the dimension of the submatrix is not sufficiently large, the limiting null 

distribution derived in Theorem 1 could potentially induce serious size distortion. This is 

due to the slow convergence rate in the distribution of the extreme value type statistics (Hall 

1991; Liu, Lin, and Shao 2008; Birnbaum and Nadler 2012). Specifically, as we show in the 

proof of Theorem 1, we approximate the Gaussian tail probability, that is, 1 − Φ(tl, g
1 ∕ 2) with 

tl,g = 2 log(plpg) = log log(plpg) + t, by 1/(2π tl,g)1/2 exp (−tl,g/2), for each of the plpg 

random variables. Thus, we obtain the limit exp{−π−1/2e−t/2} in Theorem 1. However, there 

is a gap between the tail probability and its approximation. This gap can be large, and the 

critical value derived from the limiting distribution in Theorem 1 may not be accurate. 

Moreover, the approximation errors would accumulate, especially when we have a diverging 

number of submatrices to evaluate simultaneously. To address this issue, we propose an 

intermediate correction for the critical value derived from the asymptotic distribution in 

Theorem 1. Following the proof of Theorem 1, we have the next result.

Proposition 1. Assume (A1)–(A3) hold. Then under H0,l,g, as n, pl,g → ∞, we have, for any 

t ∈ ℝ,

P(Ml, g ≤ tl, g) exp −2plpg 1 − Φ tl, g
1 ∕ 2 ,

where tl,g = 2 log(plpg) – log log(plpg) + t.

Based on this result, we have P(Ml,g ≥ tl,g(α)) → α under H0,l,g, where tl,g (α) is the critical 

value such that exp[ − 2plpg{1 − Φ(tl, g
1 ∕ 2(α))}] = 1 − α. Then we define the corrected α-level 

test by,

Ψα′ = I{Ml, g ≥ tl, g(α)} .

To further illustrate the above bias correction, we show in Figure 1 the empirical cumulative 

distribution of the test statistic Ml,g, its limiting distribution without bias correction from 

Theorem 1, and with bias adjustment from Proposition 1. The left panel is for the cumulative 
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distribution function value between 0 and 0.2, and the right panel for the value between 0.9 

and 1. These regions are the most relevant for the testing problem. It is clearly seen from the 

plot that the cumulative distribution after correction is much closer to the empirical 

distribution than the one without correction.

We also note that, the critical values for testing different pairs of regions are usually 

different, since the region sizes are different. Thus, we further introduce a normal quantile 

transformation in order to unify the cut-off values for different pairs of regions, so that we 

can perform the simultaneous inference in the next section. Toward that end, denote by 

Fl, g
∗ (tl, g) = exp[ − 2plpg{1 − Φ(tl, g

1 ∕ 2)}], the corrected cumulative distribution function of Ml,g. 

For each 1 ≤ l, g ≤ L, we introduce the normal quantile transformation,

Nl, g = Φ−1{Fl, g
∗ (Ml, g)}, (2)

where Φ(t) is the standard normal cumulative distribution function, and Ml,g is the maximum 

test statistic calculated from the original data. Based on Proposition 1, it can be easily shown 

that Nl,g follows a standard normal distribution asymptotically, and we reject the null when 

Ml,g is large, so Nl,g is large. Thus, for each 1 ≤ l, g ≤ L, we define the following α-level 

test,

Ψα
(l, g) ∗ = I(Nl, g ≥ Φ−1(1 − α)) .

We reject the null ΣSl
X, SgY = 0 whenever Ψα

(l, g) ∗ = 1.

We comment that both the intermediate correction and the normal quantile transformation 

proposed here are essential, and they distinguish our test from the existing covariance based 

tests. The intermediate correction is to better approximate the empirical distribution, and to 

avoid the accumulation of approximation errors among the submatrices. This is because we 

have many submatrices to test simultaneously, and each has a high dimensionality. This is 

different from the existing covariance inference solutions, such as Cai, Liu, and Xia (2013) 

and Cai and Zhang (2016), where the Gaussian approximation error in the extreme value 

distribution is negligible and no correction is needed. The normal quantile transformation is 

to ensure that the tail of the maximum test statistics Ml,g after the transformation behaves the 

same asymptotically under the null for various submatrices simultaneously. Both steps are 

important for the covariance inference developed in the next section.

3. Simultaneous Test for Multiple Pairs of Regions

We next develop the simultaneous testing procedure for the inference problem (1), so to 

identify the pairs of regions that are significantly correlated with each other. We study its 

theoretical properties in terms of false discovery control.

3.1. Testing Procedure

Since the sample size is often small in multimodal analysis, we build our multiple testing 

procedure based upon the finite sample corrected and normal quantile transformed test 
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statistic, Nl,g, as defined in Equation (2). Let ℋ = {(l, g) : 1 ≤ l, g ≤ L} denote the set of all 

pairs of regions from the two data modalities, let ℋ0 = {(l, g) : ΣSlSg = 0} denote the set of 

true null hypotheses, and ℋ1 = ℋ ∖ ℋ0 the set of alternatives. For any given thresholding 

level t, we define the false discovery proportion (FDP) and the false discovery rate (FDR) as,

FDP(t) =
∑(l, g) ∈ ℋ0I(Nl, g ≥ t)

∑(l, g) ∈ ℋI(Nl, g ≥ t) ∨ 1, and
FDR(t) = E{FDP(t)} .

Algorithm 1 Simultaneous testing procedure

1 . Calculate the test statisticsMl, g and the corresponding finite
sample corrected and normal quantile transformed statistics
Nl, g, for all pairs 1 ≤ l, g ≤ L .

