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Abstract

Modeling correlation (and covariance) matrices can be challenging due to the positive-definiteness 

constraint and potential high-dimensionality. Our approach is to decompose the covariance matrix 

into the correlation and variance matrices and propose a novel Bayesian framework based on 

modeling the correlations as products of unit vectors. By specifying a wide range of distributions 

on a sphere (e.g. the squared-Dirichlet distribution), the proposed approach induces flexible prior 

distributions for covariance matrices (that go beyond the commonly used inverse-Wishart prior). 

For modeling real-life spatio-temporal processes with complex dependence structures, we extend 

our method to dynamic cases and introduce unit-vector Gaussian process priors in order to capture 

the evolution of correlation among components of a multivariate time series. To handle the 

intractability of the resulting posterior, we introduce the adaptive Δ-Spherical Hamiltonian Monte 

Carlo. We demonstrate the validity and flexibility of our proposed framework in a simulation study 

of periodic processes and an analysis of rat’s local field potential activity in a complex sequence 

memory task.
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1 Introduction

Modeling covariance matrices—or more broadly, positive definite (PD) matrices—is one of 

the most fundamental problems in statistics. In general, the task is difficult because the 

number of parameters grows quadratically with the dimension of the matrices. The 

complexity of the challenge increases substantially if we allow dependencies to vary over 

time (or space) in order to account for the dynamic (non-stationary) nature of the underlying 

probability model. In this paper, we propose a novel solution to the problem by developing a 

flexible and yet computationally efficient Bayesian inferential framework for both static and 

dynamic covariance matrices.

This work is motivated by modeling the dynamic brain connectivity (i.e., associations 

between brain activity at different regions). In light of recent technical advances that allow 

the collection of large, multidimensional neural activity datasets, brain connectivity analyses 

are emerging as critical tools in neuroscience research. Specifically, the development of such 

analytical tools will help elucidate fundamental mechanisms underlying cognitive processes 

such as learning and memory, and identify potential biomarkers for early detection of 

neurological disorders. There are a number of new methods that have been developed 

(Cribben et al., 2012; Fiecas and Ombao, 2016; Lindquist et al., 2014; Ting et al., 2015; 

Prado, 2013) but the main limitation of these methods (especially the ones that have a 

frequentist approach) is a lack of natural framework for inference. Moreover, parametric 

approaches (e.g. vector auto-regressive models) need to be tested for adequacy for modeling 

complex brain processes and often have high dimensional parameter spaces (especially with 

a large number of channels and high lag order). This work provides both a nonparametric 

Bayesian model and an efficient inferential method for modeling the complex dynamic 

dependence among multiple stochastic processes that is common in the study of brain 

connectivity.

Within the Bayesian framework, it is common to use an inverse-Wishart prior on the 

covariance matrix for computational convenience (Mardia et al., 1980; Anderson, 2003). 

This choice of prior however is very restrictive (e.g. common degrees of freedom for all 

components of variance) (Barnard et al., 2000; Tokuda et al., 2011). Daniels (1999); Daniels 

and Kass (2001) propose uniform shrinkage priors. Daniels and Kass (1999) discuss three 

hierarchical priors to generalize the inverse-Wishart prior. Alternatively, one may use 

decomposition strategies for more flexible modeling choices (see Barnard et al. (2000) for 

more details). For instance, Banfield and Raftery (1993), Yang and Berger (1994), Celeux 

and Govaert (1995), Leonard and Hsu (1992), Chiu et al. (1996), and Bensmail et al. (1997) 

propose methods based on the spectral decomposition of the covariance matrix. Another 

strategy is to use the Cholesky decomposition of the covariance matrix or its inverse, e.g., 

Pourahmadi (1999, 2000); Liu (1993); Pinheiro and Bates (1996). There are other 

approaches directly related to correlation, including the constrained model based on 

truncated distributions (Liechty, 2004), the Cholesky decomposition of correlation matrix 

using an angular parametrization (Pourahmadi and Wang, 2015), and methods based on 

partial autocorrelation and parametrizations using angles (Rapisarda et al., 2007). In general, 

these methods fail to yield full flexibility and generality; and often sacrifice statistical 

interpretability.

Lan et al. Page 2

Bayesian Anal. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While our proposed method in this paper is also based on the separation strategy (Barnard et 

al., 2000) and the Cholesky decomposition, the main distinction from the existing methods is 

that it represents each entry of the correlation matrix as a product of unit vectors. This in 

turn provides a flexible framework for modeling covariance matrices without sacrificing 

interpretability. Additionally, this framework can be easily extended to dynamic settings in 

order to model real-life spatio-temporal processes with complex dependence structures that 

evolve over the course of the experiment.

To address the constraint for correlation processes (positive definite matrix at each time 

having unit diagonals and off-diagonal entries with magnitudes no greater than 1), we 

introduce unit-vector Gaussian process priors. There are other related works, e.g. 

generalized Wishart process (Wilson and Ghahramani, 2011), and latent factor process (Fox 

and Dunson, 2015), that explore the product of vector Gaussian processes. In general they do 

not grant full flexibility in simultaneously modeling the mean, variance and correlation 

processes. For example, latent factor based models link the mean and covariance processes 

through a loading matrix, which is restrictive and undesirable if the linear link is not 

appropriate, and thus are outperformed by our proposed flexible framework (See more 

details in Section 4.2). Other approaches to model non-stationary processes use a 

representation in terms of a basis such as wavelets (Nason et al., 2000; Park et al., 2014; Cho 

and Fryzlewicz, 2015) and the smooth localized complex exponentials (SLEX) (Ombao et 

al., 2005), which are actually inspired by the Fourier representations in the Dahlhaus locally 

stationary processes Dahlhaus (2000); Priestley (1965). These approaches are frequentist 

and do not easily provide a framework for inference (e.g., obtaining confidence intervals). 

The class of time-domain parametric models allows for the autoregressive-moving-average 

(ARMA) parameters to evolve over time (see, e.g. Rao, 1970) or via parametric latent 

signals (West et al., 1999; Prado et al., 2001). A restriction for this class of parametric 

models is that some processes might not be adequately modeled by them.

This main contributions of this paper are: (a.) a sphere-product representation of correlation/

covariance matrix is introduced to induce flexible priors for correlation/covariance matrices 

and processes; (b.) a general and flexible framework is proposed for modeling mean, 

variance, and correlation processes separately; (c.) an efficient algorithm is introduced to 

infer correlation matrices and processes; (d.) the posterior contraction of modeling 

covariance (correlation) functions with Gaussian process prior is studied for the first time.

The rest of the paper is organized as follows. In the next section, we present a geometric 

view of covariance matrices and extend this view to allow covariance matrices to change 

over time. In Section 3, we use this geometrical perspective to develop an effective and 

computationally efficient inferential method for modeling static and dynamic covariance 

matrices. Using simulated data, we will evaluate our method in Section 4. In Section 5, we 

apply our proposed method to local field potential (LFP) activity data recorded from the 

hippocampus of rats performing a complex sequence memory task (Allen et al., 2014, 2016; 

Ng et al., 2017). In the final section, we conclude with discussions on the limitations of the 

current work and future extensions.
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2 Structured Bayesian Modeling of the Covariance (Correlation) Matrices

To derive flexible models for covariance and correlation matrices, we start with the Cholesky 

decomposition, form a sphere-product representation, and finally obtain the separation 

decomposition in Barnard et al. (2000) with correlations represented as products of unit 

vectors. The sphere-product representation is amenable for the inferential algorithm to 

handle the resulting intractability, and hence lays the foundation for full flexibility in 

choosing priors.