2 . Estimate the FDP by,

FDP(t) = L2(1 − Φ(t))
∑(l, g) ∈ ℋI(Nl, g ≥ t) ∨ 1 .

3 . For a given 0 ≤ α ≤ 1, calculate

t = inf {0 ≤ t ≤ (4 log L − 2 log log L)1 ∕ 2 : FDP(t) ≤ α} .

If t does not exist, set t = 2(log L)1 ∕ 2 .
4 For 1 ≤ l, g ≤ L, reject H0, l, g if and only if Nl, g ≥ t , and set

ℋ1 = {(l, g) : Nl, g ≥ t } .

We summarize our proposed multiple testing procedure in Algorithm 1, and make a few 

remarks regarding the procedure. First, we note that, if the set of null hypotheses ℋ0 were 

known, one should reject as many hypotheses as possible while controlling the true FDP at 

the pre-specified error rate. In practice, however, neither the null set ℋ0, nor the number of 

false rejections ∑(l, g) ∈ ℋ0I(Nl, g ≥ t) is known. As such, we first set to estimate the FDP. 

Second, for the applications such as multimodal neuroimaging analysis, we are especially 

interested in the scenario when most of the pairs of the regions between the two modalities 

are not correlated with each other. This is reflected in that, under such a sparse scenario, ∣ℋ0
∣ is close to the total number of hypotheses L2. By construction, Nl,g is close to a standard 

normal random variable. Consequently, the FDP can be estimated by FDP(t) in Step 2. Third, 

it is critical to restrict t on the range [0, (4 log L – 2 log log L)1/2] in Step 3. When t ≥ (4 log 

L – 2 log log L)1/2, L2{1 – Φ(t)} → 0, and it is no longer a consistent estimator of the 

number of false rejections. Then the algorithm may not able to control the FDP with a 

positive probability. Finally, it is also important to threshold the test statistics at 2 (log L)1/2 

instead of (4 log L – 2 log log L)1/2. When t does not exist in the range, thresholding the test 

statistics at (4 log L–2 log log L)1/2 would cause too many false rejections, and 

consequently, the FDR cannot be controlled asymptotically at level α.
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3.2. Theory

We next investigate the error rate control of the above simultaneous testing procedure. For 

any 1 ≤ l ≤ L, define 

Λl(γ) = {g : 1 ≤ g ≤ L, ∃i ∈ Sl
X ∪ Sl

Y , j ∈ Sg
X ∪ Sg

Y , s.t. ∣ σi, j ∣ ≥ (log L)−2 − γ}. Furthermore, 

define ℒρ = {(l, g) : ∃i ∈ Sl
X, j ∈ Sg

Y , such that ∣σi,j∣/(θi,j/n)1/2 ≥ (log p)1/2+ρ}. The next 

theorem shows that, under some mild conditions, the simultaneous testing procedure in 

Algorithm 1 controls both FDR and FDP at level α asymptotically. That is, for the sparse 

scenario when ∣ ℋ0 ∣ ∕ L2 1, we have both FDR and FDP converge to the pre-specified 

level α asymptotically, as long as there exist a few pairs of regions in which their voxel-wise 

correlations exceed the threshold (log p)1/2+ρ/n1/2.

Theorem 3. Assume (A1)–(A3) hold. In addition, assume that there exists some γ > 0, such 

that max1≤l≤L ∣ Λl(γ)∣ = o(Lν) for any ν > 0. Assume that p ≤ cna for some c > 0 and a > 0. 

Then we have,

lim sup FDR(t ) ≤ α ∣ ℋ0 ∣ ∕ L2, and
lim P{FDP(t ) ≤ α ∣ ℋ0 ∣ ∕ L2 + ϵ} = 1,

for any ϵ > 0, where the limit is taken as n, L, (pl, g)l, g = 1
L ∞. Furthermore, if for some ρ, δ 

> 0, ∣ ℒρ ∣ ≥ (1 ∕ ( 8πα) + δ) log L, then we have,

FDR(t )
α ∣ ℋ0 ∣ ∕ L2 1, and FDP(t )

α ∣ ℋ0 ∣ ∕ L2 1 in probability,

as n, L, (pl, g)l, g = 1
L ∞ .

We again outline the key steps of the proof. We first show that if t  does not exist in the range 

[0, {2 log(L2) – 2 log log L}1/2], then the thresholding t  at 2 (log L)1/2 would lead to no 

false rejection with probability tending to 1. As such we focus the analysis on the event 

A = t exists in the range [0, {2 log(L2) − 2 log log L}1 ∕ 2] . We then divide the pairs of 

submatrices into various subsets, among which the weakly correlated pairs play the 

dominating role, and consequently, the FDR and FDP get controlled conservatively. With 

some mild condition on ∣ℒρ∣, we show that the event A occurs with probability tending to 1, 

and hence the FDR and FDP converge to α ∣ ℋ0 ∣ ∕ L2 asymptotically. A detailed proof is 

given in the supplementary appendix.

4. Simulations

4.1. Setup

In this section, we examine the finite sample performance of the proposed testing procedure. 

We generate two sets of p-dimensional vectors {(Xk, Yk)}k = 1
n , where each component of Xk 

and Yk is from a certain random distribution, and the covariance between Xk and Yk is 

governed by some particular structure. We consider two random distributions, and three 
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covariance structures. Moreover, we examine two scenarios of distribution of the 

significantly correlated regions.