Any covariance matrix Σ = [σij] > 0 is symmetric positive definite, and hence has a unique 

Cholesky decomposition Σ = LL⊤ where the Cholesky factor L = [lij] is a lower triangular 

matrix such that σij = ∑k = 1
min i, j likljk. We denote the variance vector as σ2: = σ1

2, ⋯, σD
2 ⊤

, 

then each variance component, σi2: = σii, can be written in terms of the corresponding row li 

of L as follows:

σi2 = ∑
k = 1

i
lik2 = li 2, li: = li1, li2, ⋯, lii . (2.1)

For Σ to be positive definite, it is equivalent to require all the leading principal minors {Mi} 

to be positive,

Mi = ∏
k = 1

i
lkk
2 > 0, i = 1, ⋯, D lii ≠ 0, i = 1, ⋯, D . (2.2)

Based on (2.1) and (2.2), for i ∈ {1,⋯,D}, li can be viewed as a point on a sphere with radius 

σi excluding the equator, denoted as S0
i − 1 σi : = l ∈ ℝi | l 2 = σi, lii ≠ 0 . Therefore the 

space of the Cholesky factor in terms of its rows can be written as a product of spheres and 

we require

l1, l2, ⋯, lD ∈ S0
0 σ1 × S0

1 σ2 ⋯ × S0
D − 1 σD . (2.3)

Note that (2.3) is the sufficient and necessary condition for the matrix Σ = LL⊤ to be a 

covariance matrix.

We present probabilistic models involving covariance matrices in the following generic 

form:

y Σ(σ, L) l(y; Σ(σ, L)), Σ(σ, L) = LL⊤,

σ p(σ),

L σ p(L; σ), vech⊤(L) ∈ ∏
i = 1

D
S0

i − 1 σi ,

(2.4)

where σ := [σ1,⋯,σD]⊤, and the half-vectorization in row order, vech⊤, transforms the lower 

triangular matrix L into a vector (l1, l2,⋯,lD). The total dimension of (σ,L) is D(D + 1)
2 .1
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Alternatively, if we separate variances from covariance, then we have a unique Cholesky 

decomposition for the correlation matrix P = [ρij] = L*(L*)⊤, where the Cholesky factor L* 

= diag(σ−1)L can be obtained by normalizing each row of L. The magnitude requirements 

for correlations are immediately satisfied by the Cauchy-Schwarz inequality: 

ρij =
σij

σiσj
=

li, lj
li 2 lj 2

≤ 1. Thus we require

l1*, l2*, ⋯, lD* ∈ S0
0 × S0

1⋯ × S0
D − 1, (2.5)

where S0
i − 1: = S0

i − 1(1). Similarly, (2.5) is the sufficient and necessary condition for P = 

L*(L*)⊤ to be a correlation matrix. Then we have the following alternatively structured 

model for covariance Σ that involves correlation P explicitly

y Σ σ, L* l y; Σ σ, L* , Σ σ, L* = diag(σ)Pdiag(σ), P = L* L* ⊤,

σ p(σ),

L* p L* , vech⊤ L* ∈ ∏
i = 1

D
S0

i − 1 .

(2.6)

Note, this direct decomposition Σ = diag(σ)P diag(σ) as a separation strategy is motivated by 

statistical thinking in terms of standard deviations and correlations (Barnard et al., 2000). 

This setting is especially relevant if the statistical quantity of interest is correlation matrix P 
itself, and we can then skip inference of the standard deviation σ by fixing it to a data-

derived point estimate.

In what follows, we will show that the above framework includes the inverse-Wishart prior 

as a special case, but it can be easily generalized to a broader range of priors for additional 

flexibility. Such flexibility enables us to better express prior knowledge, control the model 

complexity and speed up computation in modeling real-life phenomena. This is crucial in 

modeling spatio-temporal processes with complex structures.

2.1 Connection to the Inverse-Wishart Prior

There are some interesting connections between the spherical product representations (2.3) 

(2.5) and the early development of the Wishart distribution (Wishart, 1928). The original 

Wishart distribution was derived by orthogonalizing multivariate Gaussian random variables 

leading to a lower triangular matrix whose elements tij* | i ≥ j  (analogous to lij or lij*) were 

called rectangular coordinates. This way, the probability density has a geometric 

interpretation as a product of volumes and approximate densities on a series of spherical 

shells with radius tii*  (See more details in Sverdrup, 1947; Anderson, 2003). Now we 

demonstrate that the proposed schemes (2.4) (2.6) include the commonly used inverse-

Wishart prior as a special case in modeling covariances.

1For each i ∈ {1,⋯,D}, given σi, there are only (i − 1) free parameters on S0
i − 1 σi , so there are totally 

D(D − 1)
2 + D free 

parameters.
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Suppose Σ is a random sample from the inverse-Wishart distribution WD
−1(Ψ, ν) with the 

scale matrix Ψ > 0 and the degree of freedom ν ≥ D. Therefore, WD Ψ−1, ν . Denote C as 

the Cholesky factor of Ψ−1, i.e. Ψ−1 = CC⊤. Then Σ−1 has the following Bartlett 

decomposition (Anderson, 2003; Smith and Hocking, 1972)

Σ−1 = TT⊤, T: = CT*, tij*
χD − i + 1, i = j,
N(0, 1), i > j,

δ0, i < j,
(2.7)

where the lower triangular matrix T, named Bartlett factor, has the following density 

(Theorem 7.2.1 of Anderson, 2003)

p(T) = Ψ ν/2

2D(ν − 2)/2ΓD(ν/2)
∏

i = 1

D
tii

ν − iexp − 1
2tr ΨTT⊤

with multivariate gamma function defined as ΓD(x): = πD(D − 1)/4∏i = 1
D Γ[x + (1 − i)/2].

Now taking the inverse of the first equation in (2.7) yields the following reversed Cholesky 
decomposition2

Σ = UU⊤, σij = ∑
k = max i, j

D
uikujk, vech U⊤ ∈ ∏

i = 1

D
S0

D − i σi ,

where U := T−⊤ is an upper triangular matrix. The following proposition describes the 

density of the reversed Cholesky factor U of Σ, which enables us to treat the inverse-Wishart 

distribution as a special instance of strategy (2.4) or (2.6).

Proposition 2.1. Assume Σ WD
−1(Ψ, ν). Then its reversed Cholesky factor U has the 

following density

p(U) = Ψ ν/2

2D(ν − 2)/2ΓD(ν/2)
|U |−(ν + D + 1) ∏

i = 1

D
uiii exp − 1

2tr ΨU−TU−1 .

Proof. See Section A in the supplementary file (Lan et al., 2019). □

If we normalize each row of U and write

U = diag(σ)U*, σi = σii = ui , uij* = uij/σi,

then the following joint prior of (σ,U*) is inseparable in general:

2This can be achieved through the exchange matrix (a.k.a. reversal matrix, backward identity, or standard involutory permutation) E 
with 1’s on the anti-diagonal and 0’s elsewhere. Note that E is both involutory and orthogonal, i.e. E = E−1 = ET. Let EΣE = LL⊤ be 
the usual Cholesky decomposition. Then Σ = (ELE)(ELE)⊤ = UU⊤ and define U := ELE⊤.
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p σ, U* ∝ ∏
i = 1

D
σiuii*

i − (ν + D + 1)exp − 1
2tr

Ψdiag σ−1 U* − ⊤ U* −1diag σ−1 .
(2.8)

With this result, we can conditionally model variance and correlation factor as p(σ|U*) and 

p(U*|σ) respectively, similarly as in our proposed scheme (2.4) or (2.6). It is also used to 

verify the validity of our proposed method (2.6) (see more details in Section 4.1). A similar 

result exists for the Wishart prior distribution regarding the Cholesky factor. This 

representation facilitates the construction of a broader class of more flexible prior 

distributions for covariance matrix detailed below.