Specifically, we fix the total number of regions at L = 100, then randomly choose the size of 

each region pl between 50 and 100, l = 1,…, L. This results in the total dimension p ranging 

between 5000 and 10,000. We then generate pl random variables of the first modality Xk for 

each region. Each component follows a random distribution. Note that our procedure is 

robust to the choice of this distribution as long as the moment condition in (A2) is satisfied. 

To verify that, we consider two specific distributions:

Distribution 1: Exponential tail: a standard normal distribution;

Distribution 2: Polynomial tail: a t-distribution with 10 degrees of freedom.

We remark that, in Cai, Liu, and Xia (2013), a t-distribution with 12 degrees of freedom was 

considered for global testing of the entire covariance matrix, and the distribution considered 

in our case deviates more from the normal distribution than Cai, Liu, and Xia (2013). We 

consider two sample sizes, n = 100 and n = 150. After generating n copies of the first 

modality, {Xk}k = 1
n , we then generate n copies of the second modality, {Yk}k = 1

n , where 

Yk = Σ1, 2
⊺ Xk + Ek, with {Ek}k = 1

n  randomly generated from a standard Gaussian distribution 

and independent of {Xk}k = 1
n . Accordingly, cov(Xk, Yk) = cΣ1,2, where c = var(Xk,i), with c 

= var{N(0, 1)} = 1 for Distribution 1, and c = var{t(10)} = 1.25 for Distribution 2. We 

consider three covariance structures for Σ1,2:

Structure 1: Σ1,2 = (σi,j) where σi,j = 0.8 Bernoulli(1, 2/p) for 1 ≤ i, j ≤ p;

Structure 2: Σ1,2 = (σi,j) where σi,j =Uniform(0.5,2), σi,j = 0.8 for 5(k – 1) + 1 ≤ i, j ≤ 

5k, with k = 1,…, [p/5], and σi,j = 0 otherwise;

Structure 3: Σ1,2 = (σi,j) where σi,i =Uniform(0.5, 2), σi,i+1 = σi+1,i = 0.8 for i = 1,…, 

p – 1, and σi,j = 0 otherwise.

Structure 1 is essentially a random covariance structure. Structures 2 and 3 imply that the 

same locations in the two modalities are more likely to be highly correlated with each other. 

Moreover, Structure 2 has a block covariance structure and Structure 3 has a banded 

structure. For those pairs of regions with fewer or equal than 3 nonzero correlations, we set 

the corresponding submatrix equal to zero. We consider two scenarios for the distribution of 

those significantly correlated regions:

Scenario 1: The significantly correlated regions span all L regions;

Scenario 2: The significantly correlated regions concentrate on randomly chosen 60 

regions out of 100 for the first modality, and on 30 regions out of 100 for the second 

modality. This setting mimics the real example in Section 5.

4.2. Results

We apply the simultaneous testing procedure in Algorithm 1 to identify the significant pairs 

of regions. The intermediate correction is employed for the limiting distribution of the test 

statistic Ml,g for (l, g) ∈ ℋ, with ℋ = {(l, g) : 1 ≤ l, g ≤ L} in Scenario 1, and 
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ℋ = {(l, g) : l ∈ R1, j ∈ R2} in Scenario 2, where R1 and R2 are the randomly chosen 60 and 

30 regions for the first and second modality, respectively. The normal quantile transformed 

test statistics Nl,g are calculated based on the corrected distribution. We set the significant 

level at α = 0.05. We compare our procedure with that of Xie and Kang (2017). We also 

numerically compare with sparse CCA. We use the implementation and the recommended 

tuning method in the R package PMA by Witten, Tibshirani, and Hastie (2009). Since sparse 

CCA is applied on the region-wise rather than the voxelwise data, we first average the data 

within each region, then apply sparse CCA. After obtaining two sets of nonzero region 

locations, denoted as u1 and u2, we have the significant pairs of regions identified by sparse 

CCA as {(i, j) : i ∈ u1, j ∈ u2}. We report the empirical FDR and power, both in percentages, 

based on 100 data replications, for n = 100 in Table 1, and for n = 150 in Table 2. Here the 

empirical power is calculated as

1
100 ∑

d = 1

100 ∑(l, g) ∈ ℋ1I(Nl, g, d ≥ t )
∣ ℋ1 ∣ ,

where Nl,g,d denotes the test statistic for the dth data replication.

From Table 1, we observe that, the empirical FDR for our testing procedure is close to the 

nominal level α = 0.05 in all situations. In comparison, the test of Xie and Kang (2017) is 

extremely conservative, while sparse CCA has severe FDR distortion in most of the cases. 

We also observe that, for the empirical power, our testing procedure is powerful, and 

substantially outperforms both Xie and Kang (2017) and sparse CCA in all situations. 

Additionally, the performances under the two distributions are close, which reflects the 

robustness of our proposal with respect to the tail behaviors of the random quantities. From 

Table 2, we observe a similar pattern in empirical FDR. Meanwhile, the empirical power has 

considerably improved when the sample size increases.

In the above setting, the variables in modality Xk are generated independently. We also 

consider the case when the variables within the modality are correlated. We report the results 

in the supplementary appendix.

5. Multimodal PET Analysis

5.1. Scientific Background and Dataset

We revisit the motivating multimodal PET study introduced in Section 1. AD is an 

irreversible neurodegenerative disorder and the leading form of dementia in elderly subjects. 