2.2 More Flexible Priors

Within the above framework, the only constraint on U or L is that it resides on the product of 

spheres with increasing dimensions. Using this fact, we can develop a broader class of priors 

on covariance matrices and thus be able to model processes with more complicated 

dependence in covariance structures. Since σ and L* have independent priors in (2.6), in 

what follows we focus on the scheme (2.6), and for simplicity, we denote the normalized 

Cholesky factor as L. Also, following Barnard et al. (2000), we assume a log-Normal prior 

on σ:

log(σ) N(ξ,Λ) .

We now discuss priors on L that properly reflect the prior knowledge regarding the 

covariance structure among variables. If two variables, yi and yj (assuming i < j) are known 

to be uncorrelated a priori, i.e. 0 = ρij = 〈li, lj〉, then we can choose a prior that encourages li 
⊥ lj, e.g. ljk ≈ 0 for k ≤ i. In contrast, if we believe a priori that there is a strong correlation 

between the two variables, we can specify that li and lj be linearly dependent, e.g., by setting 

[ljk]k≤i ≈ ±li. When there is no prior information, we might assume that components are 

uncorrelated and consider the following Jeffreys prior for li that concentrates on the (two) 

poles of S0
i − 1,

p li ∝ detG li = lii −1, i = 2, ⋯, D, (2.9)

where G(li) is the canonical metric on spheres (Lan et al., 2014). Putting more prior 

probability on the diagonal elements of L renders fewer non-zero off-diagonal elements, 

which in turn leads to a larger number of perpendicular variables; that is, such a prior favors 

zeros in the correlation matrix P. More generally, one can map a probability distribution 

defined on the simplex onto the sphere and consider the following squared-Dirichlet 
distribution.

Definition 1 (Squared-Dirichlet distribution). A random vector li ∈ Si − 1 is said to have a 

squared-Dirichlet distribution with parameter αi := (αi1,αi2,⋯,αii) if

Lan et al. Page 7

Bayesian Anal. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



li2: = li1
2 , li2

2 , ⋯, lii2 Dir αi .

Denote li ~ Dir2(αi). Then li has the following density

p li = p li2 2li ∝ li2
αi − 1

li = Ii
2αi − 1: = ∏

k = 1

i
lik 2αik − 1 . (2.10)

Remark 1. This definition includes a large class of flexible prior distributions on the unit 
sphere that specify different concentrations of probability density through the parameter αi. 
For example, the Jeffreys prior (2.9) corresponds to.αi = (1/2,⋯,1/2, 0).

To induce a prior distribution for the correlation matrix P = LL⊤, one can specify priors on 

row vectors of L, li ~ Dir2(αi) for i = 2,⋯,D. Each pair for (li, lj) in turn defines a prior 

distribution for the correlation ρij = 〈li, lj〉, whose sign is determined by the angle between li 
and lj. To encourage small correlation, we choose the concentration parameter αi so that the 

probability density concentrates around the (two) poles of S0
i − 1, e.g. 0 < αik ≪ αik for k < i. 

Figure 1 illustrates the density heat maps of some symmetric squared-Dirichlet distributions 

Dir2(α1) on S2. It is interesting that the squared-Dirichlet distribution induces two important 

uniform prior distributions over correlation matrices from Barnard et al. (2000) in an effort 

to provide flexible priors for covariance matrices, as stated in the following theorem.

Theorem 2.1 (Uniform distributions). Let P = LL⊤. Suppose li ~ Dir2(αi), for i = 2,⋯,D, are 
independent, where li is the i-th row of L. We have the following

1. If αi = 1
21i − 1

⊤ , αii , αii = (i − 2)D − 1
2 , then P follows a marginally uniform 

distribution, that is, ρij ~ Unif(−1, 1), i ≠ j.

2. If αi = 1
21i − 1

⊤ , αii , αii = D − i
2 + 1, then P follows a jointly uniform distribution, 

that is, p(P) ∝ 1.

Proof. See Section A in the supplementary file (Lan et al., 2019). □

Another natural spherical prior can be obtained by constraining a multivariate Gaussian 

random vector to have unit norm. This is later generalized to a vector Gaussian process 

constrained to a sphere that serves as a suitable prior for modeling correlation processes. 

Now we consider the following unit-vector Gaussian distribution:

Definition 2 (Unit-vector Gaussian distribution). A random vector li ∈ Si − 1 is said to have 

a unit-vector Gaussian distribution with mean μ and covariance Σ if

li Ni(μ, Σ), with  li 2 = 1.

Then we denote li Ni
S(μ, Σ) and li has the following (conditional) density
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p li | li 2 = 1 = 1

(2π)
i
2 |Σ|

1
2

exp − 1
2 li − μ ⊤Σ−1 li − μ , li 2 = 1.

Remark 2. This conditional density essentially defines the following Fisher-Bingham 

distribution (a.k.a. generalized Kent distribution, Kent, 1982; Mardia and Jupp, 2009). If Σ = 

I, then the above distribution reduces to the von Mises-Fisher distribution (Fisher, 1953; 

Mardia and Jupp, 2009) as a special case. If in addition μ = 0, then the above density 

becomes a constant; that is, the corresponding distribution is uniform on the sphere S0
i − 1. 

See more details in Section E.1 of the supplementary file (Lan et al., 2019).

2.3. Dynamically Modeling the Covariance Matrices

We can generalize the proposed framework for modeling covariance/correlation matrices to 

the dynamic setting by adding subscript t to variables in the model (2.4) and the model (2.6), 

thus called dynamic covariance and dynamic correlation models respectively. We focus the 

latter in this section. One can model the components of σt as independent dynamic processes 

using, e.g. ARMA, generalized autoregressive conditional heteroskedasticity (GARCH), or 

log-Gaussian process. For Lt, we use vector processes. Since each row of Lt has to be on a 

sphere of certain dimension, we require the unit norm constraint for the dynamic process 

over time. We refer to any multivariate process li(x) satisfying ‖li(x)‖ ≡ 1, ∀x ∈ X as unit-
vector process (uvP). A unit-vector process can be obtained by constraining an existing 

multivariate process, e.g. the vector Gaussian process (vGP), as defined below.

Definition 3 (Vector Gaussian process). A D-dimensional vector Gaussian process Z(x) := 

(Z1(x),⋯,ZD(x)), with vector mean function μ(x) = (μ1(x),⋯,μD(x)), covariance function C 
and (D-dimensional) cross covariance VD×D,

Z(x) GPD μ, C, VD × D

is a collection of D-dimensional random vectors, indexed by x ∈ X, such that for any finite 

set of indices {x1,⋯,xN}, the random matrix ZN × D: = Z x1 , ⋯, Z xN
⊤ has the following 

matrix normal distribution

ZN × D ℳNN × D MN × D, KN × N, VD × D ,

where MN×D := (m1,⋯,mD), and mk = (μk(x1),⋯,μk(xN))⊤, and K is the kernel matrix with 
elements Kij = C(xi, xj).

Remark 3. Note for each k = 1,⋯D, we have the following marginal GP

Zk(x) GP μk, C .
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In the above definition, we require a common kernel C for all the marginal GPs, whose 
dependence is characterized by the cross covariance VD×D. On the other hand, for any fixed 
x* ∈ X, we have

Z x* ND μ x* , VD × D .

For simplicity, we often consider μ ≡ 0 and VD×D = ID. That is, Zk(x)iidGP(0, C) for k = 

1,⋯,D.

Restricting vGP Z(·) to sphere yields a unit-vector Gaussian process (uvGP) Z*(·) := Z(·)| 

{‖Z(·)‖2 ≡ 1}, denoted as Z*( ⋅ ) GPD
S(μ, C, V). Note for any fixed x* ∈ X, Z* x* ND

S (μ, V). 
Setting μ ≡ 0, V = I, and conditioned on the length ℓn of each row of Z, we have

p Z*| zn ⋅ = ln =
∏n = 1

N lnD

(2π)
ND

2 |K|
D
2

exp − 1
2tr Z* ⊤diag ln K−1diag ln Z* .

This conditional density is preserved by the inference algorithm in Section 3 and used for 

defining priors for correlations with all ℓn = 1. For each marginal GP, we select the following 

powered exponential function as the common kernel

C x, x′ = γexp −0.5 x − x′ s/ρs ,

where s controls the smoothness, the scale parameter γ is given an inverse-Gamma prior, 

and the correlation length parameter ρ is given a log-normal prior. Figure 2 shows a 

realization of vector GP Zt, unit-vector GP (forming rows of) Lt and the induced correlation 

process Pt respectively.

In what follows, we focus on multivariate time series; therefore, we use the one dimensional 

time index t ∈ X = ℝ+. The overall dynamic correlation model can be summarized as 

follows:

yt N μt, Σt , Σt = diag σt LtLt
⊤diag σt ,

μt GPD 0, Cμ, I , Cμ t, t′ = γμexp −0.5 t − t′ s/ρμs ,
logσt GPD 0, Cσ, I , Cσ t, t′ = γσexp −0.5 t − t′ s/ρσs ,
li(t) GPi

S ni, CL, I , CL t, t′ = γLexp −0.5 t − t′ s/ρLs ,
γ* Γ−1 a*, b* , logρ* N m*, V * , * = μ, σ,  or L,

(2.11)

where a constant mean function ni = (0,⋯,0,1) is used in the uvGP prior for li(t), with mean 

matrix M = 1N ⊗ ni⊤ for the realization li. This model (2.11) captures the spatial dependence 

in the matrix Σt, which evolves along the time; while the temporal correlation is 

characterized by various GPs. The induced covariance process Σt is not a generalized 

Wishart process (Wilson and Ghahramani, 2011), which only models Cholesky factor of 

covariance using GP. Though with GP, dynamic covariance model may work similarly as the 
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dynamic correlation model (2.11), yet the latter provides extra flexibility in modeling the 

evolution of variances and correlations separately. In general such flexibility could be useful 

in handling constraints for processes, e.g. modeling the dynamic probability for binary time 

series.

With this structured model (2.11), one can naturally model the evolution of variances and 

correlations separately in order to obtain more flexibility. If the focus is on modeling the 

correlation among multiple time series, then one can substitute σt with a point estimate σ
from one trial and assume a steady variance vector. Alternatively, if sufficient trials are 

present, one can obtain an empirical estimate σt, from multiple trials at each time point. In 

the following, we study the posterior contraction of GP modeling in this setting.

2.4 Posterior Contraction Theorem

We now provide a theorem on the posterior contraction of the dynamic covariance model 

before we conclude this section. Because the posterior contraction for mean regression using 

Gaussian process has been vastly investigated in the literature (van der Vaart and van Zanten, 

2008a, 2009, 2011; Yang and Dunson, 2016), we only investigate the posterior contraction 

for the covariance regression and set μt ≡ 0. We leave the posterior contraction of the 

dynamic correlation model (2.11) for future work. Note, the Cholesky decomposition of 

covariance matrix Σ = LL⊤ is unique if all the diagonal entries of L are positive. Therefore 

in the remaining of this section, we identify Cholesky factors up to a column-wise sign, i.e. 

L ~ Ldiag(−∑j∈J ej) for J ⊂{1,⋯,D}where ej is the j-th column of identity matrix ID.

In most cases, Gaussian process Lt can be viewed as a tight Borel measurable map in a 

Banach space, e.g. a space of continuous functions or Lp space. It is well known that the 

support of a centered GP is equal to the closure of the reproducible kernel Hilbert space 
(RKHS) ℍ associated to this process (Lemma 5.1 of van der Vaart and van Zanten, 2008b). 

Because the posterior distribution necessarily puts all its mass on the support of the prior, the 

posterior consistency requires the true parameter L0 governing the distribution of the data to 

fall in this support (van der Vaart and van Zanten, 2008a). Following van der Vaart and van 

Zanten (2008a,b, 2011), we express the rate of the posterior contraction in terms of the 

concentration function

ϕL0(ε) = inf
ℎ ∈ ℍ: ℎ − L0 < ε

‖ℎ‖ℍ
2 − logΠ(L : ‖L‖ < ε), (2.12)

where ‖·‖ is the norm of the Banach space where the GP L takes value, Π is the GP prior and 

ℍ is the associated RKHS with norm ‖ ⋅ ‖ℍ. Under certain regularity conditions, the posterior 

contracts with increasing data expressed in n at the rate εn → 0 satisfying

ϕL0 εn ≤ nεn2 . (2.13)

Let ‖L‖∞: = max1 ≤ i, j ≤ Dsupt ∈ X lij(t) . Consider Banach space 

L∞(X)D(D + 1)/2: = L: L ∞ < + ∞ . Let p be a (centered) Gaussian model, which is 
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uniquely determined by the covariance matrix Σ = LL⊤. Therefore the model density is 

parametrized by L, hence denoted as pL. Denote PL
(n): = ⊗i = 1

n PL, i as the product measure 

on ⊗i = 1
n Xi, ℬi, μi . Each PL,i has a density pLi with respect to the σ-finite measure μi. 

Define the average Hellinger distance as dn
2 L, L′ = 1

n ∑i = 1
n ∫ ( pL, i − pL′, i)

2dμi. Denote the 

observations Y (n) = Y i i = 1
n  with Yi = y(ti). Note they are independent but not identically 

distributed (inid). Now we state the main theorem of posterior contraction.

Theorem 2.2 (Posterior contraction). Let L − I be a Borel measurable, zero-mean tight 

Gaussian random element in L∞(X)D(D + 1)/2 and PL
(n) = ⊗i = 1

n PL, i be the product measure 

of Y (n) parametrized by L. Let ϕL0 be the function in (2.12) with the uniform norm ‖·‖∞. If 
L0 is contained in the support of L and ϕL0 satisfies (2.13) with εn ≥ n−1/2, then Πn(L : 

dn(L,L0) > Mnεn|Y(n)) → 0 in PL0
(n)-probability for every Mn → ∞.

Proof. See Section B in the supplementary file (Lan et al., 2019). □

Remark 4. In principle, the smoothness of GP should match the regularity of the true 
parameter to achieve the optimal rate of contraction (van der Vaart and van Zanten, 2008a, 

2011). One can scale GP, e.g. using an inverse-Gamma bandwidth, to get optimal 
contraction rate for every regularity level so that the resulting estimator is rate adaptive (van 

der Vaart and van Zanten, 2009, 2011). One can refer to Section 3.2 of (van der Vaart and 

van Zanten, 2011) for posterior contraction rates using squared exponential kernel for GP. 
We leave further investigation on contraction rates in the setting of covariance regression to 
future work.