It is characterized by progressive impairment of cognitive functions and inability to perform 

activities of daily living. With aging of the worldwide population, the number of affected 

people is drastically increasing, and it becomes an international imperative to understand, 

diagnose, and treat this disorder. Beta-amyloid (Aβ) and tau are two hallmark pathological 

proteins, and are believed to be part of the driving mechanism of AD. These proteins are 

commonly found in pathological forms not only in the brains of AD subjects, but also the 

brains of older adults without AD. Our primary goal is to find brain regions where Aβ and 

tau are statistically significantly correlated with each other. We also seek to identify 
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significantly correlated brain functional modules. Such analyses would be extremely useful 

from a biological perspective, as prevailing theories of the development of AD pathology in 

the aging human brain suggest that increased Aβ in some regions, for example, parietal 

cortex, may initiate the increase and propagation of tau pathology in other nonlocal regions, 

for example, medial temporal lobe. In turn, it would allow for the prediction of the earliest 

stages of in vivo neuropathology, and help generate better designed AD therapeutic clinical 

trials. For instance, clinical trials aiming at testing anti-Aβ or anti-tau agents would need to 

know not only that participants have both Aβ and tau in the brain, but also exactly how the 

relative levels of each pathological protein might predict incident cognitive impairment and 

dementia.

The dataset we analyzed is part of the ongoing Berkeley Aging Cohort Study. It consists of 

81 cognitively normal older adult subjects, aged 77.5 ± 6.2 years, and 32/49 male/female. 

For each subject, an AV-1451 PET scan for measuring tau, a Pittsburgh Compound B (PiB) 

PET scan for measuring Aβ protein, and a 1.5T structural MRI scan were acquired. For PiB 

PET, native-space voxelwise distribution volume ratio (DVR) images were generated using 

Logan graphical analysis (35–90 min postinjection, cerebellar gray matter [GM] reference 

region) (Logan et al. 1996). For AV-1451 PET, native-space standardized uptake value ratio 

(SUVR) images were created for each participant (80–100 min postinjection, inferior 

cerebellar GM reference region). Native-space PET images were coregistered to each 

participant’s MRI scan. All MRI scans were normalized to the FSL MNI152 2 mm space 

template via a study-specific intermediate template (Lockhart et al. 2017), and 

transformations were concatenated and applied to the coregistered AV-1451 and PiB PET 

images to generate MNI-space PET images. A mask representing voxels likely to 

accumulate cortical amyloid and tau pathology was created. To do this, we intersected a 

cortical brain mask from the Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al. 

2002) with a mask of high-probability GM voxels from the SPM12 tissue probability map. It 

was also masked to include only voxels where the coefficient of variation in the signal (DVR 

or SUVR) across participants in either PET modality was ≤ 0.5, and the mean signal across 

participants was ≥ 0.8. MNI-space PiB and AV-1451 PET images were masked by this 

cortical mask before analysis. From a FreeSurfer segmentation of the MNI152 template 

structural MRI, a set of MNI-space testing regions were created that encompassed Braak I–

IV stage regions for AV-1451, and Braak I–V stage regions for PiB, excluding basal ganglia 

and thalamus (Schöll et al. 2016). These testing regions were also designed to focus on areas 

of possible tau and Aβ accumulation in normal elders. Moreover, these regions belong to 

seven known functional modules, including visual, somatomotor, dorsal attention, ventral 

attention, limbic, frontoparietal, and default mode (Yeo et al. 2011).

5.2. Analysis and Results

We first applied the proposed testing procedure at the region level. For the two modalities, 

PiB and AV-1451, the total dimension is 54,540 and 18,194, and the number of regions is 60 

and 26, respectively. The number of voxels in the smallest region is 104 and 203, and in the 

largest region is 2982 and 1729, respectively. For each pair of the regions, the standardized 

statistic Ti,j was calculated and the normal quantile transformed statistic Nl,g was 

constructed based on the corrected limiting distribution of the test statistics Ml,g, which was 
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calculated according to the 1% voxels with the largest magnitudes. We set the significance 

level α = 0.05, and identified 385 significantly correlated brain regions between the two 

modalities. We report those identified significant pairs of inter-tracer region-of-interest 

(ROI) in Figure 2. The top panel shows the average correlations between the two imaging 

modalities for those significant pairs of regions, and the bottom panel the corresponding p-

values. We plot the average correlation in the top panel to reflect the average behavior of the 

correlations of those identified significant pairs of ROIs, whereas the p-values in the bottom 

panel reflects the behavior of our test statistic, that is, the maximum of absolute correlations. 

Figure 3 further shows the average correlation values for those AV-1451 or PiB regions 

imposed on a template brain image.

From the plots and the identified significantly correlated brain regions, we have observed 

extensive inter-tracer associations both across the AV-1451 ROIs (Figure 2, rows), and 

across PiB ROIs (Figure 2, columns). For AV-1451 ROIs, strong region-specific correlations 

with PiB uptake across the brain were observed, particularly for AV-1451 accumulation in 

temporal lobe regions, such as bilateral entorhinal cortex, parahippocampal cortex, fusiform 

gyrus, middle temporal gyrus, and inferior temporal cortex. In other words, increased PiB 

uptake in areas of the brain that correspond to stages I–V in a postmortem staging scheme 

devised by Braak and Braak (1991) was associated with increased AV-1451 uptake in these 

temporal lobe regions. We also observed less consistent but still numerous associations of 

PiB ROIs with AV-1451 across the brain, such that increased PiB uptake in regions like 

bilateral amygdala, isthmus cingulate, and insula correlated with increased AV-1451 in 

numerous brain regions. In general, increased PiB binding to temporal and extra-temporal 

regions was correlated with AV-1451 binding in areas such as bilateral entorhinal cortex, 

parahippocampal gyrus, fusiform gyrus, middle temporal gyrus, and inferior temporal 

cortex. These findings support previous research, for example, Lockhart et al. (2017) and 

Sepulcre et al. (2016), in suggesting that there exist complex regional associations between 

Aβ and tau deposition in normal aging. These results particularly support the concept that 

there is a regional tau accumulation vulnerability of brain regions like temporal lobes in 

association with Aβ accumulation across numerous brain regions. While some previous 

research has identified associations between Aβ and tau PET tracers, many of those studies 

did not explore regional associations like the current study (e.g., Johnson et al. 2016; 

Ossenkoppele et al. 2016; Schöll et al. 2016; Schwarz et al. 2016), and none have developed 

any formal statistical inferential methods for assessing relationships between multimodal 

neuroimaging data. Our study is able to rigorously and explicitly evaluate how patterns of 

pathological protein accumulation are associated with one another in brains potentially 

impacted by preclinical AD.

We also carried out the correlation analysis at the module level, mostly for the illustration 

purpose. We note that, for the region level analysis, there are potential correlations among 

the voxels within the same region. However, for the module level analysis, there is no 

obvious correlation structure among the regions in the same module, as those regions can 

scatter at distant locations of the brain. Both scenarios are common in a multitude of 

scientific applications.
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Specifically, the ROIs in both modalities belong to all seven functional modules as defined 

in Yeo et al. (2011), and the seven modules have 8, 10, 4, 6, 16, 6, and 22 ROIs, respectively. 

Since this level of analysis focuses on the region-wise correlations, we first averaged all the 

voxels in the same regions, then applied the proposed testing procedure to identify 

significantly correlated PiB and Tau modules. We again set the significance level α = 0.05, 

and identified 19 significantly correlated functional modules between the two modalities. We 

report those pairs in Figure 4, with the left panel showing the average correlations between 

the two imaging modalities for those significant pairs of modules, and the right panel the 

corresponding p-values.

We have observed that, all significant patterns of module level associations were limited to 

the AV-1451 modules of dorsal attention, limbic, and default mode networks, while patterns 

were more distributed across PiB modules. This is consistent with a greater spatial spread of 

amyloid than tau pathology across brain regions in the cognitively normal older adults in this 

study; for example, tau in normal aging is rarely present in visual or somatomotor areas. 

Furthermore, the visual and somatosensory modules do not correlate with each other across 

tracers; these sensory networks are relatively functionally distinct, and again are often 

among the last regions where amyloid and particularly tau pathology are observed in the 

brains of cognitively normal elders. The modules that self-correlate between tracer 

modalities, dorsal attention, limbic, and default mode, are brain areas where both amyloid 

and tau pathology tend to colocalize.

We also compared the results from the region level analysis and the module level analysis. 

We converted the significant regions found from the region level analysis to modules 

according to their corresponding module membership. This converted 385 significantly 

correlated region pairs to 38 unique module pairs. We then ranked these module pairs by the 

number of their occurrences. We first found that all 19 significant module pairs found in the 

module level analysis were also found in the significant module pairs in the region level 

analysis. Moreover, among the 11 pairs of modules with more than 10 occurrences from the 

region level analysis, our module level analysis found 9 of them, which are also the ones 

with the largest 9 occurrences. The two analyses thus yielded consistent findings.

6. Discussion

In this article, we have developed a new testing procedure for simultaneous covariance 

inference of associations between multiple modalities. The proposed test offers both a timely 

response to an important type of scientific problem of multimodal integrative analysis, as 

well as a useful addition to the toolbox of statistical covariance inference. Next, we make a 

few remarks about our proposal.

We measure the association of the two modalities by Pearson correlation, which is 

commonly employed in neuroimaging analysis (Fornito, Zalesky, and Breakspear 2013). 

Other correlations measures, in principle, can be cast into our framework too, though it 

would require new derivations of the asymptotic properties of the test.
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The inference procedure we develop allows the sizes of the regions, that is, {p1, p2,…, pL}, 

to be much larger than the sample size n, and also to grow with n. This is a unique feature of 

our method, and is especially useful for multimodal analysis type applications, where the 

sample size is often limited.

We are particularly interested in the sparse scenario when the majority of the submatrices in 

{ΣSl
X, SgY , 1 ≤ l, g ≤ L} are zero matrices. Practically, this type of sparsity is to facilitate the 

scientific interpretation. Technically, it permits a precise approximation of the false 

discoveries. On the other hand, even if this sparsity is not satisfied, our inference procedure 

remains valid, only with a relatively conservative false discovery control. This is due to the 

fact that, when the sparsity does not hold, the procedure still controls the FDR 

asymptotically at the level α ∣ ℋ0 ∣ ∕ L2, which is smaller than α.

Our test statistic Ml,g is constructed as the maximum of the standardized covariance statistic 

Ti,j, for i ∈ Sl
X, j ∈ Sg

Y , between the two modalities. Alternatively, one may consider a test 

statistic as the sum of Ti, j
2 , that is,

Sl, g = ∑
i ∈ Sl

X, j ∈ SgY
Ti, j2 .