Remark 5. Here the GP prior L defines a (mostly finite) probability measure on the space of 
bounded functions. The true parameter function L0 is required to be contained in the support 
of the prior, the RKHS of L. The contraction rate depends on the position of L0 relative to 
the RKHS and the small-ball probability Π(‖L‖ < ε)

3. Posterior Inference

Now we obtain the posterior probability of mean μt, variance σt, Cholesky factor of 

correlation Lt, hyper-parameters γ := (γμ, γσ, γL) and ρ := (ρμ, ρσ, ρL) in the model (2.11) 

Denote the realization of processes μt, σt, Lt at discrete time points tn n = 1
N  as μN × D, 

σN × D, LN × D × D respectively. Transform the parameters τ : = log(σ), η :=log(ρ) for 

calculation convenience. Denote YM × N × D: = Y1, ⋯,YM  for M trials, (Ym)N×D := 

[ym1,⋯,ymN]⊤ and ymn* : = ymn − μn °e−τn where ○ is the Hadamard product (a.k.a. Schur 

product), i.e. the entry-wise product. Let K*(γ*, η*) = γ*K0*(η*) and li*: = Ii − 1N ⊗ ni⊤.
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3.1 Metropolis-within-Gibbs

We use a Metropolis-within-Gibbs algorithm and alternate updating the model parameters μ, 

τ, L, γ, η, We now list the parameters and their respective updates one by one. (γ) Note the 

prior for γ is conditionally conjugate given * = μ, τ, or L,

γ* | * , η* Γ−1 a*′ , b*′ , a*′ = a* + ND
2

D + 1
2 − 1

D
[ * = L]

, b*′ = b* + 1
2tr *⊤ K0 * η*

−1 * ,

where [condition] is 1 with the condition satisfied and 0 otherwise.

(η) Given * = μ, τ, or L, we could sample η* using the slice sampler (Neal, 2003), which 

only requires log-posterior density and works well for scalar parameters,

logp η* | * , γ* = −
D D + 1

2 − 1
D

[ * = L]

2 log K0 * η* −
tr *⊤ K0 * η*

−1 *
2γ*

−
η* − m*

2

2V*
.

(μ) By the definition of vGP, we have μ|γμ, ημ ℳNN × D 0, Kμ, ID ; therefore, 

Vec(μ) |γμ, ημ NND 0, ID ⊗ Kμ . On the other hand, one can write

∑
m = 1

M
∑

n = 1

N
ymn* ⊤Pn−1ymn* = ∑

m = 1

M
vec Ym − μ ⊤ ⊤diag Σn

−1 vec Ym − μ ⊤

= ∑
m = 1

M
vec Ym − vec(μ) ⊤ΣK

−1 vec Ym − vec(μ) ,

where ΣK
−1: = K(D, N)diag Σn

−1K(N, D), and K(N,D) is the commutation matrix of size ND 

× ND such that for any N × D matrix A, K(N,D) vec(A) = vec(A⊤) (Tracy and Dwyer, 1969; 

Magnus and Neudecker, 1979). Therefore, the prior on vec(μ) is conditionally conjugate, and 

we have

vec(μ) Y, Σ, γμ, ημ NND μ′, Σ′

μ′ = Σ′ΣK
−1 ∑

m = 1

M
vec Ym , Σ′ = ID ⊗ Kμ−1 + M ΣK

−1 −1
.

(τ) Using a similar argument by matrix Normal prior for τ, we have 

vec(τ) | γτ, ητ NND 0, ID ⊗ Kτ . Therefore, we could use the elliptic slice sampler (ESS, 

Murray et al., 2010), which only requires the log-likelihood

logp(τ; Y, μ) = − M1ND
⊤ Vec(τ) − ∑

m = 1

M 1
2Vec Ym*

⊤PK
−1Vec Ym* ,

where PK
−1: = K(D, N)diag Pn

−1K(N, D) and Ym* : = Ym − μ °exp( − τ).
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(L) For each n ∈ {1,⋯N}, we have vech⊤ Ln ∈ ∏i = 1
D S0

i − 1. We could sample from its 

posterior distribution using the Δ-Spherical Hamiltonian Monte Carlo (Δ-SphHMC) 
described below. The log-posterior density of L is

logp L Y, μ, τ, γL, ηL = − ∑
n = 1

N
Mlog Ln + ∑

m = 1

M 1
2ymn* ⊤Pn−1ymn*

− 1
2 ∑

i = 2

D
tr li*⊤KL

−1li* .

The derivative of log-likelihood with respect to Ln and the derivative of log-prior with 

respect to li can be calculated as

∂logp(L; Y, μ, τ)
∂Ln

= − M
ID
Ln

+ ∑
m = 1

M
tril Pn−1ymn* ymn* ⊤Ln− ⊤ ,

∂logp L γL, ηL
∂li

= − KL
−1li* .

3.2 Spherical HMC

We need an efficient algorithm to handle the intractability in the posterior distribution of L
introduced by various flexible priors. Spherical Hamiltonian Monte Carlo (SphHMC, Lan et 

al., 2014; Lan and Shahbaba, 2016) is a Hamiltonian Monte Carlo (HMC, Duane et al., 

1987; Neal, 2011) algorithm on spheres that can be viewed as a special case of geodesic 

Monte Carlo (Byrne and Girolami, 2013), or manifold Monte Carlo methods (Girolami and 

Calderhead, 2011; Lan et al., 2015). The algorithm was originally proposed to handle norm 

constraints in sampling so it is natural to use it to sample each row of the Cholesky factor of 

a correlation matrix with unit 2-norm constraint. The general notation q is instantiated as li 
in this section.

Assume a probability distribution with density function f(q) is defined on a (D–1) 

dimensional sphere with radius r, SD − 1(r). Due to the norm constraint, there are (D–1) free 

parameters q−D := (q1,⋯qD–1), which can be viewed as the Cartesian coordinates for the 

manifold S+
D − 1(r). To induce Hamiltonian dynamics on the sphere, we define the potential 

energy for position q as U(q) := −log f(q). Endowing the canonical spherical metric 

G(q − D) = ID − 1 +
q−Dq−D

⊤

qD
2  on the Riemannian manifold SD − 1(r), we introduce the 

auxiliary velocity vector v |q N 0,G(q)−1  and define the associated kinetic energy as 

K(v; q): = − logfN(v |q) = − 1
2 log |G(q−D) | + 1

2v−D
⊤ G(q−D)V−D (Girolami and Calderhead, 

2011). Therefore the total energy is defined as

E(q, v): = U(q) + K(v; q) = U(q) + K0(v; q), (3.1)
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where we denote U(q): = U(q) − 1
2 log |G(q−D) | = − logf(q) + log qD , and 

K0(v; q): = 1
2v−D

⊤ G(q−D)v−D = 1
2v

⊤v. (Lan and Shahbaba, 2016). Therefore the Lagrangian 

dynamics with above total energy (3.1) is (Lan et al., 2015)

q̇−D = v−D,
v̇−D = − v−D

⊤ Γ q−D v−D − G q−D
−1∇q − DU(q), (3.2)

where Γ(q–D) = r−2G(q−D) ⊗ q−D is the Christoffel symbols of second kind (see details in 

Lan and Shahbaba, 2016, for r = 1). A splitting technique is used to yield a geometric 

integrator called leapfrog that mainly moves along geodesics (great circles) on the sphere 

with random perturbation in the direction. It is then applied with discrete step size h for T 
times to numerically solve (3.2) in order to obtain a proposed state (qT, vT). This proposal 

can be accepted with certain probability expressed in the total energy (3.1). Interested 

readers can refer to Lan et al. (2014), Lan and Shahbaba (2016), or Section C in the 

supplementary file (Lan et al., 2019). In addition to the original work in Lan et al. (2014) 

and Lan and Shahbaba (2016), we prove the following result on energy conservation of the 

algorithm (Beskos et al., 2011).

Theorem 3.1. Let h → 0 we have the following energy conservation

E(q(T), v(T )) − E(q(0), v(0)) = U(q(T)) − U(q(0)) − ∫0
T

v(t), g(q(t)) dt = 0.

Proof. See Section C in the supplementary file (Lan et al., 2019). □

3.3 Adaptive Spherical HMC

There are two tuning parameters in HMC and its variants: the step size h and the number of 

integration (leapfrog) steps T. Hand tuning heavily relies on domain expertise and could be 

inefficient. Here, we adopt the ‘No-U-Turn’ idea from Hoffman and Gelman (2014) and 

introduce a novel adaptive algorithm beyond Lan et al. (2014); Lan and Shahbaba (2016) 

that obviates manual tuning of these parameters.

First, for any given step size h, we adopt a rule for setting the number of leapfrog steps T 
based on the same philosophy as ‘No-U-Turn’ (Hoffman and Gelman, 2014). The idea is to 

avoid waste of computation occurred (e.g. when the sampler backtracks on its trajectory) 

without breaking the detailed balance condition for the Markov chain Monte Carlo (MCMC) 

transition kernel. SD − 1(r) is a compact manifold where any two points q(0), q(t) ∈ SD − 1(r)
have bounded geodesic distance πr. We adopt the stopping rule for the leapfrog when the 

sampler exits the orthant of the initial state, that is, the trajectory measured in geodesic 

distance is at least π
2 r, which is equivalent to 〈q(0), q(t)〉 < 0. On the other hand, this 

condition may not be satisfied within reasonable number of iterations because the geometric 

integrator does not exactly follow a geodesic in general (only the middle part does), 

therefore we set some threshold Tmax for the number of tests, and adopt the following ‘Two-
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Orthants’ (as the starting and end points occupy two orthants) rule for the number of 

leapfrogs:

T2ortℎ = min
τ ∈ 0, ⋯, Tmax

τ: q0, qτ < 0 .
(3.3)

Alternatively, one can stop the leapfrog steps in a stochastic way based on the geodesic 

distance travelled:

Tstocℎ = min
τ

τ:Zτ = 0 , Zτ Bern pτ , pτ = r−2 q0, qτ + 1
2 . (3.4)

These stopping criteria are already time reversible, so the recursive binary tree as in ‘No-U-

Turn’ algorithm (Hoffman and Gelman, 2014) is no longer needed.

Lastly, we adopt the dual averaging scheme (Nesterov, 2009) for the adaptation of step size 

h. See Hoffman and Gelman (2014) for more details. We summarize our Adaptive Spherical 
Hamiltonian Monte Carlo (adp-SphHMC) in the supplementary file (Lan et al., 2019).

To sample L (or Lt), we could update each row vector li ∈ S0
i − 1 in parallel, and accept/reject 

vech⊤(L) (or vech⊤(Lt)) simultaneously in terms of the sum of total energy of all 

components. We refer to the resulting algorithm as Δ-Spherical HMC (Δ-SphHMC).

The computational complexity involving GP prior is O N3 , and that of the likelihood 

evaluation is O MD2 . MCMC updates of μN × D, σN × D, LN × D × D have complexity 

O(ND), O(ND) and O ND2  respectively. To scale up applications to larger dimension D, one 

could preliminarily classify data into groups, and arrange the corresponding blocks of their 

covariance/correlation matrix in some ‘band’ along the main diagonal assuming no 

correlation among groups. More specifically, we can assume Lt is w-band lower triangular 

matrix for each time t, i.e. lij = 0 for i < j or i − j ≥ w, then the resulting covariance/

correlation matrix will be (2w − 1)-banded. In this way the complexity of likelihood 

evaluation and updating L will be reduced to O(MwD) and O(NwD) resepctively. Therefore 

the total computational cost would scale linearly with the dimension D. This technique will 

be investigated in Section 4.2.

4 Simulation Studies

In this section, we use simulated examples to illustrate the advantage of our structured 

models for covariance. First, we consider the normal-inverse-Wishart problem. Since there is 

conjugacy and we know the true posterior, we use this to verify our method and investigate 

flexible priors in Section 2.2. Then we test our dynamical modeling method in Section 2.3 

on a periodic process model. Our model manifests full flexibility compared to a state-of-the-

art nonparametric covariance regression model based on latent factor process (Fox and 

Dunson, 2015).
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4.1 Normal-inverse-Wishart Problem

Consider the following example involving inverse-Wishart prior

yn Σ N μ0, Σ , n = 1, ⋯, N,
Σ WD

−1(Ψ, ν) .
(4.1)

It is known that the posterior of Σ|Y is still inverse-Wishart distribution:

Σ |Y WD
−1 Ψ + Y − μ0 Y − μ0

⊤, ν + N , Y = y1, ⋯, yN
⊤ . (4.2)

We consider dimension D = 3 and generate data Y with μ0 = 0, Σ = Σ0 = 1
11 I + 11⊤  for N = 

20 data points so that the prior is not overwhelmed by data.

Verification of Validity—Specifying conditional priors based on (2.8) in the structured 

model (2.6), we want to check the validity of our proposed method by comparing the 

posterior estimates using Δ-SphHMC agains the truth (4.2).

We sample τ := log(σ) using standard HMC and U* using Δ-SphHMC. They are updated in 

Metropolis-Within-Gibbs scheme. 106 samples are collected after burning the first 10% and 

subsampling every 1 of 10. For each sample of τ and vech(U*), we calculate Σ = 

diag(eτ)U*(U*)⊤ diag(eτ). Marginal densities of entries in Σ are estimated with these 

samples and plotted against the results by direct sampling in Figure 3. Despite of sampling 

variance, these estimates closely match the results by direct sampling, indicating the validity 

of our proposed method.

Examining Flexibility of Priors—We have studied several spherical priors for the 

Cholesky factor of correlation matrix proposed in Section 2.2. Now we examine the 

flexibility of these priors in providing prior information for correlation with various 

parameter settings.

With the same data generated according to (4.1), we now consider the squared-Dirichlet 

prior (2.10) for L in the structured model (2.6) with the following setting

τi = log σi N 0, 0.12 , i = 1, ⋯, D,
li Dir2 αi , αi = α1i − 1, α0 , i = 2, ⋯, D,

(4.3)

where we consider three cases i) α = 1, α0 = 1; ii) α = 0.1, α0 = 1; iii) α = 0.1, α0 = 10.

We generate 106 prior samples (according to (4.3)) and posterior samples (by Δ-SphHMC) 

for L respectively and covert them to P = LL⊤. For each entry of ρij, we estimate the 

marginal posterior (prior) density based on these posterior (prior) samples. The posteriors, 

priors and maximal likelihood estimates (MLEs) of correlations ρij are plotted in Figure 4 

for different α’s respectively. In general, the posteriors are compromise between priors and 

the likelihoods (MLEs). With more and more weight (through α) put around the poles (last 

component) of each factor sphere, the priors become increasingly dominant that the 
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posteriors (red dash lines) almost fall on priors (blue solid lines) when α = (0.1, 0.1, 10). In 

this extreme case, the squared-Dirichlet distributions induce priors in favor of trivial (zero) 

correlations. We have similar conclusion on Bingham prior and von Mises-Fisher prior but 

results are reported in Section E.1 of the supplementary file (Lan et al., 2019).

4.2 Simulated Periodic Processes

In this section, we investigate the performance of our dynamic model (2.11) on the following 

periodic process example

y(t) ND(μ(t), Σ(t)), Σ(t) = L(t)L(t)⊤°S, t ∈ [0, 2],
μi(t) = sin(itπ/D), Lij(t) = −1 isin(itπ/D) −1 jcos(jtπ/D), j ≤ i = 1, ⋯,
D,
Sij = i − j + 1 −1, i, j = 1, ⋯, D .

(4.4)

Based on the model (4.4), we generate M trials (process realizations) of data y at N evenly 

spaced points for t in [0, 2], and therefore the whole data set {y(t)} is an M × N × D array. 

We first consider D = 2 to investigate the posterior contraction phenomena and the model 

flexibility; then we consider D = 100 over a shorter period [0, 1] to show the scalability 

using the ‘w-band’ structure.