We have chosen the maximum type test statistic over the sum type, for several reasons. First, 

Ml,g is particularly suitable for the case when one or a few entries of the submatrix ΣSl
X, SgY

have large values. But it also works for the case when many entries of ΣSl
X, SgY  are large. By 

contrast, Sl,g is not suitable for the case when only a few entries are large, since in this case, 

most entries would act as “noise” and the sum can fail to be large enough to distinguish 

between the null and alternative hypotheses. In a multitude of applications, including our 

multimodal PET study, both scenarios are common. Second, the test based on Ml,g has a 

stable theoretical performance when the dimension plpg diverges. However, the test based on 

Sl,g may become intractable when plpg diverges. This is because, to derive the limiting null 

distribution of Sl,g, one needs to estimate the covariance structure of {Ti, j, i ∈ Sl
X, j ∈ Sg

Y }, 

which is of dimension plpg × plpg. When plpg diverges, it becomes extremely difficult to 

estimate such a covariance matrix. Furthermore, since there are L2 such covariance 

structures to estimate simultaneously, the FDR of the multiple testing procedure based on 

Sl,g can be easily distorted, if some of the null distributions of those L2 submatrices are mis-

specified. Normalization of Sl,g offers a possible alternative solution (Schott 2007; Li and 

Chen 2012). But the false discovery control based on a normalized Sl,g imposes completely 

new challenges.

Finally, we remark on the spatial dependency and its effect on our test method. The 

standardized covariance statistics Ti,j’s in the regions Sl
X and Sg

Y  can be correlated; for 

instance, in our multimodal PET example, the brain voxels are spatially correlated, and as 

such Ti,j’s are correlated. First of all, we clarify that, for our proposed test, we do not impose 

the spatial independence assumption. In Section 2.2, we have introduced Assumption (A1), 
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which requires the number of highly correlated entries in Sl, g not to be too many. This 

condition is easily satisfied, for example, when the eigenvalues of Σ(l,g) are bounded from 

above. With this weak dependency condition, we can derive the exact limiting distribution 

for our test statistic. On the other hand, we can relax this weak dependency condition, and 

can still approximately control the size of the test. Specifically, we have the following result.

Proposition 2. Assume the moment condition (A2) holds. Then for 0 < α < 1, we have that

P (Type I error) = PH0, l, g(Ψα = 1) ≤ − log(1 − α) + o(1) .

The proof of this proposition is based on the relaxation of PH0,l,g {Ml,g ≥ qα + 2 log(plpg) – 

log log(plpg)} to ∑i ∈ Sl
X, j ∈ SgY PH0, l, g{Ti, j

2 ≥ qα + 2 log(plpg) − log log(plpg)}, and the normal 

approximation by Lemma 5 in the supplementary appendix. It is interesting to observe that, 

− log(1 – α) ≈ α for a small α. For instance, for the commonly used significance level α = 

0.05, − log(1 – α) = 0.05129, and for α = 0.01, − log(1 – α) = 0.01005. Therefore, we can 

still approximately control the size of our test even without any dependency assumption. 

Second, the construction of our test statistic Ml,g does not explicitly incorporate potential 

correlations among the samples {(Xk, Yk)}k = 1
n . On one hand, in real scientific applications, 

both scenarios, where such correlations are present or absent, are not uncommon. In our 

multimodal PET example, for the region level analysis, there are potential correlations 

among the voxels within the same region. But for the module level analysis, there is no 

obvious correlation structure among the regions in the same module. Our test has been 

designed for both scenarios. On the other hand, we recognize that, by incorporating potential 

correlations, it may further enhance the testing procedure. This is a very challenging 

problem though, and we leave it to our future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment

The authors thank the Editor, the Associate Editor, and two referees for their constructive comments.

Funding

Xia’s research was partially supported by NSFC grants 11771094, 11690013 and The Recruitment Program of 
Global Experts Youth Project. Li’s research was partially supported by NSF grant DMS-1613137 and NIH grants 
R01AG034570 and R01AG061303. Lockhart’s research was partially supported by NIH grant P30AG049638. 
Jagust’s research was partially supported by NIH grants R01AG034570 and R01AG061303.

References

Ahn M, Shen H, Lin W, and Zhu H (2015), “A Sparse Reduced Rank Framework for Group Analysis 
of Functional Neuroimaging Data,” Statistica Sinica, 25, 295–312. [PubMed: 26405427] 

Anderson TW (2003), An Introduction to Multivariate Statistical Analysis (3rd ed.), New York: Wiley-
Interscience.

Benjamini Y, and Yekutieli D (2001), “The Control of the False Discovery Rate in Multiple Testing 
Under Dependency,” Annals of Statistics, 29, 1165–1188.

Xia et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2021 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Birnbaum A, and Nadler B (2012), “High Dimensional Sparse Covariance Estimation: Accurate 
Thresholds for the Maximal Diagonal Entry and for the Largest Correlation Coefficient,” Technical 
report.

Braak H, and Braak E (1991), “Neuropathological Staging of Alzheimer-Related Changes,” Acta 
Neuropathologica, 82, 239–259. [PubMed: 1759558] 

Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, Owen C, Aldea P, Su Y, 
Hassenstab J, Cairns NJ, Holtzman DM, Fagan AM, Morris JC, Benzinger TLS, and Ances BM 
(2016), “Tau and Aβ Imaging, CSF Measures, and Cognition in Alzheimer’s Disease,” Science 
Translational Medicine, 8, 338ra66–338ra66.

Cai T, Cai TT, and Zhang A (2016), “Structured Matrix Completion With Applications to Genomic 
Data Integration,” Journal of the American Statistical Association, 111, 621–633. [PubMed: 
28042188] 

Cai TT, and Liu W (2016), “Large-Scale Multiple Testing of Correlations,” Journal of the American 
Statistical Association, 111, 229–240. [PubMed: 27284211] 

Cai TT, Liu W, and Xia Y (2013), “Two-Sample Covariance Matrix Testing and Support Recovery in 
High-Dimensional and Sparse Settings,” Journal of the American Statistical Association, 108, 265–
277.