Posterior Contraction—Posterior contraction describes the phenomenon that the 

posterior concentrates on smaller and smaller neighborhood of the true parameter (function) 

given more and more data (van der Vaart and van Zanten, 2008a). We investigate such 

phenomena in both mean functions and covariance functions in our model (2.11) using the 

following settings i) M = 10,N = 20; ii) M = 100,N = 20; iii) M = 10,N = 200; iv) M = 100,N 
= 200.

To fit the data using the model (2.11), we set s = 2, a = (1, 1, 1), b = (0.1, 10−3, 0.2), m = (0, 

0, 0) for all settings, V = (1,0.5,1) for N = 20 and V = (1,1,0.3) for N = 200. We also add an 

additional nugget of 10−5In to all the covariance kernel of GPs to ensure non-degeneracy. 

Following the procedure in Section 3.1, we run MCMC for 1.5 × 105 iterations, burn in the 

first 5 × 104 and subsample 1 for every 10. Based on the resulting 104 posterior samples, we 

estimate the underlying mean functions and covariance functions and plot the estimates in 

Figure 5.

Note in Figure 5, both M and N have effect on the amount of data information thereafter on 

the posterior contraction but the contraction rate may depend on them differently. Both mean 

and covariance functions have narrower credible bands for more discretization points N 
(comparing N = 20 in the first row with N = 200 for the second row). On the other hand, 

both posteriors contract further with more trials M (comparing M = 10 in the first column 

agains M = 100 for the second column). In general the posterior of mean function contracts 

to the truth faster than the posterior of covariance function. With M = 100 trials and N = 200 

discretization points, both mean and covariance functions are almost recovered by the model 

(2.11).
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Full Flexibility—Our method (2.11) grants full flexibility because it models mean, 

variance and correlation processes separately. This is particularly useful if they behave 

differently. It contrasts with latent factor based models that tie mean and covariance 

processes together. One of the state-of-the-art models of this type is Bayesian nonparametric 

covariance regression (Fox and Dunson, 2015):

y(x) ND(μ(x), Σ(x)), μ(x) = Λ(x)ψ(x), Σ(x) = Λ(x)Λ(x)⊤ + Σ0 . (4.5)

We tweak the simulated example (4.4) for D = 2 to let mean and correlation processes have 

higher frequency than variance processes, as shown in the dashed lines in Figure 6. We 

generate M = 10 trials of data over N = 200 evenly spaced points. In this case, the true mean 

processes μ(x) and true covariance processes Σ(x) behave differently but are modeled with a 

common loading matrix Λ(x) in model (4.5). This imposes difficulty on (4.5) to have a latent 

factor process ψ(x) that could properly accommodate the heterogeneity in mean and 

covariance processes. Figure 6 shows that due to this reason, latent factor based model (4.5) 

(upper row) fails to generate satisfactory fit for all of the mean, variance and correlation 

processes. Our fully flexible model (2.11) (bottom row), on the contrary, successfully 

produces more accurate characterization for all of them. Note that this artificial example is 

used to demonstrate the flexibility of our dynamic model (2.11). For cases that are not as 

extreme, (4.5) may performance equally well. See more discussion in Section 6 and more 

details in Section E.2 in the supplementary file (Lan et al., 2019).

Scalability—Now we use the same simulation model (4.4) for D = 100 dimensions to test 

the scalability of our dynamic model (2.11). However instead of the full covariance, we 

consider a covariance matrix with 110 non-zero off-diagonal entries ρ1,2, ρ3,4,⋯,ρ99,100 and 

a few outside the ‘2-band’ of the diagonal. The sparsity structure of the covariance is shown 

in the left panel of Figure 7 where the red lines indicate the ‘2-band’ structure. We focus on 

the correlation process in this example, thus set μt ≡ 0 and σt ≡ 1, for t ∈ [0, 1]. More 

specifically when generating the data {yt}, we only use Lij and Sij in (4.4) for non-zero 

entries.

To apply our dynamical model (2.11) in this setting, we let Lt have ‘w-band’ structure with 

w = 2 at each time t. Setting s = 2, a = 1, b = 0.1, m = 0 and V = 10−3, N = 100 and M = 100, 

we repeat the MCMC runs for 7.5 × 104 iterations, burn in the first 2.5 × 104 and subsample 

1 for every 10 to obtain 5 × 103 posterior samples in the end. Based on those samples, we 

estimate the underlying correlation functions and only plot selective correlations ρ1,2, ρ3,12, 

ρ50,51 and ρ99,100 in Figure 7. With the ‘w-band’ structure, we have less entries in the 

covariance matrix and focus on the ‘in-group’ correlation. Our dynamical model (2.11) is 

sensitive enough to discern the informative non-zero components from the non-informative 

ones in these correlation functions. Unit-vector GP priors provide flexibility for the model to 

capture the changing pattern of informative correlations. The middle panel of Figure 7 

shows that except ρ3,12 which falls out of the ‘2-band’ as indicated by red circle in the left 

panel of Figure 7, the model (2.11) correctly identify the non-zero components ρ1,2 and 

ρ99,100 and characterize their evolution. The right panel shows that the relative Frobenius-

norm distance between the estimated and true correlation matrices, ‖P(t) − P(t)‖F /‖P(t)‖F  is 
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small, indicating that our dynamic model (2.11) performs well with higher dimension in 

estimating complex dependence structure among multiple stochastic processes.

5 Analysis of Local Field Potential Activity

Now we use the proposed model (2.11) to analyze a local field potential (LFP) activity 

dataset. The goal of this analysis is to elucidate how memory encoding, retrieval and 

decision-making arise from functional interactions among brain regions, by modeling how 

their dynamic connectivity varies during performance of complex memory tasks. Here we 

focus on LFP activity data recorded from 24 electrodes spanning the dorsal CA1 subregion 

of the hippocampus as rats performed a sequence memory task (Allen et al., 2014, 2016; Ng 

et al., 2017; Holbrook et al., 2017). The task involves repeated presentations of a sequence 

of odors (e.g., ABCDE) at a single port and requires rats to correctly determine whether 

each odor is presented ‘in sequence’ (InSeq; e.g., ABCDE; by holding their nosepoke 

response until the signal at 1.2s) or ‘out of sequence’ (OutSeq; e.g., ABDDE; by 

withdrawing their nose before the signal). In previous work using the same dataset, 

Holbrook et al. (2016) used a direct MCMC algorithm to study the spectral density matrix of 

LFP from 4 selected channels. However, they did not examine how their correlations varied 

across time and recording site. These limitations are addressed in this paper.

We focus our analyses on the time window from 0ms to 750ms (with 0 corresponding to 

when the rat’s nose enters the odor port). Critically, this includes a time period during which 

the behavior of the animal is held constant (0–500ms) so differences in LFP reflect the 

cognitive processes associated with task performance, and, to serve as a comparison, a time 

period near 750ms during which the behavioral state of the animal is known to be different 

(i.e., by 750ms the animal has already withdrawn from the port on the majority of OutSeq 

trials, but is still in the port on InSeq trials). We also focus our analyses on two sets of 

adjacent electrodes (electrodes 20 and 22, and electrodes 8 and 9), which allows for 

comparisons between probes that are near each other (<1mm; i.e., 20:22 and 8:9) or more 

distant from each other (>2mm; i.e., 20:8, 20:9, 22:8, and 22:9). Figure 8 shows M = 20 

trials of these LFP signals from D = 4 channels under both InSeq and OutSeq conditions. 

Our main objective is to quantify how correlations among these LFP channels varied across 

trial types (InSeq vs OutSeq) and over time (within the first 750ms of trials). To do so, we 

discretize the time window of 0.75 seconds into N = 300 equally-spaced small intervals. 