Cai TT, and Zhang A (2016), “Inference for High-Dimensional Differential Correlation Matrices,” 
Journal of Multivariate Analysis, 143, 107–126. [PubMed: 26500380] 

Chen M, Gao C, Ren Z, and Zhou H (2013), “Sparse CCA Via Precision Adjusted Iterative 
Thresholding,” arXiv Preprint arXiv:1311.6186.

Chien D, Szardenings A, Bahri S, Walsh J, Mu F, Xia C, Shankle W, Lerner A, Su M, Elizarov A, and 
Kolb H (2014), “Early Clinical PET Imaging Results With the Novel PHF-tau Radioligand [f18]–
t808,” Journal of Alzheimer’s Disease, 34, 457–468

Efron B (2007), “Correlation and Large-Scale Simultaneous Significance Testing,” Journal of the 
American Statistical Association, 102, 93–103.

Fornito A, Zalesky A, and Breakspear M (2013), “Graph Analysis of the Human Connectome: 
Promise, Progress, and Pitfalls,” NeuroImage, 80, 426–444. [PubMed: 23643999] 

Hall P (1991), “On Convergence Rates of Suprema,” Probability Theory and Related Fields, 89, 447–
455.

Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, Mormino E, Chhatwal J, 
Amariglio R, Papp K, Marshall G, Albers M, Mauro S, Pepin L, Alverio J, Judge K, Philiossaint 
M, Shoup T, Yokell D, Dickerson B, Gomez-Isla T, Hyman B, Vasdev N, and Sperling R (2016), 
“Tau Positron Emission Tomographic Imaging in Aging and Early Alzheimer’s Disease,” Annals 
of Neurology, 79, 110–119. [PubMed: 26505746] 

Kang J, Bowman FD, Mayberg H, and Liu H (2016), “A Depression Network of Functionally 
Connected Regions Discovered Via Multi-Attribute Canonical Correlation Graphs,” NeuroImage, 
141, 431–441. [PubMed: 27474522] 

Li J, and Chen SX (2012), “Two Sample Tests for High-Dimensional Covariance Matrices,” The 
Annals of Statistics, 40, 908–940.

Li Q, Wang S, Huang C-C, Yu M, and Shao J (2014), “Meta-Analysis Based Variable Selection for 
Gene Expression Data,” Biometrics, 70, 872–880. [PubMed: 25196635] 

Lin J-A, Zhu H, Mihye A, Sun W, and Ibrahim JG (2014), “Functional Mixed Effects Models for 
Candidate Genetic Mapping in Imaging Genetic Studies,” Genetic Epidemiology, 38, 680–691. 
[PubMed: 25270690] 

Liu J, Huang J, Zhang Y, Lan Q, Rothman N, Zheng T, and Ma S (2014), “Integrative Analysis of 
Prognosis Data on Multiple Cancer Subtypes,” Biometrics, 70, 480–488. [PubMed: 24766212] 

Liu W (2013), “Gaussian Graphical Model Estimation With False Discovery Rate Control,” Annals of 
Statistics, 41, 2948–2978.

Liu W-D, Lin Z, and Shao Q-M (2008), “The Asymptotic Distribution and Berry—Esseen Bound of a 
New Test for Independence in High Dimension With an Application to Stochastic Optimization,” 
Annals of Applied Probability, 18, 2337–2366.

Xia et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2021 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lockhart SN, Schöll M, Baker SL, Ayakta N, Swinnerton KN, Bell RK, Mellinger TJ, Shah VD, 
O’Neil JP, Janabi M, and Jagust WJ (2017), “Amyloid and Tau PET Demonstrate Region-Specific 
Associations in Normal Older People,” NeuroImage, 150, 191–199. [PubMed: 28232190] 

Logan J, Fowler JS, Volkow ND, Wang G-J, Ding Y-S, and Alexoff DL (1996), “Distribution Volume 
Ratios Without Blood Sampling From Graphical Analysis of PET Data,” Journal of Cerebral 
Blood Flow & Metabolism, 16, 834–840. [PubMed: 8784228] 

Nathoo FS, Kong L, and Zhu H (2017), “Inference on High-Dimensional Differential Correlation 
Matrix,” arXiv preprint arXiv:1707.07332.

Ossenkoppele R, Schonhaut DR, Schll M, Lockhart SN, Ayakta N, Baker SL, O'Neil JP, Janabi M, 
Lazaris A, Cantwell A, Vogel J, Santos M, Miller ZA, Bettcher BM, Vossel KA, Kramer JH, 
Gorno-Tempini ML, Miller BL, Jagust WJ, and Rabinovici GD (2016), “Tau PET Patterns Mirror 
Clinical and Neuroanatomical Variability in Alzheimer’s Disease,” Brain, 139, 1551. [PubMed: 
26962052] 

Richardson S, Tseng GC, and Sun W (2016), “Statistical Methods in Integrative Genomics,” Annual 
Review of Statistics and Its Application, 3, 181–209.

Schöll M, Lockhart S, Schonhaut D, ONeil J, Janabi M, Ossenkoppele R, Baker S, Vogel J, Faria J, 
Schwimmer H, Rabinovici G, and Jagust W (2016), “PET Imaging of Tau Deposition in the Aging 
Human Brain,” Neuron, 89, 971–982. [PubMed: 26938442] 

Schott JR (2007), “A Test for the Equality of Covariance Matrices When the Dimension is Large 
Relative to the Sample Sizes,” Computational Statistics & Data Analysis, 51, 6535–6542.

Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M, Joshi AD, Devous MD Sr, and 
Mintun MS (2016), “Regional Profiles of the Candidate Tau PET Ligand 18 f-av-1451 
Recapitulate Key Features of Braak Histopathological Stages,” Brain, 139, 1539. [PubMed: 
26936940] 

Sepulcre J, Schultz AP, Sabuncu M, Gomez-Isla T, Chhatwal J, Becker A, Sperling R, and Johnson KA 
(2016), “In vivo Tau, Amyloid, and Gray Matter Profiles in the Aging Brain,” Journal of 
Neuroscience, 36, 7364–7374. [PubMed: 27413148] 

Shen R, Wang S, and Mo Q (2013), “Sparse Integrative Clustering of Multiple Omics Data Sets,” 
Annals of Applied Statistics, 7, 269–294.

Singh M, Kim S, and Kim T-S (2003), “Correlation Between Bold-FMRI and EEG Signal Changes in 
Response to Visual Stimulus Frequency in Humans,” Magnetic Resonance in Medicine, 49, 108–
114. [PubMed: 12509825] 

Smith SD, Fox PT, Miller K, Glahn D, Fox P, Mackay CE, Filippini N, Watkins KE, Toro R, Laird A, 
and Beckmann CF (2009), “Correspondence of the Brain; Functional Architecture During 
Activation and Rest,” Proceedings of the National Academy of Sciences of the United States of 
America, 106, 13040–5. [PubMed: 19620724] 

Sun W, and Cai T (2009), “Large-Scale Multiple Testing Under Dependence,” Journal of the Royal 
Statistical Society, Series B, 71, 393–424.

Sun W, Reich BJ, Tony Cai T, Guindani M, and Schwartzman A (2015), “False Discovery Control in 
Large-Scale Spatial Multiple Testing,” Journal of the Royal Statistical Society, Series B, 77, 59–
83.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, and 
Joliot M (2002), “Automated Anatomical Labeling of Activations in SPM Using a Macroscopic 
Anatomical Parcellation of the MNI MRI Single-Subject Brain,” NeuroImage, 15, 273–289. 
[PubMed: 11771995] 

Uludag K, and Roebroeck A (2014), “General Overview on the Merits of Multimodal Neuroimaging 
Data Fusion,” NeuroImage, 102, 3–10. [PubMed: 24845622] 

Witten DM, Tibshirani R, and Hastie T (2009), “A Penalized Matrix Decomposition, With 
Applications to Sparse Principal Components and Canonical Correlation Analysis,” Biostatistics, 
10, 515–534. [PubMed: 19377034] 

Xia Y (2017), “Testing and Support Recovery of Multiple High-Dimensional Covariance Matrices 
With False Discovery Rate Control,” Test, 26, 782–801.

Xia Y, Cai T, and Cai TT (2015), “Testing Differential Networks With Applications to the Detection of 
Gene-Gene Interactions,” Biometrika, 102, 247–266. [PubMed: 28502988] 

Xia et al. Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2021 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



_____ (2018), “Multiple Testing of Submatrices of a Precision Matrix With Applications to 
Identification of Between Pathway Interactions,” Journal of the American Statistical Association, 
113, 328–339. [PubMed: 29881130] 

Xia Y, and Li L (2017), “Hypothesis Testing of Matrix Graph Model With Application to Brain 
Connectivity Analysis,” Biometrics, 73, 780–791. [PubMed: 27959470] 

Xie J, and Kang J (2017), “High-Dimensional Tests for Functional Networks of Brain Anatomic 
Regions,” Journal of Multivariate Analysis, 156, 70–88. [PubMed: 28413234] 

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, 
Zllei L, Polimeni JR, Fischl B, Liu H, and Buckner RL (2011), “The Organization of the Human 
Cerebral Cortex Estimated by Intrinsic Functional Connectivity” Journal of Neurophysiology, 106, 
1125–1165. [PubMed: 21653723] 

Zhang D, Wang Y, Zhou L, Yuan H, Shen D, and the Alzheimers Disease Neuroimaging Initiative 
(2011), “Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment,” 
Neuroimage, 55, 856–867. [PubMed: 21236349] 

Zhu D, Zhang T, Jiang X, Hu X, Chen H, Yang N, Lv J, Han J, Guo L, and Liu T (2014), “Fusing DTI 
and FMRI Data: A Survey of Methods and Applications,” NeuroImage, 102, 184–191. [PubMed: 
24103849] 

Xia et al. Page 21

J Am Stat Assoc. Author manuscript; available in PMC 2021 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Comparison of the empirical cumulative distribution and the limiting distribution with and 

without the correction. The size of the submatrix is 80 × 100 and n = 100.
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Figure 2. 
PiB and AV-1451 intra-tracer correlation matrix (top panel) and p-value matrix (bottom 

panel) for the region level analysis.

Xia et al. Page 23

J Am Stat Assoc. Author manuscript; available in PMC 2021 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
AV-1451 (left) and PiB (right) average inter-tracer region-of-interest correlation map 

imposed on a template brain. Color bars at bottom indicate average of all significant (p < 

0.05) correlation coefficients, when testing the associations between a given region in one 

modality (e.g., left inferior temporal AV-1451) with all tested brain regions in the other 

modality (e.g., all Braak I-V PiB).
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Figure 4. 
PiB and AV-1451 intra-tracer correlation matrix (left panel) and p-value matrix (right panel) 

for the module level analysis.
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