Under each experiment condition (InSeq or OutSeq), we treat all the signals as a 4 

dimensional time series and fit them using our proposed dynamic correlation model (2.11) in 

order to discover the evolution of their relationship. Note that we model the mean, variance, 

and correlation processes separately but only report findings about the evolution of 

correlation among those brain signals.

We set s = 2, a = (1, 1, 1), b = (1, 0.1, 0.2), m = (0, 0, 0), V = (1, 1.2, 2); and the general 

results are not very sensitive to the choice of these fine-tuning parameters. We also scale the 

discretized time points into (0, 1] and add an additional nugget of 10−5In to the covariance 

kernel of GPs. We follow the same procedure in Section 3.1 to collect 7.5 × 104 samples, 

burn in the first 2.5 × 104 and subsample 1 for every 10. The resulting 104 samples yield 

estimates of correlation processes as shown in Figure 9 for beta-filtered traces (20–40Hz) 
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but similar patterns were also observed for theta-filtered traces (4–12Hz; see the 

supplement). The bottom panel of Figure 9 shows the dissimilarity between correlation 

processes under different conditions measured by the Frobenius norm of their difference.

Our approach revealed many important patterns in the data. First, it showed that electrodes 

near each other (20:22 and 8:9) displayed remarkably high correlations in their LFP activity 

on InSeq and OutSeq trials, whereas correlations were considerably lower among more 

distant electrodes (20:8, 20:9, 22:8, and 22:9). Second, it revealed that the correlations 

between InSeq and OutSeq matrices evolved during the presentation of individual trials. 

These results are consistent with other analyses on learning (see, e.g., Fiecas and Ombao, 

2016). As expected, InSeq and OutSeq activity was very similar at the beginning of the time 

window (e.g., before 350ms), which is before the animal has any information about the 

InSeq or OutSeq status of the presented odor, but maximally different at the end of the time 

window, which is after it has made its response on OutSeq trials. Most important, however, 

is the discovery of InSeq vs OutSeq differences before 500ms, which reveal changes in 

neural activity associated with the complex cognitive process of identifying if events 

occurred in their expected order. These findings highlight the sensitivity of our novel 

approach, as such differences have not been detected with traditional analyses. Interested 

readers can find more results about all the 12 channels in Section E.3 of the supplementary 

file (Lan et al., 2019).

6 Conclusion

In this paper, we propose a novel Bayesian framework that grants full flexibility in modeling 

covariance and correlation matrices. It extends the separation strategy proposed by Barnard 

et al. (2000) and uses the Cholesky decomposition to maintain the positive definiteness of 

the correlation matrix. By defining distributions on spheres, a large class of flexible priors 

can be induced for covariance matrix that go beyond the commonly used but restrictive 

inverse-Wishart distribution. Furthermore, the structured models we propose maintain the 

interpretability of covariance in terms of variance and correlation. Adaptive Δ-Spherical 

HMC is introduced to handle the intractability of the resulting posterior. Furthermore, we 

extend this structured scheme to dynamical models to capture complex dependence among 

multiple stochastic processes, and demonstrate the effectiveness and efficiency in Bayesian 

modeling covariance and correlation matrices using a normal-inverse-Wishart problem, a 

simulated periodic process, and an analysis of LFP data. In addition, we provide both 

theoretic characterization and empirical investigation of posterior contraction for 

dynamically covariance modeling, which to our best knowledge, is a first attempt.

In this work, we consider the marginal (pairwise) dependence among multiple stochastic 

processes. The priors for correlation matrix specified through the sphere-product 

representation are in general dependent among component variables. For example, the 

method we use to induce uncorrelated prior between yi and yj (i < j) by setting ljk ≈ 0 for k ≤ 

i has a direct consequence that Cor(yi′, yj) ≈ 0 for i′ ≤ i. In another word, more informative 

priors (part of the components are correlated) may require careful ordering in {yi}. To avoid 

this issue, one might consider the inverse of covariance (precision) matrices instead. This 

leads to modeling the conditional dependence, or Markov network (Dempster, 1972; 
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Friedman et al., 2008). Our proposed methodology applies directly to (dynamic) precision 

matrices/processes, which will be our future direction.

To further scale our method to problems of greater dimensionality in future, one could 

explore the low-rank structure of covariance and correlation matrices, e.g. by adopting the 

similar factorization as in (Fox and Dunson, 2015) and assuming vech⊤ Lt ∈ Sk D
 for some 

k ≪ D, or impose some sparse structure on the precision matrices.

We have proved that the posterior of covariance function contracts at a rate given by the 

general form of concentration function (van der Vaart and van Zanten, 2008a). Empirical 

evidence (Section 4.2) shows that the posterior of covariance contracts slower than that of 

mean. More theoretical works is needed to compare their contraction rates. Also, future 

research could involve investigating posterior contraction in covariance regression with 

respect to the optimal rates under different GP priors.

While our research has generated interesting new findings regarding brain signals during 

memory tasks, one limitation of our current analysis on LFP data is that it is conducted on a 

single rat. The proposed model can be generalized to account for variation among rats. In the 

future, we will apply this sensitive approach to other datasets, including simultaneous LFP 

recordings from multiple brain regions in rats as well as BOLD functional magnetic 

resonance imaging (fMRI) data collected from human subjects performing the same task.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Symmetric squared-Dirichlet distributions Dir2(α) defined on the 2-sphere with different 

settings for concentration parameter α = α1. The uniform distribution on the simplex, 

Dir(1), becomes non-uniform on the sphere due to the stretch of geometry (left); the 

symmetric Dirichlet distribution Dir(1/21) becomes uniform on the sphere (middle); with α 
closer to 0, the induced distribution becomes more concentrated on the polar points (right).
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Figure 2: 
A realization of vector GP Zt (left), unit-vector GP (forming rows of) Lt (middle) and the 

induced correlation process Pt (right).
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Figure 3: 
Marginal posterior densities of σij in the normal-inverse-Wishart problem. Solid blue lines 

are estimates by Δ-SphHMC and dashed red lines are estimates by direct sampling. All 

densities are estimated with 106 samples.
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Figure 4: 
Marginal posterior, prior (induced from squared-Dirichlet distribution) densities of 

correlations and MLEs with different settings for concentration parameter α, estimated with 

106 samples.
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Figure 5: 
Estimation of the underlying mean functions μt (left in each of 4 subpannels) and covariance 

functions Σt (right in each of 4 subpannels) of 2-dimensional periodic processes. M is the 

number of trials, and N is the number of discretization points. Dashed lines are true values, 

solid lines are estimates and shaded regions are 95% credible bands.
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Figure 6: 
Estimation of the underlying mean functions μt (left column), variance functions σt (middle 

column) and correlation function ρt (right column) of 2-dimensional periodic processes, 

using latent factor process model (upper row) and our flexible model (lower row), based on 

M = 10 trials of data over N = 200 evenly spaced points. Dashed lines are true values, solid 

lines are estimates and shaded regions are 95% credible bands.
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Figure 7: 
Underlying structure of the correlation matrix (left), selective posterior estimates of the 

correlation functions Pt (middle), and its Frobenius-norm distance to the truth (right) based 

on 100-dimensional periodic processes with 2-band structure, using M = 100 trials over N = 

100 discretization points. Dashed lines are true values, solid lines are estimates and shaded 

regions are the 95% credible bands.
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Figure 8: 
LFP signals on “in sequence” and “out of sequence” trials. It is difficult to identify 

differences between the two conditions based on a mere visual inspection of the LFPs.
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Figure 9: 
Estimated correlation processes of LFPs (beta) under in-sequence condition (top), out-of-

sequence condition (middle) and the (Frobenius) distance between two correlation matrices 

(bottom).
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